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Abstract—Data sharing in cloud computing enables multiple participants to freely share the group data, which improves the efficiency
of work in cooperative environments and has widespread potential applications. However, how to ensure the security of data sharing
within a group and how to efficiently share the outsourced data in a group manner are formidable challenges. Note that key agreement
protocols have played a very important role in secure and efficient group data sharing in cloud computing. In this paper, by taking
advantage of the symmetric balanced incomplete block design (SBIBD), we present a novel block design-based key agreement
protocol that supports multiple participants, which can flexibly extend the number of participants in a cloud environment according to
the structure of the block design. Based on the proposed group data sharing model, we present general formulas for generating the
common conference key K for multiple participants. Note that by benefiting from the (v, k + 1, 1)-block design, the computational
complexity of the proposed protocol linearly increases with the number of participants and the communication complexity is greatly
reduced. In addition, the fault tolerance property of our protocol enables the group data sharing in cloud computing to withstand
different key attacks, which is similar to Yi’s protocol.

Index Terms—Key agreement protocol, symmetric balanced incomplete block design (SBIBD), data sharing, cloud computing.
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1 INTRODUCTION

C LOUD computing and cloud storagehave become hot
topics in recent decades. Both are changing the way we

live and greatly improving production efficiency in some
areas. At present, due to limited storage resources and the
requirement for convenient access, we prefer to store all
types of data in cloud servers, which is also a good option
for companies and organizations to avoid the overhead of
deploying and maintaining equipment when data are stored
locally. The cloud server provides an open and convenient
storage platform for individuals and organizations, but it
also introduces security problems. For instance, a cloud
system may be subjected to attacks from both malicious
users and cloud providers. In these scenarios, it is important
to ensure the security of the stored data in the cloud. In [1],
[2], [3], several schemes were proposed to preserve the
privacy of the outsourced data. The above schemes only
considered security problems of a single data owner. How-
ever, in some applications, multiple data owners would like
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to securely share their data in a group manner. Therefore,
a protocol that supports secure group data sharing under
cloud computing is needed.

A key agreement protocol is used to generate a common
conference key for multiple participants to ensure the secu-
rity of their later communications, and this protocol can be
applied in cloud computing to support secure and efficient
data sharing. Since it was introduced by Diffie-Hellman in
their seminal paper [4], the key agreement protocol has
become one of the fundamental cryptographic primitives.
The basic version of the Diffie-Hellman protocol provides an
efficient solution to the problem of creating a common secret
key between two participants. In cryptography, a key agree-
ment protocol is a protocol in which two or more parties
can agree on a key in such a way that both influence the out-
come. By employing the key agreement protocol, the confer-
ees can securely send and receive messages from each other
using the common conference key that they agree upon
in advance. Specifically, a secure key agreement protocol
ensures that the adversary cannot obtain the generated key
by implementing malicious attacks, such as eavesdropping.
Thus, the key agreement protocol can be widely used in
interactive communication environments with high security
requirements (e.g., remote board meetings, teleconferences,
collaborative workspaces, radio frequency identification [5],
cloud computing and so on).

The Diffie-Hellman key agreement [4] provides a way
to generate keys. However, it does not provide an au-
thentication service, which makes it vulnerable to man-
in-the-middle attacks. This situation can be addressed by
adding some forms of authentication mechanisms to the
protocol, as proposed by Law et al. in [6]. In addition,
the Diffie-Hellman key agreement can only support two
participants. Subsequently, to solve the different key attacks
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from malicious conferees, who attempt to deliberately delay
or destroy the conference, Yi proposed an identity-based
fault-tolerant conference key agreement in [7]. Currently,
many researches have been devoted to improving the se-
curity and communication efficiency of the key agreement
protocol, which is covered in the literature [8], [9], [10],
[11]. Note that in Chung and Bae’s paper [12] and Lee et
al.’s paper [13], block design is utilized in the design of an
efficient load balance algorithm to maintain load balanc-
ing in a distributed system. Inspired by [12] and [13], we
introduce the symmetric balanced incomplete block design
(SBIBD) in designing the key agreement protocol to reduce
the complexity of communication and computation. As far
as we know, the work to design the key agreement protocol
with respect to the SBIBD is novel and original.

1.1 Main Contributions

In this paper, we present an efficient and secure block
design-based key agreement protocol by extending the
structure of the SBIBD to support multiple participants,
which enables multiple data owners to freely share the
outsourced data with high security and efficiency. Note that
the SBIBD is constructed as the group data sharing model to
support group data sharing in cloud computing. Moreover,
the protocol can provide authentication services and a fault
tolerance property. The main contributions of this paper are
summarized as follows.

1. Model of group data sharing according to the struc-
ture of the SBIBD is constructed. In this paper, a group
data sharing model is established based on the definition
of the SBIBD, which can be used to determine the way of
communication among the participants. Regarding mathe-
matical descriptions of the structure of the SBIBD, general
formulas for computing the common conference key for
multiple participants are derived.

2. Fault detection and fault tolerance can be provided
in the protocol. The presented protocol can perform fault
detection to ensure that a common conference key is estab-
lished among all participants without failure. Moreover, in
the fault detection phase, a volunteer will be used to replace
a malicious participant to support the fault tolerance prop-
erty. The volunteer enables the protocol to resist different
key attacks [7], which makes the group data sharing in cloud
computing more secure.

3. Secure group data sharing in cloud computing can be
supported by the protocol. According to the data sharing
model applying the SBIBD, multiple participants can form a
group to efficiently share the outsourced data. Subsequently,
each group member performs the key agreement to derive
a common conference key to ensure the security of the
outsourced group data. Note that the common conference
key is only produced by group members. Attackers or the
semi-trusted cloud server has no access to the generated key.
Thus, they cannot access the original outsourced data (i.e.,
they only obtain some unintelligible data). Therefore, the
proposed key agreement protocol can support secure and
efficient group data sharing in cloud computing.

Notably, the above contributions substantially widen
the field of applications of the key agreement protocol by
applying an SBIBD with high security and flexibility. More-

over, the communication complexity is reduced without in-
troducing extra computational complexity. Specifically, the
communication complexity of our protocol is O(n

√
n), and

the computational complexity is O(nm2). Here, n is the
number of participants, and m is the extension degree of
the finite field Fpm , which is the space for rational points in
a supersingular elliptic curve.

1.2 Organization
The remainder of this paper is organized as follows. Sec-
tion 2 introduces related works. Section 3 briefly presents
preliminaries and the system model. Section 4 describes
the algorithm for constructing the SBIBD and depicts the
group data sharing model. Section 5 shows the block design-
based key agreement protocol with the general formulas
for calculating the common conference key for multiple
participants. Section 6 and Section 7 present the security
and performance analyses, respectively. Finally, conclusions
are drawn in Section 8. To understand our protocol well,
the detailed process of the key agreement with multiple
participants and a concrete example with 31 participants are
provided in the Appendix.

2 RELATED WORKS

It is well known that data sharing in cloud computing can
provide scalable and unlimited storage and computational
resources to individuals and enterprises. However, cloud
computing also leads to many security and privacy con-
cerns, such as data integrity, confidentiality, reliability, fault
tolerance and so on. Note that the key agreement protocol is
one of the fundamental cryptographic primitives, which can
provide secure communication among multiple participants
in cloud environments.

In [14] and [15], based on symmetric-key cryptogra-
phy, several schemes were proposed to enable efficient
encryption of the outsourced data. However, encryption
keys should be transmitted in a secure channel, which
is not possible in practice, particularly in the open cloud
environment. Since it was introduced in [16], resistance to
compromised keys has been taken into consideration, which
is an important issue in the context of cloud computing.
Note that cloud storage auditing with verifiable outsourcing
of key updates paradigm was proposed by Yu et al. in [17] to
achieve resistance to compromised keys. In this paradigm,
the third party auditor (TPA) takes responsibility for the
cloud storage auditing and key updates. In particular, the
TPA is responsible for the selection and distribution of the
key. The key downloaded from the TPA can be used by the
client to encrypt files that he will upload to the cloud. In
contrast, the generation and distribution of the key is based
on a centralized model in [17], which not only imparts a
burden to the TPA but also introduces some security prob-
lems. In [18], a key agreement algorithm was exploited by
De Capitani di Vimercati et al. to achieve data access when
data are controlled by multiple owners. Therefore, the key
agreement protocol can be applied in group data sharing to
solve related security problems in cloud computing.

Following the first pioneering work for key agree-
ment [4], many works have attempted to provide authen-
tication services in the key agreement protocol. In [19],
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a public key infrastructure (PKI) is used to circumvent
man-in-the-middle attacks. However, these protocols are not
suitable for resource-constrained environments since they
require executions of time-consuming modular exponenti-
ation operations. Key agreement protocols that use elliptic
curve cryptography (ECC) have been proposed in [20], [21].
These protocols are more efficient than the protocols that
resort to the PKI because point additions or multiplications
in elliptic curves are more efficient compared with the
modular exponentiation. Moreover, based on the difficulty
of solving the elliptic curve discrete logarithm problem
(ECDLP), protocols that use ECC are more secure.

To avoid the requirement of the public key certificate,
in 1984, identity-based cryptography (IBC) was proposed
by Shamir [22]. However, it was not until 2001 that the
first practical IBC scheme [10] was proposed by Boneh and
Franklin. Due to the strict security proof and high efficiency,
this scheme has received widespread recognition in aca-
demic fields. In the same year, a popular proof model for
group key establishment was proposed by Bresson et al. [23].
In this protocol, to manage the complexity of definitions
and proofs for the authenticated group Diffie-Hellman key
exchange, a formal model was presented, where two secu-
rity goals of the group Diffie-Hellman key exchange were
addressed. However, some security properties are missing
in [23], which are essential for preventing malicious protocol
participants.

Note that all the above protocols have been proven and
analyzed for security, but some of them can only be applied
to the key agreement between two entities and need a large
amount of resources to perform calculations. Recently, an
identity-based authenticated key agreement protocol was
proposed by Shen et al. in [9], which improves the efficiency
of the conference key agreement and provides entity au-
thentication services. However, there are some obstacles in
Shen et al.’s protocol [9] in real applications. One is that the
protocol only discusses a specific situation when the number
of conferees is exactly 7. The other is that the protocol
does not discuss the general situation and does not provide
the key agreement process for multiple participants, which
makes the protocol lack flexibility and practicability.

Motivated by the above observation, the key agreement
protocol is applicable to support data sharing in cloud
computing for the following reasons.

1. The generation of a common conference key is per-
formed in a public channel, which is suitable for cloud
computing environments.

2. The key agreement protocol can support and pro-
vide secure data sharing for multiple data owners within
a group, where the data sharing follows a many-to-many
pattern. Compared with the one-to-many pattern, the many-
to-many pattern in group data sharing provides higher
efficiency in the environment of cooperative storage.

3. The key agreement protocol is based on a decentral-
ized model, where a trusted third party is not required. This
means that every data owner in a group fairly contributes
and determines the common conference key such that the
outsourced data are controlled by all the data owners within
a group.

Therefore, we design a block design-based key agree-
ment protocol for data sharing in cloud computing. First, we

propose an algorithm to construct the (v, k + 1, 1)-design.
Then, with respect to the mathematical description of the
structure of the (v, k+1, 1)-design, general formulas for gen-
erating the common conference key K for multiple partici-
pants are derived. Namely, the proposed protocol supports
multiple participants. We believe that our contributions can
widen the application scope of the key agreement protocol
in cloud computing employing an SBIBD.

3 PRELIMINARIES AND SYSTEM MODEL

3.1 Cryptographic Bilinear Maps
Modified Weil pairing [10] is an example of a cryptographic
bilinear map. One way to construct this map is described
as follows. Let p be a prime such that p = 6q − 1 for some
prime q and E be a supersingular elliptic curve defined by
the Weierstrass equation y2 = x3 + 1 over Fp. The group
of rational points E(Fp) = {(x, y) ∈ Fp × Fp : (x, y) ∈ E}
forms a cyclic group of order p + 1. Furthermore, because
p + 1 = 6q for some prime q, the group of points of order
q in E(Fp) forms a cyclic subgroup, denoted as G1. Further
discussion of the Weil pairing is shown in the literature [8].

Definition 1. Let G be a generator of G1, and let G2 be
the subgroup of Fp2 containing all elements of order q. A
modified Weil pairing is a map ê : G1 × G1 → G2, which
has the following properties for points in E(Fp):

1. Bilinear: For any P,Q ∈ G1 and a, b ∈ Z, we have
ê(aP, bQ) = ê(P,Q)ab.

2. Non-degenerate: If P is a generator of G1, then
ê(P,P) ∈ F ∗p2 is a generator of G2. In other words,
ê(P,P) 6= 1.

3. Non-commutative: For any P,Q ∈ G1, P 6= Q,
ê(P,Q) 6= ê(Q,P).

4. Computable: Given P,Q ∈ G1, there exists an efficient
algorithm to compute e(P,Q).

5. For any P1,P2,Q1,Q2 ∈ G1, we have
ê(P1 + P2,Q1) = ê(P1,Q1) · ê(P2,Q1)
ê(P1,Q1 +Q2) = ê(P1,Q1) · ê(P1,Q2)

3.2 Security Assumption
Security is one of the most essential conditions that a good
cryptographic algorithm or protocol should first meet. Stud-
ies on safety issues can boil down to the security model.
The attacker’s ability and the goal of security achieved can
be well reflected by the correct and appropriate security
model. In this paper, we use the security model defined in
the literature [9]. Note that the security of our protocol relies
on a variant of the computational Diffie-Hellman (CDH)
assumption: the bilinear Diffie-Hellman (BDH) assumption,
which is defined as follows. According to the proof in [9],
the presented protocol can resist both passive attacks and
active attacks. Many formal security analyses of the key
agreement protocol can be found in the literature [11].

Definition 2. In (G1, G2, ê), the BDH problem is defined as
follows. Given G ∈ G1 and (G, aG, bG, cG) for some a, b, c ∈
Z∗q , compute W = ê(G,G)abc ∈ G2 [10].

An algorithm A is said to have advantage ε in solving
the BDH problem in (G1, G2, ê) if

Pr[A(G, aG, bG, cG) = ê(G,G)abc] ≥ ε,
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where ε > 0 and the probability is based on the random
choice of a, b, c ∈ Z∗q , the random choice of G ∈ G∗1 and the
random bits of A.

The BDH assumption states that no polynomial time al-
gorithmA has an advantage of at least ε in solving the BDH
problem in (G1, G2, ê), which means that this advantage is
negligible.

3.3 Block Design and (v, k + 1, 1)-design

In combinatorial mathematics, a block design is a set to-
gether with a family of subsets whose members are chosen
to satisfy some set of properties that are deemed useful for
a particular application. Definition 3 defines the balanced
incomplete block design (BIBD) in detail below [12], [13],
[24].

Definition 3. Let V = {0, 1, 2...v− 1} be a set of v elements
and B = {B0, B1, B2...Bb−1} be a set of b blocks, where Bi

is a subset of V and |Bi| = k. For a finite incidence structure
σ = (V,B), if σ satisfies the following conditions, then it is
a BIBD, which is called a (b, v, r, k, λ)-design.

1. Each element of V appears in exactly r of the b blocks.
2. Every two elements of V appear simultaneously in

exactly λ of the b blocks.
3. Parameters k and v of V meet the condition of k < v.

Thus, no block contains all the elements of the set V .
4. Parameters b and v of V meet the condition of b ≥ v.

The case of equality is called a symmetric design.

Here, v is the number of elements of V , b denotes the
number of blocks, k implies the number of elements in each
block, and r and λ are the parameters of the design. For
a (b, v, r, k, λ)-design, if the condition of k = r and b = v
holds, it is a symmetric balanced incomplete block design
(SBIBD). It is also called a (v, k, λ)-design. In this paper, we
require a (v, k + 1, 1)-design to construct our group data
sharing decentralized model, where k is a prime number
and λ = 1. The reason for why the (v, k + 1, 1)-design is
chosen will be shown in detail in Section 4. Moreover, in
the BIBD and the SBIBD, these five parameters are not all
independent: b and r are determined by v, k and λ. Two
basic equations connecting these parameters in the BIBD
and the SBIBD are bk = vr and λ(v − 1) = r(k − 1).

Note that information exchange in our key agreement
protocol is based on the (v, k + 1, 1)-design. Consequently,
each participant can determine the intended message re-
ceivers or message senders based on the group data sharing
model constructed by the (v, k + 1, 1)-design.

In Section 5 will be noted that information exchange in
our key agreement protocol is based on the (v, k + 1, 1)-
design and the detailed processes are described.

3.4 System Model and Adversary Model

3.4.1 System Model
The system model of our group data sharing scheme in
cloud computing is illustrated in Fig. 1. A TPA, cloud
and users are involved in the model, where the TPA is
responsible for cloud storage auditing, fault detection and
generating the system parameters. The cloud, who is a semi-
trusted party, provides users with data storage services and

Cloud

Group

TPA

Storage Auditing

Info exchange

Fig. 1: System model of data sharing in cloud computing.

download services. Users can be individuals or staff in a
company. To work together, they form a group, upload data
to the cloud server and share the outsourced data with the
group members. In practice, users can be mobile Android
devices, mobile phones, laptops, nodes in underwater sen-
sor networks and so forth.

Moreover, the group data sharing model is based on
the SBIBD, where a trusted third party is not required. The
construction of the SBIBD group data sharing model is de-
scribed in detail in Section 4. With respect to this model, all
the participants exchange messages from intended entities
according to the structure of the SBIBD to determine a com-
mon conference key. In addition to participants, volunteers
and adversaries are also included in the presented protocol,
and all of them run as a probabilistic polynomial-time
Turing machine. Two types of adversaries may be involved
in the protocol: passive adversaries and active adversaries.
A passive adversary is a person who attempts to learn
information about the conference key by eavesdropping
on the multicast channel, whereas an active adversary is a
person who attempts to impersonate a participant or disrupt
a conference. Note that the generation and update of the key
are accomplished by the participants. Moreover, with the
fault tolerance property of our protocol, the participants are
able to ascertain the correctness of the common conference
key. Since the storage auditing can follow the state of the art
auditing protocols (e.g., [25] ), we only focus on the design
of group data sharing scheme in cloud computing in the
paper.

3.4.2 Adversary Model
The adversary model determines the capabilities and possi-
ble actions of the attacker. Similar to [11], [26] and [27], the
adversary model is defined as follows.

1. The adversary reveals a long-term secret key of a
participant in a conference and then impersonates others
to this participant.

2. The adversary reveals some previous session keys and
then learns the information about the session key of a fresh
participant. Consequently, the adversary can impersonate
the fresh participant with the session key to others.

3. The adversary reveals the long-term keys of one or
more participants in the current run. Then, the adversary
attempts to learn the previous session key.
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4. A malicious participant chooses different sub keys,
generates different signatures and broadcasts the messages
to the corresponding participants, which makes the confer-
ence key derived by different participants distinct.

4 THE CONSTRUCTION OF THE GROUP DATA
SHARING MODEL

To support a group data sharing scheme for multiple par-
ticipants applying an SBIBD, we design an algorithm to
construct the (v, k+1, 1)-design. Moreover, the constructed
(v, k + 1, 1)-design requires some transformations to estab-
lish the group data sharing model such that v participants
can perform the key agreement protocol.

4.1 Construct the (v, k + 1, 1)-design
In our group data sharing model, the parameters of the
SBIBD have some specific meanings. In a (v, k+1, 1)-design,
v denotes the number of participants and the number
of blocks. Every block embraces k + 1 participants, and
every participant appears k + 1 times in these v blocks.
Furthermore, every two participants appear simultaneously
in exactly one of the v blocks. Following papers [12]
and [13], Algorithm 1 is designed to construct the structure
of a (v, k + 1, 1)-design. First, a prime number k is selected.
Then, the number of participants is determined by the value of
k, which is computed as v = k2 + k + 1†. Finally, according
to Definition 3, V = {0, 1, 2, ..., v − 1} represents the set of
v participants, whereas B = {B0, B1, B2, ..., Bv−1} implies v
blocks constituted by these v participants. Note that the block is
defined as Bi = {Bi,0, Bi,1, Bi,2, ..., Bi,k}, which means each
block embraces k+1 participants, and Bi,j denotes which partic-
ipant is contained in the jth column of the ith block. Sometimes
we will consider blocks organized as a matrix in which column j
is composed by elements Bi,j for i = 0, 1, 2, ..., k and row i is
composed by elements Bi,j for j = 0, 1, 2, ..., k. The structure
of the (v, k + 1, 1)-design is constructed by Algorithm 1, which
outputs numbers Bi,j for i = 0, 1, ..., k2 + k and j = 0, 1, ..., k.

In Algorithm 1, the notation MODk represents the mod-
ular operation that takes the class residue as an integer in
the range 0, 1, 2, ..., k − 1. Based on Algorithm 1, we can
create the structure of a (v, k + 1, 1)-design that involves
v participants. Moreover, Algorithm 1 can directly determine
which participant should be involved in each block. For ex-
ample, taking the (13, 4, 1)-design into consideration, where
13 participants are involved in this structure, we can decide
which participant should be contained in the 3rd column of
the 8th block by computing

B7,2 = jk + 1 +MODk(i− j + (j − 1) b(i− 1)/kc)
= 2 · 3 + 1 +MOD3(7− 2 + (2− 1) b(7− 1)/3c)
= 7 +MOD3(5 + 1 · 2)
= 7 + 1 = 8.

Therefore, from the above calculation, it is concluded
that participant8 is contained in the 3rd column of the 8th

block. Here, participanti represents the ith participant.

†. From here to the end of the paper, the value of v is v = k2 + k + 1
and (v, k+1, 1)-design is used to represent (k2+k+1, k+1, 1)-design
for brevity.

Algorithm 1 Generation of a (v, k + 1, 1)-design

for i = 0; i ≤ k; i++ do
for j = 0; j ≤ k; j ++ do

if j == 0 then
Bi,j = 0;

else
Bi,j = ik + j;

end if
end for

end for
for i = k + 1; i ≤ k2 + k; i++ do

for j = 0; j ≤ k; j ++ do
if j == 0 then
Bi,j = b(i− 1) /kc;

else
Bi,j = jk+1+MODk(i− j+(j−1) b(i− 1)/kc);

end if
end for

end for

Note that Algorithm 1 is an optimization of the algorithm
in [12] and the proof of the correctness follows the same
lines than the proof in [12] and [13]. The structure created
by Algorithm 1 can be proven to satisfy the conditions of
the (v, k + 1, 1)-design, which means that each participant
of V appears exactly k + 1 times in B and that each
pair of participants of V appears exactly once in B. These
properties can be utilized to design the group data sharing
model, which can diminish the communication cost of the
proposed protocol. The detailed process of the protocol and
the corresponding performance analysis based on the model
can be found in Section 5 and Section 7, respectively.

Definition 4. In our (v, k + 1, 1)-design of an SBIBD,
a sector is a collection of blocks defined by Sx =
{Bi : Bi,0 = x} for x = 0, 1, 2, ..., k. Sector S0 =
{B0, B1, B2, ..., Bk} is formed by k + 1 blocks, and sector
Sj = {Bkj+1, Bkj+2, Bkj+3, ..., Bk(j+1)} is formed by k
blocks for j = 1, 2, 3, ..., k.

For example, in a (v, k + 1, 1)-design, S1 =
{Bk+1, Bk+2, ..., B2k}.

Lemma 1. In S0 with (k + 1) · (k + 1) elements, element 0
appears k+1 times in the first column of S0, and the remaining
k2 + k elements {1, 2, ..., k2 + k} appear exactly once in S0 in
order.

Proof. According to Algorithm 1, when i = 0, 1, ..., k, if
j = 0, then Bi,j = 0. Therefore, element 0 appears
k + 1 times in the k + 1 blocks (i.e., B0,0, B1,0, ..., Bk,0)
of S0. If j 6= 0, then Bi,j = ik + j, which implies that
Bi,j+1 = Bi,j + 1(for j = 0, 1, ..., k − 1) and Bi+1,1 =
Bi,k + 1(for i = 0, 1, ..., k − 1). Given Bi,j = 0, we have
the progression B0,0, B0,1, B0,2, ..., B0,k, B1,1, B1,2, ..., B1,k,
B2,1, B2,2, ..., B2,k, ..., Bk,1, Bk,2, ..., Bk,k is the arithmetic
progression 0, 1, 2, 3, 4, ..., k2 + k. It is concluded that the
remaining k2 + k elements {1, 2, ..., k2 + k} appear exactly
once in S0 in order.

In any sector Sx with k or k + 1 blocks, the first element
of each block has the same value as x. Based on Lemma 1,
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in sector S0, the first element of these k+1 blocks is 0. Then,
in the last k2 blocks, Bi,j = b(i− 1)/kc if j = 0. Based on
Definition 4, the index of each sector is x = bi− 1/kc, which
is equal toBi,j . Therefore, the first element of each block has
the same value as b(i− 1)/kc, namely, x.

Lemma 2. In sector Sx(x 6= 0), except for the first element of
each block that are the same, the set of the other k2 elements is
equal to V −B0.

Proof. Based on Definition 4, in Sx, the first element of
each block has the same value as x. Then, according to
Algorithm 1, the remaining k2 elements of Sx are calculated
as Bi,j = jk + 1 +MODk(i− j + (j − 1) b(i− 1)/kc).

Due to the property of the modular arithmetic and
elementary properties of floor function, the values of these
k2 elements are between k + 1 and k2 + k and these k2

values are distinct. Note that V = {0, 1, ..., k2 + k} and
B0 = {0, 1, ..., k}. Therefore, the set of the other k2 elements
in Sx is equal to V −B0 = {k + 1, k + 2, ..., , k2 + k}.

In addition, the detailed proof for the fact that the values
of these k2 elements are between k+1 and k2+k and these
k2 values are distinct is given as follows.

For a given value between k+1 and k2+k, say k+n for
1 ≤ n ≤ k2 we look for an index j, 0 ≤ j ≤ k such that k+n
is in sector Sx for a fixed x = 0, 1, 2..., k. On the other hand
sector Sx = {Bkx+1, Bkx+2, Bkx+3, ..., Bk(x+1)}, then we
also look form and j, 1 ≤ m ≤ k such thatBkx+m,j = k+n.
We obtain jk+1+MODk(kx+m−j+(j−1))

⌊
kx+m−1

k

⌋
) =

k+ n and then MODk(m− j + (j − 1)x) = k+ n− jk− 1
must be a number in the range 0, 1, 2..., k − 1, that is, 0 ≤
k + n − jk − 1 < k obtaining 0 ≤ 1 + n−1

k − j < 1 and
then j − 1 ≤ n−1

k < j equivalent to j − 1 =
⌊
n−1
k

⌋
. We can

conclude that the value j is unique and j = 1+
⌊
n−1
k

⌋
. From

the value of j, MODk(m− j + (j − 1)x) = k + n− jk − 1
and taking into account that 1 ≤ m ≤ k−1, we can obtain a
unique possible value m−1 =MODk((1−j)x+j+n−2),
that is m = 1 +MODk((1− j)x+ j + n− 2).

Lemma 3. In sector Sx(x 6= 0) with k blocks, the set of the k
elements of the xth column is equal to the index set of the k blocks
in Sx.

Proof. According to Definition 4, in Sx, the index set of k
blocks is {xk+1, xk+2, ..., xk+k}. Then, elements of the xth

column of Sx are computed asBi,j = jk+1+MODk(i−j+
(j−1) b(i− 1)/kc). The xth column of Sx means that j = x.
Therefore,Bi,j = xk+1+MODk(i−x+(x−1) b(i− 1)/kc).
Based on the modular arithmetic, when i takes a value of the
set [xk+1,xk+k], we have Bi,j = xk+1, xk+2, ..., xk+k,
which is equal to the index set of the k blocks in Sx.

4.2 Design of the Group Data Sharing Model
Through Algorithm 1, the structure B of the (v, k + 1, 1)-
design is constructed for v participants, which satisfies the
properties of an SBIBD. However, to generate a common
conference key for the v participants, the structure of the
(v, k+1, 1)-design should have the property that each block
Bi embraces participanti. Here, Bi is the ith block of the
structure of the (v, k + 1, 1)-design, and the order of the
appearance of these v blocks is represented by i. Note that
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Fig. 2: The reconstruction process of B to E.

the structure B constructed by Algorithm 1 does not have
the required property. Thus, some transformations of the
structure of B are needed. Based on Lemma 1, Lemma 3 and
Definition 4, the v blocks ofB can be reconstructed to derive
a new structure E of the (v, k + 1, 1)-design such that each
block Et embraces participantt. Notably, the adjustment of
the structural order among blocks in the block design does
not affect its characteristics and this transformed structure
E is therefore a standard one in the theory of SBIBDs. Al-
gorithm 2 can be employed to accomplish the reconstruction
of B to E after the structure of B is created by Algorithm 1.
During the reconstruction process, a flag bit for each block
Bi is required to indicate whether Bi is transformed. The
flag bit is denoted as Bi[flag], which is 0 if Bi has not been
transformed and is 1 otherwise. The detailed reconstruction
process is given as follows. To make the process from B to
E clear, a concrete example is shown in Fig. 2. In Fig. 2, a
(13, 4, 1)-design is constructed by Algorithm 1 first, which is
depicted on the left of Fig. 2. Then, Algorithm 2 with three
steps is used to accomplish the reconstruction of B to E.
Note that the transformed structure of E is shown on the
right of Fig. 2.

Algorithm 2 The reconstruction of B.

E0 = B0; (step 1)
for t = 1; t ≤ k; t++ do
Et = Btk+1; (step 1)
Btk+1[flag] = 1;
E

Et,t
= Bb(Et,t−1)/kc; (step 2)

Btk+1[flag] = 1;
end for
for i = k + 1; i ≤ k2 + k; i++ do

if Bi[flag] 6= 1 then
E

Bi,b(i−1)/kc
= Bi; (step 3)

end if
end for

Step 1: Step 1 describes transformations of the first
k + 1 blocks of {S0, S1, S2, ..., Sk} in B to the first k + 1
blocks in E. Here, B0 needs no transformations; thus, we
have E0 = B0. Based on Definition 4, in any sector Sx

of B, the first element of each block has the same value
as x. To satisfy the property that each block Et embraces
participantt, the first block of {S1, S2, ..., Sk} of B will be
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transformed to the E1 to Ek blocks of E. Consequently,
the results of transformations in step 1 are E0 = B0 and
Et = Btk+1,(1 ≤ t ≤ k). For example, in Fig. 2, the first
elements of the first block in S1, S2, and S3 in B are 4, 7,
and 10, respectively, which are marked with a red color. The
results of the transformations of step 1 in Fig. 2 areE0 = B0,
E1 = B4, E2 = B7 and E3 = B10. It is clearly observed
from Fig. 2 that the first k+1 blocks of E have the property
that 0 ∈ E0, 1 ∈ E1, 2 ∈ E2, and 3 ∈ E3.

Step 2: Transformations of step 2 are based on Lemma 1;
in S0 with (k + 1)(k + 1) elements, element 0 appears k+1
times in the first column of S0 and the remaining k2 + k
elements {1, 2, ..., k2 + k} appear exactly once in S0 in
order. To satisfy the property that each block Et embraces
participantt, the k blocks of B1, B2, ..., Bk in B will be
transformed to the intended k blocks of E. Note that the
index of the k blocks of E is determined by the xth element
of the first block of Sx(x 6= 0) in B, which is equal to
Et,t(1 ≤ t ≤ k) of E. The results of the transformations
in step 2 are E

Et,t
= Bb(Et,t−1)/kc(1 ≤ t ≤ k). For example,

in Fig. 2, the xth element of the first block of Sx(x 6= 0)
in B is 4, 8, 11, respectively, which is marked with a green
color. The results of the transformations of step 2 in Fig. 2
are E4 = B1, E8 = B2 and E11 = B3. It is clearly observed
from Fig. 2 that the Et,t(1 ≤ t ≤ k) blocks of E have the
property that 4 ∈ E4, 8 ∈ E8, and 11 ∈ E11.

Step 3: The transformations of step 3 are based on
Lemma 3; in sector Sx(x 6= 0) with k blocks, the set of
the k elements of the xth column is equal to the index
set of the k blocks in Sx. In step 3, the remaining k − 1
blocks of each sector Sx(x 6= 0) in B are transformed to
the intended k · (k − 1) blocks of E. Note that the index
of the k · (k − 1) blocks of E is determined by the xth

column of the remaining k − 1 blocks of sector Sx(x 6= 0)
in B. Hence, Bi,x(k + 1 ≤ i ≤ k2 + 2) is used as the
index of E. The results of the transformations in step 3 are
EBi,x = Bi(k + 1 ≤ i ≤ k2 + k,Bi,x 6= Et,t(1 ≤ t ≤ k)),
where Bi belongs to the xth sector in B. According to
Definition 4, the Bi block in B belongs to the b(i− 1)/kc
sector in B; thus, in step 3 of Algorithm 2, x is denoted as
b(i− 1)/kc. The k Et,t(1 ≤ t ≤ k) blocks of Sx(x 6= 0)
in B have been transformed in step 2; therefore, the k
blocks need no transformations in step 3. For example, in
Fig. 2, the xth column of the k − 1 blocks of sector Sx is
{5, 6}, {9, 7}, {12, 10}, respectively, which is marked with a
white color. The results of the transformations of step 3 in
Fig. 2 are {E5 = B5, E6 = B6}, {E9 = B8, E7 = B9},
{E12 = B11, and E10 = B12}. It is clearly observed from
Fig. 2 that the Bi,x(k + 1 ≤ i ≤ k2 + k,Bi,x 6= Et,t(1 ≤
t ≤ k)) blocks of E have the property that 5 ∈ E5, 6 ∈ E6,
9 ∈ E9, 7 ∈ E7, 12 ∈ E12, and 10 ∈ E10.

By Algorithm 2, the structure of E is reconstructed, which
not only conforms to the properties of a (v, k + 1, 1)-
design but also satisfies the property that each block Et

contains participantt. Hence, the reconstructed E can be
used to design the group data sharing model. Based on
this model, the key agreement protocol can be processed
by v participants and a common conference key can be
derived. Moreover, the structure of E should be determined
by mathematical descriptions to derive general formulas to

compute the common conference key for each participant.
In summary, based on Algorithm 1, mathematical

descriptions of the structure ofB can be deduced first. Then,
to derive the mathematical descriptions of the structure of
E, the functional relationships of the transformations of
B to E should be determined. Based on Algorithm 2, the
transformations of B to E can be divided into four different
cases. In the following four different cases, t denotes the
index of the block of E, m implies the mth column of
one block of E, and Et,m indicates which participant is
contained in the mth column of the tth block in E.
Case 1: E0 = B0 = {0, 1, ..., k}
Case 2: 0 ≤ m ≤ k, 1 ≤ t ≤ k
Et,m = Btk+1,m

=

{
t, (m = 0)
mk + 1 +MODk(t− 1)(m− 1), (m > 0)

Case 3: 0 ≤ m ≤ k, t = Ei,i, (1 ≤ i ≤ k)
Et,m = Bb(t−1)/kc,m

=

{
0, (m = 0)
b(t− 1)/kc k +m, (m > 0)

Case 4: 0 ≤ m ≤ k, t = Bi,x, (t 6= Ei,i)
Et,m = Bk(x+1)+r,m

=

{
x, (m = 0)
mk + 1 +MODk(mx− x−m+ r), (m > 0)

Case 1 and Case 2 correspond to step 1 of Algorithm 2,
Case 3 corresponds to step 2 of Algorithm 2, and Case 4
corresponds to step 3 of Algorithm 2. In Case 1, the structure
of E0 is directly described by B0, which is {0, 1, ..., k}. Since
in step 1 and step 2 of Algorithm 2, the index of B is a
function of the index of E, namely, tk + 1 is a function of
t, b(Et,t − 1)/kc is a function of Et,t. The transformations
of B to E can be directly determined by the functional
relationships between the index of B and the index of E.
Thus, the mathematical descriptions in Case 2 and Case 3
can easily be obtained by Algorithm 1. However, in step
3 of Algorithm 2, the index of B is not a function of the
index of E, namely, i is not a function of Bi,x. According
to Algorithm 1, the index Bi,x(k + 1 ≤ i ≤ k2 + k) of E in
step 3 of Algorithm 2 is calculated as Eq. 1, where x and k
are known and the index Bi,x(k + 1 ≤ i ≤ k2 + k) of E is a
function of the index i of B.

Bi,j = xk + 1 +MODk(i− x+ (x− 1) b(i− 1)/kc) (1)

Let t = Bi,x(k+1 ≤ i ≤ k2+k), according to [28], the values
i in Eq. 1 are i = k

⌊
t−1
k

⌋
+ r, where r = 2, 3, 4, ..., k − 1, k

and the index i of B is a function of the index t = Bi,x

of E. According to Definition 4, in B, x =
⌊
t−1
k

⌋
. Thus,

i = k
⌊
t−1
k

⌋
+ r is equivalent to Eq. 2.

i = kx+ r (2)

Based on Eq. 2, the mathematical descriptions in Case 4
are derived to describe the structure of the k − 1 blocks
of Sx(x 6= 0) in E. Note that r has k − 1 different values,
which describes the structure of the (k − 1) blocks of Sx in
Et.

The structure of E of a (v, k + 1, 1)-design can be de-
scribed in detail based on the mathematical descriptions in
Case 1, Case 2, Case 3 and Case 4, which is illustrated in
TABLE 1. In TABLE 1, the index ofE is between 0 and k2+k,
and which participant is contained in the mth column in Et



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2725953, IEEE
Transactions on Dependable and Secure Computing

8

Fig. 3: (13, 4, 1)-design group data sharing model.

can be determined by the mathematical descriptions in the
four different cases. A concrete example can be found in
Appendix, where the structure of E of a (31, 6, 1)-design is
constructed.

In our protocol, two rounds are required to generate a
common conference key. In each round, every participant
will receive messages from their intended participants. The
group data sharing model can determine which partici-
pants are the intended message senders of participanti.
The group data sharing model is established as follows.
If j ∈ Ei, participantj is the intended message sender
of participanti in Round 1. If i ∈ Ej , participantj is the
intended message sender of participanti in Round 2. Based
on the group data sharing model, every participant can
receive messages from their 2k intended message senders
after two rounds of the key agreement. For example, in
Fig. 3, the (13, 4, 1)-design group data sharing model is
established by the structure of E of a (13, 4, 1)-design.
Based on the group data sharing model in Fig. 3, 13 par-
ticipants are involved, where each participant has 2 × 3
intended message senders. Taking participant0 into consid-
eration, the intended message senders of participant0 in
Round 1 are 1, 2, 3, whereas the intended message senders
of participant0 in Round 2 are 4, 8, 11. Moreover, for
participanti, the messages sending from his 2k intended
message senders can generate the common conference key
for himself.

After the construction of the group data sharing model,
the block design-based key agreement protocol is designed
for data sharing in cloud computing, which is described in
detail in Section 5.

5 A BLOCK DESIGN-BASED KEY AGREEMENT
PROTOCOL

5.1 Initial Phase
In the protocol, a TPA takes responsibility for generating
some system parameters and distributing the private key
for all participants. In the key generation phase of the proto-
col, the TPA publishes {p, q,G1, G2,G, ê, Ppub, H1, H2} but
keeps his private key s ∈ Z∗q secret. Here, p and q are two
prime numbers, and G, G1, G2 and ê are the parameters
of the Weil pairing, which are defined in Definition 1. In

TABLE 1: The structure of E of a (v, k + 1, 1)-design

E0 = {0, 1, ..., k}
E1 = {1, k + 1, 2k + 1 +MODk(0 · (2− 1)), ..., k2 + 1}
E2 = {2, k + 1, 2k + 1 +MODk(1 · (2− 1)), ..., k2 + 1+

MODk(1 · (k − 1))}
E3 = {3, k + 1, 2k + 1 +MODk(2 · (2− 1)), ..., k2 + 1+

MODk(2 · (k − 1))}
...
Ek = {k, k + 1, k2 + 1 +MODk((k − 1)(2− 1)), ...,

k2 + 1 +MODk(k − 1)2}
EE1,1 = {0, k + 1, k + 2, ..., k + k}
Et = {1, k + 1 +MODk(r − 1), ..., k2 + 1+

MODk(kx− x− k + r)}
EE2,2 = {0, 2k + 1, 2k + 2, ..., 2k + k}
Et = {2, k + 1 +MODk(r − 1), ..., k2 + 1+

MODk(kx− x− k + r)}
...
EEk,k

= {0, k2 + 1, k2 + 2, ..., k2 + k}
Et = {k, k + 1 +MODk(r − 1), ..., k2 + 1+

MODk(k
2 − 2k + r)}

addition, H1 and H2 are two hash functions, which map
its arbitrary length to a nonzero point of G1 and nonzero
integer, respectively. In our block design-based key agree-
ment protocol, participanti’s public key and private key are
mapped as H1(IDi) and Si = sH1(IDi), respectively. Here,
IDi ∈ {0, 1}∗ is the identity for participanti. Moreover,
to provide authentication, based on the RSA cryptographic
algorithm, the TPA selects a public key ei and a private
key di for each participant and distributes (ei, n) to all the
participants, where n is the product of two large prime num-
bers. Subsequently, participant i computes Yi = H2(IDi),
Xi = (Yi)

di and keeps (di, Xi) secret.

5.2 Key Agreement Phase

In the key agreement phase, two rounds are required for
generating a common conference key for multiple partici-
pants, and the way of message exchanges is with respect to
the group data sharing model established by the structure
E of the (v, k + 1, 1)-design.

Round 1: In Round 1, a random number ri is chosen
as a secret key andMi = ê(G, eiriSi) is calculated by each
participant, which contributes to generating a common
conference key among all participants. Then, Yi = H2(IDi),
Ti = Xi · ê(G, wiriSi) and a time stamp ti are used
to support authentication services, where Xi = Y di

i ,
wi = H2(Mi,ti). Subsequently, participanti receives
message Dj = {Yj , (Mj)

ei , Tj , tj} from participantj in
the case that j ∈ Ei. In addition, according to the property
that each block Ei contains participanti, we have i ∈ Ei.
However, participanti does not have to receive a message
from himself. Therefore, participanti receives message
Dj = {Yj , (Mj)

ei , Tj , tj} from participantj in the case
that j ∈ Ei(j 6= i). According to the four mathematical
descriptions of the structure of E of a (v, k + 1, 1)-design,
the key agreement phase in Round 1 is divided into four
cases.
Case 1:
Participant0 needs to receive messages from
participantj(1 ≤ j ≤ k).
Case 2:
For participanti(i ≤ k), they need to receive messages from



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2725953, IEEE
Transactions on Dependable and Secure Computing

9

participantj(j = mk + 1 +MODk(i− 1)(m− 1), j 6= i).
Case 3:
For participanti(i = Em,m), they need to receive
messages from participant0 and participantj(j =
b(i− 1)/kc k +m, j 6= i).
Case 4:
For the remaining k2 − k participants, they need to
receive messages from participantb(i−1)/kc and participant
j, (j = mk + 1 +MODk(mx − x −m + r), j 6= i), where
r = 2, 3, 4, ..., k − 1, k.

After every participant receives k messages contributed
to generate a common conference key from their intended
message senders, Eq. 3 is calculated by participanti to
decrypt the messages.

Mj = [(Mj)
ei ]

di , j ∈ Ei − {i} (3)

where di is the secret key of participanti. To authenticate
participantj ’s identity, participanti computes T ej

j /Mw∗j
j .

If the condition of T ej
j /Mw∗j

j = Yj holds, participanti
can authenticate participantj , where w∗j = H2(Mj,tj).
In addition, Eq. 4 is used to derive Ci,j , which will be
used in Round 2 to generate a common conference key for
participantj .

Ci,j =
∏

x∈Ei−{j}

Mx (4)

Round 2: Participanti receives message Ej,i =
{Yj , (Cj,i)

ei , (Mj)
ei , Tj , tj} from participantj in the case

that i ∈ Ej , where Cj,i is used to generate a common
conference key. In fact, every Cj,i contributes k messages for
participanti to generate a common conference key. Similar
to Round 1, participanti verifies the equation T ej

j /M
w∗j
j =

Yj to support authentication services. If the equation holds,
participanti can authenticate participantj ’s identity, but
not vice versa. Subsequently, for participanti, the common
conference key is computed as Eq. 5.

K =Mi(
∏

j such that i∈Ej

Cj,i)

= ê(G, eiriSi) · (
∏

j such that i∈Ej

Cj,i)

= ê(G,
v−1∑
i=0

eiriSi)

(5)

Theorem 1. According to the presented block design-based key
agreement protocol, a common conference key is derived for mul-
tiple participants in the same group.

Proof. The conference key agreement requires all conferees
to obtain messages from the others. In the group data
sharing model of the (v, k + 1, 1)-design, v participants are
involved in a group, where v = k2+k+1. It is required that
each participant receives messages from the remaining k2 +
k participants. Based on the group data sharing model, ev-
ery participant receives k messages from their intended par-
ticipants in each round. In Round 1, participanti receives
k secret messages Mj from participantj in the case that
j ∈ Ei(j 6= i). In Round 2, participanti receives k secret
messages Cj,i from participantj in the case that i ∈ Ej(j 6=
i). Furthermore, based on Eq. 4, each Cj,i contains k secret
messages Mx of k participants. Thus, every participant

receives k2 messages in Round 2. In summary, participanti
receives k2+k messages after two rounds of key agreement.
According to Definition 3, in a (v, k + 1, 1)-design, every
pair of two elements appears simultaneously in exactly one
of the b blocks; here, v = b. Therefore, the k2 + k mes-
sages of each participant are not repeated. For participanti,
he obtains messages from (participant0, ..., participanti−1,
participanti+1, ..., participantv−1) without redundancy,
which contribute to generating a common conference
key.

Theorem 2. In our protocol, participanti can authenticate their
counterparts if the condition of T ej

j /Mw∗j
j = Yj holds.

Proof. According to Definition 1, we have

T
ej
j /M

w∗j
j =

(Xj ·ê(G,wjrjSj))
ej

ê(G,ejrjSj)
w∗

j

=
X

ej
j ·ê(G,wjejrjSj)

ê(G,w∗j ejrjSj)

Here, wj = H2(Mj,tj) is computed by participantj ,
while w∗j = H2(Mj,tj) is computed by participanti. In
addition, according to Euler’s Theorem, we have X

ej
j =

(Y
dj

j )ej = Yj . The equality is held between T
ej
j /Mw∗j

j and
Yj if wj = w∗j . Note that the wj calculated by participantj
and the w∗j calculated by participanti are equal only if the
message is actually sent from participantj . An adversary
that has no access to rj and Sj could not derive Mj =

ê(G, ejrjSj). Therefore, if the equation T
ej
j /Mw∗j

j = Yj
holds, participanti can authenticate that the message is
actually transmitted from participantj in Round 1 and
Round 2.

If all participants follow the protocol, they can form a
data sharing group, derive a common conference key and
ascertain its correctness. To facilitate understanding, the
detailed process for computing the common conference key
for multiple participants based on a (v, k + 1, 1)-design is
illustrated in Appendix A. In addition, a concrete example
of the protocol can be found in Appendix B, where 31
participants are involved.

5.3 Fault Detection Phase
In practice, we cannot guarantee that all participants in the
group are honest. The existence of malicious participants
can seriously destroy the conference. In Yi’s protocol [7],
an attack from malicious participants is called a different
key attack. In different key attacks, a malicious participant
chooses different sub keys, generates different signatures
and broadcasts different messages to different participants
such that the signatures of malicious participants are valid
and malicious participants can be authenticated by other
participants. In addition, the different sub keys make dif-
ferent participants derive different conference keys, which
may lead to serious damage of the conference and make
the protocol invalid. Therefore, the fault detection phase
is added to prevent different key attacks from malicious
participants.

The role of the TPA in the fault detection phase is to
ensure that each participant only generates a unique sub
key and to prevent the conference from being delayed
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or destroyed by malicious participants. In our protocol,
IDTPA ∈ {0, 1}∗ represents the identity of the TPA. In the
initial phase of the protocol, the TPA needs to select one
more integer g ∈ Z∗q and each participanti needs to submit
Ai = Mg

i to the TPA. After all the participants generate
a common conference key following the protocol, the TPA
broadcasts {N, IDTPA,Ai|0 ≤ i ≤ v−1} among all partici-
pants, where N = H2(ID1, ID2, ..., IDv, ID1, IDTPA, t) is
an unique serial number for this conference and Ai denotes
the verified unique sub key of all participants. Then, every
participant verifies the authenticity of the common confer-

ence key K by checking whether the equation Kg =
v−1∏
i=0
Ai

holds. If the equation does not hold for some participants,
some malicious participants are involved in the group and
the fault detection phase begins. Otherwise, a common
conference key is established among all participants.

In the fault detection phase, participantj , who finds that

the above equation Kg =
v−1∏
i=0
Ai does not hold, needs to

send a fault report (N, IDj , rj ,Mx, x ∈ Ej − j) to the TPA.
The fault report contains the secret key of participantj and
the messagesM he received from the intended participants.
Then, the TPA checks whether Mg

j = ê(G, ejrjSj)g = Aj

holds. If not, the message that participantj sends to other
participants is different from the message that participantj
submits to the TPA. Thus, participantj has to resend the
fault report in a period of time 4t. Note that participantj
should be removed from the conference if the failure occur-
rence of participantj exceeds a threshold τ or participantj
did not resend the report within 4t. Here, τ represents
the tolerable number of errors. In this case, participantj
is either a malicious participant or undergoes a denial of
service attack. Otherwise, the fault detection should be
processed among all the remaining participants.

When the fault detection phase is conducted by all the re-
maining participants, every participant except participantj
should send (N, IDi, ri,Mx, x ∈ Ei − i) to the TPA. Then,
the TPA checks whetherMg

i = ê(G, eiriSi)g = Aj holds. If
not, participanti has to resend the fault report in a period
of time 4t. Similar to participantj , participanti should be
removed from the conference if the failure occurrence of
participanti exceeds a threshold τ or participanti did not
resend the report within 4t. Otherwise, the TPA checks
whether Mi = ê(G, eiriSi) calculated by participanti is
equal to M∗i received from participanty(i ∈ Ey(y 6= i)).
If not, participanti is a malicious participant. If yes for
all the remaining participants, participantj is a malicious
participant. The TPA removes the malicious participant
and denial of service participant, and the protocol restarts.
After the fault detection phase, an authenticated common
conference key is derived among all the honest participants
in a group. Following the proof of Theorem 3, the presented
protocol can resist different key attacks and support the fault
tolerance property.

Theorem 3. In fault detection phase, an honest participant will
not be removed by the TPA and a malicious participant who
attempts to delay or destroy the conference will be removed by
the TPA.

Proof. For an honest participant participanth, two sit-

uations should be taken into consideration. The first

is that participanth finds Kg 6=
v−1∏
i=0
Ai. Subsequently,

the fault detection phase begins, and the fault report
(N, IDh, rh,Mx, x ∈ Eh − h) of participanth is sent to
the TPA. Due to the honesty of participanth, there exists
participanti such that either Mg

i 6= Ai or Mi 6= M∗i .
Therefore, participanti is detected as a malicious partici-
pant. The second is that participanth is asked to submit
(N, IDh, rh,Mx, x ∈ Eh − h) to the TPA. Because of the
honesty of participanth, the TPA finds Mg

h = Ah and
Mh =M∗h. In conclusion, an honest participant will never
be removed by the TPA.

For a malicious participant participantm who attempts
to delay or destroy the conference, three cases where
participantm attempts to sabotage the conference should be
taken into consideration. The first case is that participantm
delays submitting a required message or keeps sending
invalid messages to the TPA. In this case, participantm will
be removed from the conference if the failure occurrence
exceeds a threshold τ or participantm did not resend the re-
port within 4t. The second case is that participantm delib-
erately sends a fault report (N, IDm, rm,Mx, x ∈ Em−m)

to the TPA. In this case, the TPA finds Kg 6=
v−1∏
i=0
Ai, and all

the remaining participants have to send a fault report to the
TPA. However, if Mi = M∗i holds for all the remaining
participants, participantm is detected as malicious and
removed by the TPA. The third case is that participantm
performs the different key attack. Participantm selects two
different sub keys rm and r∗m and submits a false message
to the TPA. Due to the different sub keys of participantm,
the common conference key generated from different partic-
ipants is distinct. In this case, there is at least one Mg

m not
equal toAm since rm 6= r∗m. Participanti who detectsKg 6=
v−1∏
i=0
Ai will report this fault to the TPA. Then, participantm

is required to submit (N, IDm, rm,Mx, x ∈ Em −m). Be-
causeMm calculated by participantm does not equalM∗m
received from other participants, participantm is detected
as a malicious participant.

According to Theorem 3, an honest participant will not
be removed from the conference, whereas a malicious par-
ticipant will be detected and removed from the conference.
In addition, after some malicious participants are removed
from the conference, the common conference key could not
be derived because some messages are missing for gener-
ating the conference key. Then, the positions of malicious
participants should be replaced by volunteers to ensure that
the protocol performs well. A volunteer is a participant in a
conference who helps real participants complete some calcu-
lations and transfer information. Moreover, during the key
agreement process, Mi of the volunteer is set as 1, which
can make our protocol perform well. Therefore, the protocol
can not only resist different key attacks from malicious
participants but also provide the property of fault tolerance.

The proposed protocol can effectively support secure
and efficient group data sharing in cloud computing, which
is described as follows. In the initial phase, the system
parameters are generated by the TPA. Then, the TPA dis-
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tributes the parameters to the clients who want to achieve
data sharing in the cloud. In the key agreement phase,
in Round 1, each client in the same group selects a se-
cret key ri and calculates Mi = ê(G, eiriSi). In addi-
tion, Yi = H2(IDi), Ti = Xi · ê(G, wiriSi) and a time
stamp ti are used to support authentication services, where
Xi = Y di

i and wi = H2(Mi,ti). Subsequently, each
client receives messages Dj = {Yj , (Mj)

ei , Tj , tj} from
their intended counterparts based on the structure of the
SBIBD. In Round 2, each client receives messages Ej,i =
{Yj , (Cj,i)

ei , (Mj)
ei , Tj , tj} from their intended counter-

parts. According to Theorem 1, after the two rounds of
information exchange, every client within a group generates
a common conference key. In a group, the correctness and
validity of the common conference key are guaranteed by
the fault tolerance property of the protocol. In addition,
the clients in the group can dynamically update the key
by restarting the protocol. In Section 6 and Section 7, the
presented protocol has already been proven to be secure
against both passive attacks and active attacks, and the com-
munication complexity and the computational complexity
of our protocol is only O(v

√
v) and O(vm2), respectively.

6 SECURITY ANALYSIS

The security of our protocol is based on the ECDLP [29] and
the BDH assumption [10]. In this section, we prove that our
protocol is secure against passive attacks and active attacks.

6.1 Security Against Passive Attacks

In our protocol with v participants, a participant and a
volunteer in the protocol are a probabilistic polynomial-time
Turing machine, as is an adversary. A passive adversary
is the person who attempts to learn information about the
conference key by eavesdropping on the multicast channel.
Note that an adversary has access to the system parameters
{G, PPUB , H2(IDi)|0 ≤ i ≤ v − 1} and the public key
(ei, n) for participanti. In contrast, the secret key di for
participanti cannot be deduced since it is hard to solve the
integer factorization problem. In addition, the ephemeral
key ri for participanti is prevented from the adversary due
to the ECDLP and the BDH assumption. According to [10],
if X ≈ polyY , then the presented protocol is secure against
passive attacks.X ≈ polyY represents that two tuples of ran-
dom variables X = {G, PPUB , H2(IDi), ê(G,

∑
eiriSi)|0 ≤

i ≤ v−1} and Y = {G, PPUB , H2(IDi), y|0 ≤ i ≤ v−1, y ∈
Z∗q } are polynomially indistinguishable, where y ∈ Z∗q is a
randomly chosen number. More precisely, if X ≈ polyY ,
for all polynomial time distinguishers, the probability of
distinguishing X and Y is smaller than 1

2 + 1
Q(l) for all

polynomials Q(l) [30]. Here, l ∈ Z+ is a security parameter
in our key agreement protocol, which can determine the
size of p defined in Definition 1. All algorithms run in
probabilistic polynomial time with l as an input.

Theorem 4. If the condition of Xi ≈ polyYi holds for all
participanti, then X ≈ polyY .

Proof. Let Xi = {G, PPUB , H2(IDi), ê(G,
∑
eiriSi)} and

Yi = {G, PPUB , H2(IDi), yi}.

X = (G, PPUB , H2(IDi), ê(G,
∑

eiriSi)|0 ≤ i ≤ v − 1)

= (G, PPUB , H2(ID0)...H2(IDv−1), ê(G,
∑

e0r0S0)·

...ê(G,
∑

ev−1rv−1Sv−1))

=
v−1∏
i=0

Xi

Y = (G, PPUB , H2(IDi), y|0 ≤ i ≤ v − 1, y ∈ Z∗q )

=
v−1∏
i=0

Yi

Due to the discrete logarithm problem over elliptic
curves being hard when p is more than 512-bits long
and the BDH assumption, we have Xi ≈ polyYi. Thus,
v−1∏
i=0

Xi ≈poly

v−1∏
i=0

Yi. It implies that X ≈ polyY .

6.2 Security Against Active Attacks

In an active attack, an adversary not only learns information
about the conference key but also replays, forges and delays
the messages. To resist active attacks, desired properties
for a practical key agreement protocol typically include the
following.

Key comprise impersonation
Our protocol can withstand the key comprise imperson-

ation attack, in which the adversary impersonates a legal
conferee (e.g. participantj) to participanti with the long-
term secret key (Si) of participanti. In our protocol, long-
term secret keys of participants are independent of each
other with respect to real identities of participants. There-
fore, with the long-term secret key (Si), the adversary still
cannot learn any information about long-term secret keys
of other participants. In addition, signatures produced by
participants are tied with a time stamp. Thus, the adversary
cannot be authenticated by replaying the signature of a legal
participant later. Moreover, the signature of participanti is
encrypted by his public key ei. Since no polynomial algo-
rithm has been found for solving the factorization problem,
the adversary having no access to di cannot forge or decrypt
the signature of a legal participant.

Known session key
The known session key prevents the session key held

by a fresh participant [11] from being compromised by an
adversary, even if the adversary has learned some previous
session keys. In the presented protocol, the ephemeral secret
key ri is selected by participanti in each session randomly,
which makes every value of ri equally likely. Therefore, ses-

sion keys calculated asK = ê(G,
v−1∑
i=0

eiriSi) are independent

in each session such that the adversary cannot learn any
information about the session key of a fresh participant. He
cannot do any better than a guess.

Perfect forward security
A protocol offers perfect forward security if the compro-

mising of long-term keys (Si) during the communication
among multiple participants cannot result in the compro-
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mising of the previous session key (Kpre). In our protocol,
the previous session key is computed as

Kpre = ê(G,
v−1∑
i=0

eiri preSi).

Even if the long-term keys (Si) are compromised by an
adversary, the adversary who has no access to the previous
ephemeral secret key (ri pre) cannot generate the previous
session key. Note that the security of the previous ephemeral
key (ri pre) is based on the ECDLP and the BDH assump-
tion. Therefore, the presented protocol provides perfect for-
ward security.

Different key attacks
In accordance with Theorem 3, in the fault detection

phase, a malicious participant who attempts to delay or
destruct the conference will be removed from the conference
by the TPA. Therefore, the proposed protocol can resist
different key attacks.

Key confirmation
If a participant is assured that its counterparts actually

have possession of a particular secret key, the protocol
provides key confirmation. In our protocol, with respect
to the fault detection phase in Section 5, each participant
can ensure that its counterparts actually have possession
of a common conference key K. Therefore, the presented
protocol can provide key confirmation.

Moreover, the presented protocol can resist denial of
service attacks. In the fault detection phase, a participant
should be removed by the TPA if he did not resend the
fault report within 4t or the failure occurrence exceeds a
threshold τ . Note that the presented protocol is contributory.
Unlike the El Gamal one-pass protocol where only one of the
parties contributes a fresh exponent, each participant in our
protocol equally contributes to the common conference key
and guarantees the freshness of the key.

7 PERFORMANCE ANALYSIS AND EVALUATION

7.1 Performance Analysis

Generally, the performance of a key agreement protocol
consists of communicational and computational efficiency.
In each round of our protocol, each participant has to receive
k messages from the intended k participants according to a
(v, k+1, 1)-design of the SBIBD. Then, each participant has
to perform some operations such as point multiplications,
pairing computations, and so forth. Computational com-
plexity is composed of pairing computations, point multipli-
cations and modular exponentiations, whereas communica-
tion complexity is composed of the number of participants
and the number of message exchanges.

Let Pi denote the total point multiplications of
participanti, Mi represent the total modular exponentia-
tions of participanti and Wi imply the total Weil pair-
ings computed by participanti. In Round 1, participanti
needs to compute eiriSi, wiriSi and two Weil pairings
Mi = ê(G, eiriSi), ê(G, wiriSi). Thus, we have Pi = 2,
Wi = 2. After receiving some messages from participantj ,
participanti decrypts Mj = [(Mj)

ei ]
di , j ∈ Ei − {i} by

his secret key di. The number of messages received by
participanti is k. Hence, k modular exponentiations are

needed, namely, Mi = k. Furthermore, participanti needs
to compute 2k modular exponentiations T ej

j and Mw∗j
j for

the purpose of ensuring his counterparts. In summary, in
Round 1, Mi = 3k. In Round 2, to obtain Cj,i = (Cei

j,i)
di ,

participanti needs to compute k modular exponentiations.
In addition, 3k modular exponentiations are required to ob-
tainMj , T

ej
j ,Mw∗j

j for the purpose of providing authentica-
tion services. Therefore, in Round 2, the number of modular
exponentiations is Mi = 4k. In terms of communication
overhead, every participant needs to receive k messages in
each round based on the group data sharing model of a
(v, k+1, 1)-design. Thus, the number of message exchanges
of participanti is 2k.

In our protocol, the calculation of the point multiplica-
tion, the pairing computation and the modular exponentia-
tion is over the supersingular elliptic curve, which is defined
in Definition 1. Thus, the computational complexities of the
point multiplications and the pairing computation areO(m)
and O(m2), respectively. Here, m is the extension degree of
the finite field Fpm .

Essentially, in the presented protocol with v participants,
the total numbers of point multiplications and Weil pairing
computations in the protocol are P = 2v and W = 2v,
respectively. Additionally, the total number of modular ex-
ponentiations is M = 7kv. The communication complexity
and the computational complexity in the protocol are O(vk)
and O(2vm2 + 2vm), respectively. Moreover, in accordance
with the basic equation of a BIBD defined in Definition 3,
we have λ(v − 1) = r(k − 1). Note that the presented
protocol is based on the (v, k + 1, 1)-design of an SBIBD.
Thus, we have λ = 1 and r = k. In this case, k ≈

√
v.

Therefore, the communication complexity of our protocol
is O(v

√
v), and the computational complexity is O(vm2).

Note that compared to the protocol in paper [9], our protocol
is more efficient since we adopt the (v, k + 1, 1)-design of
an SBIBD such that λ can reach its minimum value of one
(λ = 1), where λ is a parameter in the SBIBD. In paper [9],
when λ > 1, k is approximately equal to

√
λv and the

communication complexity of the protocol is O(v
√
λv). In

addition, one more modular exponentiation is required for
each participant. The detailed comparison results are shown
in TABLE 2.

7.2 Performance Evaluation

To study the performance of our scheme, we provide an
experimental evaluation of the proposed scheme†. Our ex-
periments are simulated by using C programming language
with the pairing-based cryptography (PBC) library and
the GUN multiple precision arithmetic (GMP) library on
a VMware Workstation machine with Intel Core i5-3210
processors running at 2.50 GHz and 2 G memory, Ubuntu
12.04 X64.

†. Source codes of the simulation have been uploaded to
IEEE Xplore + Code Ocean. They are named as
“Efficiency comparison for different phases (v2)” with DOI
“10.24433/CO.eea19cea-ca33-4f3c-b641-f46fb7b79253”,
“Efficiency comparison for multiple participants (v2)” with DOI
“10.24433/CO.a433f2e9-2003-45d1-b519-98bf3aec28dc”, and
“Efficiency comparison for different simulation times (v2)” with DOI
“10.24433/CO.6b08d728-fc8b-4af7-8f1d-cae7c28af097”.
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TABLE 2: Comparison results

Yi’s protocol Shen et al.’s protocol Our protocol
Type of msgs distribution Broadcast Multicast Multicast
Type of communication model Centralized Decentralized Decentralized
The number of participants n 7 n
No. of Weil pairing computation
per participanti 2(n− 1) 2 2
No. of point multiplication
per participanti 6 2 2
No. of modular exponentiation
per participanti 2n 7n

√
λn 7n

√
n

Total computation cost 2n2(Wi) + 7n(Pi) + 2n(Mi) 2n(Wi) + 2n(Pi) + (7n
√
λn+ n)(Mi) 2n(Wi) + 2n(Pi) + 7n

√
n(Mi)

Communication complexity O(n2) O(n
√
λn) O(n

√
n)

Computational complexity O(n2m2) O(nm2) O(nm2)
∗n: Participant’s number, m: Extension degree of the finite field Fpm ,Pi: Point multiplications of participanti, Mi: Modular exponentiations of

participanti, Wi: Weil pairings computed by participanti , λ: Parameter in the SBIBD.
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(a) Initial phase
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(b) Key agreement phase
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(c) Authentication phase

Fig. 4: Efficiency comparison for different phases.
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Fig. 5: Efficiency comparison for multiple participants.

The simulation consists of two parts. In the first part,
we present a comparative simulation analysis between Yi’s
scheme [7] and our scheme with respect to the time cost
for each participant in different phases, which is illustrated
in Fig. 4. It can be seen that the time cost increases with
the number of participants. On the one hand, simulation
results in Fig. 4(a) and Fig. 4(b) indicate that our scheme is
much more efficient than Yi’s scheme in both initial phase
and key agreement phase. On the other hand, in Fig. 4(c),
the time cost of our scheme is slightly higher than that
of Yi’s scheme. The reason is that, for each participant, 4
point multiplications are required in Yi’s scheme, while k
modular exponentiations are required in our scheme during
the authentication phase. However, we argue that, in terms
of the total computational cost for each participant, our
scheme is much more efficient than Yi’s scheme, which is
illustrated in Fig. 5.
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Fig. 6: Efficiency comparison for different simulation times.

In the second part, we focus on analyzing the total
computational cost for each participant of Yi’s scheme
and our scheme with respect to different participants and
different simulation times. It is clearly seen from Fig. 5
that our scheme is superior to Yi’s scheme. Note that the
computational cost of Yi’s scheme continuously increases
with the growth of the participant’s number n, while the
computational cost of our scheme increases slightly with a
prime number k (Here, n = k2 + k+1). It is concluded that
our scheme is much more efficient than Yi’s scheme, which
makes our scheme more practical for key agreement in the
cloud environment. In addition, in Fig. 6, we present the
efficiency comparison of Yi’s scheme and our scheme with
different simulation times, where the participants number
is fixed as 133. Note that taking advantage of the SBIBD in
our scheme, k = 11 when the participant’s number is 133.
Firstly, in the initial phase, Yi’s scheme requires to compute
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2 point multiplications and 132 weil pairings, while our
scheme only needs 2 point multiplications, 2 weil pair-
ings and 11 modular exponentiations. Secondly, in the key
agreement phase, Yi’s scheme requires 132 weil pairings,
while our scheme only needs 33 modular exponentiations.
Finally, in the authentication phase, Yi’s scheme requires 4
point multiplications, while our scheme needs 33 modular
exponentiations. Through the simulation, we can conclude
that the time cost of our scheme is much smaller than that
of Yi’s scheme with different simulation times. In addition,
it is easily observed that the performance of our scheme is
more stable than Yi’s scheme.

8 CONCLUSION

As a development in the technology of the Internet and
cryptography, group data sharing in cloud computing has
opened up a new area of usefulness to computer networks.
With the help of the conference key agreement protocol,
the security and efficiency of group data sharing in cloud
computing can be greatly improved. Specifically, the out-
sourced data of the data owners encrypted by the common
conference key are protected from the attacks of adversaries.
Compared with conference key distribution, the conference
key agreement has qualities of higher safety and reliability.
However, the conference key agreement asks for a large
amount of information interaction in the system and more
computational cost. To combat the problems in the confer-
ence key agreement, the SBIBD is employed in the protocol
design.

In this paper, we present a novel block design-based
key agreement protocol that supports group data sharing
in cloud computing. Due to the definition and the math-
ematical descriptions of the structure of a (v, k + 1, 1)-
design, multiple participants can be involved in the pro-
tocol and general formulas of the common conference key
for participanti are derived. Moreover, the introduction of
volunteers enables the presented protocol to support the
fault tolerance property, thereby making the protocol more
practical and secure. In our future work, we would like
to extend our protocol to provide more properties (e.g.,
anonymity, traceability, and so on) to make it appliable for
a variety of environments.
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