DRINA: A Lightweight and Reliable Routing Approach for in-Network Aggregation in Wireless Sensor Networks

Leandro Villas¹,², Azzedine Boukerche¹, Heitor S. Ramos¹,², Horacio A. B. F. de Oliveira³, Regina B. de Araujo⁴ and Antonio A. F. Loureiro²

¹Paradise Research Laboratory - SITE, University of Ottawa, Ottawa, Canada
²UWL - Research Laboratory, Federal University of Minas Gerais, Belo Horizonte, Brazil
³LAMP - Research Laboratory, Federal University of Amazonas, Manaus, Brazil
⁴WINDIS - Research Laboratory, Federal University of São Carlos, São Carlos, Brazil
E-mail: (lvillas, hramos, boukerch)@site.uottawa.ca, loureiro@dcc.ufmg.br, regina@dc.ufscar.br and horacio@dcc.ufam.edu.br

Abstract—Large scale dense wireless sensor networks (WSNs) will be increasingly deployed in different classes of applications for accurate monitoring. Due to the high density of nodes in these networks, it is likely that redundant data will be detected by nearby nodes when sensing an event. Since energy conservation is a key issue in WSNs, data fusion and aggregation should be exploited in order to save energy. In this case, redundant data can be aggregated at intermediate nodes reducing the size and number of exchanged messages and, thus, decreasing communication costs and energy consumption. In this work we propose a novel Data Routing for In-Network Aggregation, called DRINA, that has some key aspects such as a reduced number of messages for setting up a routing tree, maximized number of overlapping routes, high aggregation rate, and reliable data aggregation and transmission. The proposed DRINA algorithm was extensively compared to two other known solutions: the InFRA and SPT algorithms. Our results indicate clearly that the routing tree built by DRINA provides the best aggregation quality when compared to these other algorithms. The obtained results show that our proposed solution outperforms these solutions in different scenarios and in different key aspects required by WSNs.

1 INTRODUCTION

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous devices that cooperatively sense physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants at different locations [1], [2]. WSNs have been used in applications such as environmental monitoring, homeland security, critical infrastructure systems, communications, manufacturing and many other applications that can be critical to save lives and assets [3], [4], [5].

Sensor nodes are energy-constrained devices and the energy consumption is generally associated with the amount of gathered data, since communication is often the most expensive activity in terms of energy. For that reason, algorithms and protocols designed for WSNs should consider the energy consumption in their conception [6], [7], [8], [9]. Moreover, WSNs are data-driven networks that usually produce a large amount of information that needs to be routed, often in a multipath fashion, toward a sink node, which works as a gateway to a monitoring center (Figure 1). Given this scenario, routing plays an important role in the data gathering process.

A possible strategy to optimize the routing task is to use the available processing capacity provided by the intermediate sensor nodes along the routing paths. This is known as data-centric routing or in-network data aggregation. For more efficient and effective data gathering with a minimum use of the limited resources, sensor nodes should be configured to smartly report data by making local decisions [10], [11], [12], [13]. For this, data aggregation is an effective technique for saving energy in WSNs. Due to the inherent redundancy in raw data gathered by the sensor nodes, in-networking aggregation can often be used to decrease the communication cost by eliminating redundancy and forwarding only smaller aggregated information. Since minimal communication leads directly to energy savings, which extends the network lifetime, in-network data aggregation is a key technology to be supported by WSNs. In this work, the terms information fusion and data aggregation are used as synonyms. In this context, the use of information fusion is twofold [14]: (i) to take advantage of data redundancy and increase data accuracy, and (ii) to reduce communication load and save energy.

One of the main challenges in routing algorithms for WSNs is how to guarantee the delivery of the sensed data even in the presence of nodes failures and interruptions in communications. These failures become even more critical when data aggregation is performed along the routing paths since packets with aggregated data contain information from various sources and, whenever one of these packets is lost a considerable amount of information will also be lost. In the context of WSN, data aggregation aware routing protocols should present some desirable characteristics such as: a reduced number of
messages for setting up a routing tree, maximized number of
overlapping routes, high aggregation rate, and also a reliable
data transmission. In order to overcome these challenges, in
this work we propose a novel Data Routing algorithm for In-
Network Aggregation for WSNs, which we refer to as DRINA
algorithm. Our proposed algorithm was conceived to maximize
information fusion along the communication route in reliable
way, through a fault-tolerant routing mechanism. This paper is
organized as follows. In Section 2, in-network data aggregation
and some related work are discussed. Section 3 introduces our
approach in data aggregation aware routing algorithms, nodes
route packets based on their content and choose the next hop
forward data toward the sink node. Differently from the classic
shortest path “in relation to some specific metric” to
forward data toward the sink node. Differently from the classic
approach in data aggregation aware routing algorithms, nodes
route packets based on their content and choose the next hop
that maximizes the overlap of routes in order to promote in-
network data aggregation.

A key aspect of in-network data aggregation is the syn-
chronization of data transmission among the nodes. In these
algorithms, a node usually does not send data as soon as it is
available since waiting for data from neighboring nodes may
lead to better data aggregation opportunities. This in turn, will
improve the performance of the algorithm and save energy.
Three main timing strategies are found in the literature [15],
[16]:

- **Periodic simple aggregation**: requires each node to wait
 for a pre-defined period of time while aggregating all
 received data packet and, then, forward a single packet
 with the result of the aggregation.
- **Periodic per-hop aggregation**: quite similar to the previ-
 ous approach, but the aggregated data packet is transmit-
 ted as soon as the node hears from all of its children.
 This approach requires each node to know the number of
 its children. In addition, a timeout may be used for the
 case of some children’s packet being lost.
- **Periodic per-hop adjusted aggregation**: adjusts the trans-
 mission time of a node according to this node’s position
 in the gathering tree. Note that the choice of the timing
 strategy strongly affects the design of the routing protocol
 as well as its performance.

In-network data aggregation plays an important role in en-
ergy constrained WSNs since data correlation is exploited and
aggregation is performed at intermediate nodes reducing size
and the number of messages exchanged across the network.
In data gathering based applications, a considerable number
of communication packets can be reduced by in-network
aggregation, resulting in a longer network lifetime. In this case,
the optimal aggregation problem is equivalent to a Steiner tree
problem [17], [18]:

Definition 1 (Steiner Tree): given a network represented by
a graph $G = (V, E)$, where $V = \{v_1, v_2, \ldots, v_n\}$ is the
set of sensor nodes, E is the set of edges representing the
connections among the nodes, i.e., $(i,j) \in E$ if v_i reaches
v_j, and $w(e)$ is the cost of edge e, a minimal cost tree is
to be built that spans all source nodes $S = \{s_1, s_2, \ldots, s_m\}$,
$S \subseteq V$, and the sink node s_0. The cost of the resulting Steiner
tree (W) is the sum of the costs of its edges. This problem is
a well-known NP-hard problem.

Since it is a NP-hard problem, some heuristics for the
Steiner tree problem can be found in the literature. Approxi-
mate solutions to the problem are presented in [19] and [20].
However, these solutions are not appropriate for resource-
constrained networks, such as WSNs, since their distributed
implementation require a large number of messages exchange
when setting up the routing tree and, consequently, resulting
in high energy consumption.

Thus, various algorithms have been proposed to provide data
aggregation during the routing in WSNs. Some of them are
tree-based algorithms and try to solve some variation of the
Steiner tree problem; others are cluster-based algorithms while
others are simply structure-less. In the next sections, these
three categories of algorithms and their proposed protocols
are briefly discussed.

2.1 Tree-Based Approaches

Protocols in this family [21], [22], [23] are usually based on a
hierarchical organization of the nodes in the network. In fact,
the simplest way to aggregate data flowing from the sources
to the sink node is to elect some special nodes that work
as aggregation points and define a preferred direction to be followed when forwarding data.

In these protocols, a tree structure is constructed first and then used later to either route the gathered data or respond to queries sent by the sink node. Aggregation is performed during the routing when two or more data packets arrive at the same node of the tree. This node then aggregates all received data with its own data and forwards only one packet to its neighbor that is lower in the tree. However, this approach has some drawbacks. For instance, when a packet is lost at a certain level of the tree (e.g., due to channel impairments), data from the whole sub tree will be lost as well. Thus, tree-based approaches require a mechanism for fault tolerance to reliably forward the aggregated data.

Despite the potentially high cost of maintaining a hierarchical structure in dynamic networks and the scarce robustness of the system in case of link/device failures, these approaches are still particularly suitable for designing optimal aggregation functions and performing efficient energy management. For instance, there are some proposed solutions [24] where the sink node organizes routing paths to evenly and optimally distribute the energy consumption while still favoring the aggregation of data at the intermediate nodes.

In most cases, tree-based protocols build a traditional shortest path routing tree. For instance, the Shortest Path Tree (SPT) algorithm [17] uses a very simple strategy to build a routing tree in a distributed fashion. In this approach, every node that detects an event reports its collected information by using a shortest path to the sink node. Information fusion occurs whenever paths overlap (opportunistic information fusion). The Directed Diffusion [25] algorithm is one of the earliest solutions to also propose attribute-based routing. In these cases, data can be opportunistically aggregated when they meet at any intermediate node. Based on Directed Diffusion, the Greedy Incremental Tree (GIT) [26] approach was proposed. The GIT algorithm establishes an energy-efficient path and greedily attaches other sources onto the established path. In the GIT strategy, when the first event is detected, nodes send their information as in the SPT algorithm and, for every new event, the information is routed using the shortest path to the current tree. There is a new aggregation point every time a new branch is created. Some practical issues make GIT not appropriate in WSNs [27]. For example, each node needs to know the shortest path to all nodes in the network. The communication cost to create this infrastructure is $O(n^2)$, where n is the number of nodes. Furthermore, the space needed to store this information at each node is $O(Dn)$, where D is the number of hops in the shortest path connecting the farthest node $v \in V$ to the sink node (network diameter). After the initial phase the algorithm needs $O(mn)$ messages to build the routing tree, where m is the number of source nodes.

A different approach is proposed in the Center at Nearest (CNS) algorithm [17]. In this algorithm, every node that detects an event sends its information to a specific node, called aggregator, by using a shortest path. In this case, the aggregator is the closest node to the sink (in hops) that detects an event.

In [28] and [29], data aggregation is implemented in a real world testbed and the Tiny AGgregation Service (TAG) framework is introduced. TAG uses a shortest path tree, and proposes improvements, such as snooping-based and hypothesis testing based optimizations, dynamic parent switching, and the use of a child cache to estimate data loss. In the TAG algorithm, parents notify their children about the waiting time for gathering all the data before transmitting it so the sleeping schedule of the nodes can be adjusted accordingly. However, like most of the cited tree-based data aggregation aware routing algorithms, the TAG algorithm needs a considerable number of message exchange to construct and maintain the tree.

2.2 Cluster-Based Approaches

Similarly to the tree-based approaches, cluster-based schemes [27], [30], [31] also consist of a hierarchical organization of the network. However, in these approaches, nodes are divided into clusters. Moreover, special nodes, referred to as cluster-heads, are elected to aggregate data locally and forward the result of such aggregation to the sink node.

In the Low-Energy Adaptive Clustering Hierarchy (LEACH) algorithm [30], clustered structures are exploited to perform data aggregation. In this algorithm, cluster-heads can act as aggregation points and they communicate directly to the sink node. In order to evenly distribute energy consumption among all nodes, cluster-heads are randomly elected in each round. LEACH-based algorithms assume that the sink can be reached by any node in only one hop, which limits the size of the network for which such protocols can be used.

The Information Fusion-based Role Assignment (InfRA) algorithm [27] builds a cluster for each event including only those nodes that were able to detect it. Then, cluster-heads merge the data within the cluster and send the result toward the sink node. The InfRA algorithm aims at building the shortest path tree that maximizes information fusion. Thus, once clusters are formed, cluster-heads choose the shortest path to the sink node that also maximizes information fusion by using the aggregated coordinators-distance [27]. A disadvantage of the InfRA algorithm is that for each new event that arises in the network, the information about the event must be flooded throughout the network to inform other nodes about its occurrence and to update the aggregated coordinators-distance. This procedure increases the communication cost of the algorithm and, thus, limits its scalability.

Our proposed DRINA algorithm, presented in detail in Section 3, is also a cluster-based approach. In our algorithm, for each new event, it is performed the clustering of the nodes that detected the same event as well as the election of the cluster-head. After that, routes are created by selecting nodes in the shortest path, to the nearest node that is part of an existing routing infrastructure, where this node will be an aggregation point. Our DRINA routing infrastructure tends to maximize the aggregation points and to use fewer control packets to build the routing tree. Also, differently from the InfRA algorithm, DRINA does not flood a message to the whole network whenever a new event occurs.
2.3 Structure-Less Approaches

Few algorithms for routing aware of data aggregation have been proposed that use a structure-less approach. The Data-Aware Anycast (DAA) algorithm [32], a structure-less data aggregation algorithm, uses anycast to forward packets to one-hop neighbors that have packets for aggregation. It has mechanisms for increasing the chance of packets meeting at the same node (spatial aggregation) and at the same time (temporal aggregation). Since the approach does not guarantee aggregation of all packets, the cost of transmitting packets with no aggregation increases in larger networks.

3 DRINA: Data Routing for In-Network Aggregation for WSNs

The main goal of our proposed DRINA algorithm is to build a routing tree with the shortest paths that connect all source nodes to the sink while maximizing data aggregation. The proposed algorithm considers the following roles in the routing infrastructure creation:

- **Collaborator**: a node that detects an event and reports the gathered data to a coordinator node;
- **Coordinator**: a node that also detects an event and is responsible for gathering all the gathered data sent by collaborators, aggregating them and sending the result toward the sink node;
- **Sink**: a node interested in receiving data from a set of collaborator nodes;
- **Relay**: a node that forwards data toward the sink.

The DRINA algorithm can be divided into three phases. In Phase 1, the hop tree from the sensor nodes to the sink node is built. In this phase, the sink node starts building the hop tree that will be used by Coordinators for data forwarding purposes. Phase 2 consists of cluster formation and cluster-head election among the nodes that detected the occurrence of a new event in the network. Finally, Phase 3 is responsible for both setting up a new route for the reliable delivering of packets and updating the hop tree.

3.1 Phase 1: Building the Hop Tree

In this phase, the distance from the sink to each node is computed in hops. This phase is started by the sink node sending, by means of a flooding, the Hop Configuration Message (HCM) to all network nodes. The HCM message contains two fields: ID and HopToTree, where ID is node identifier that started or retransmitted the HCM message and HopToTree is the distance, in hops, by which an HCM message has passed.

The HopToTree value is started with value 1 at the sink, which forwards it to its neighbors (at the beginning, all nodes set the HopToTree as infinity). Each node, upon receiving the message HCM, verifies if the value of HopToTree in the HCM message is less than the value of HopToTree that it has stored and if the value of FirstSending is true, as shown in Algorithm 1 - Line 3. If that condition is true then the node updates the value of the NextHop variable with the value of the ID field of message HCM, as well as the value of the HopToTree variable, and the values in the fields ID and HopToTree of the HCM message. The node also relays the HCM message, as shown in Algorithm 1 - Line 8. Otherwise, if that condition is false, which means that the node already received the HCM by a shorter distance, then the node discards the received HCM message, as shown in Algorithm 1 - Line 12. The steps described above occur repeatedly until the whole network is configured.

Before the first event takes place, there is no established route and the HopToTree variable stores the smallest distance to the sink. On the first event occurrence, HopToTree will still be the smallest distance; however, a new route will be established. After the first event, the HopToTree stores the smaller of two values: the distance to the sink or the distance to the closest already established route.

Algorithm 1: Hop Tree Configuration Phase

1. Node sink sends a broadcast of HCM messages with the value of HopToTree = 1;
2. foreach $u \in R_u$ do
3. if HopToTree$(u) >$ HopToTree$(HCM) \text{ and }$ FirstSending(u) then
4. $\text{NextHop}_u \leftarrow \text{ID}_{HCM};$
5. $\text{HopToTree}_u \leftarrow \text{HopToTree}_u + 1;$
6. $\text{ID}_{HCM} \leftarrow \text{ID}_u;$
7. $\text{HopToTree}_HCM \leftarrow \text{HopToTree}_u;$
8. Node u sends a broadcast message of the HCM with the new values;
9. $\text{FirstSending}_u \leftarrow \text{false};$
10. end
11. else
12. $\text{Node } u \text{ discards the received message HCM; }$
13. end
14. end

3.2 Cluster Formation

When an event is detected by one or more nodes, the leader election algorithm starts and sensing nodes will be running for leadership (group coordinator); this process is described in Algorithm 2. For this election, all sensing nodes are eligible. If this is the first event, the leader node will be the one that is closest to the sink node. Otherwise, the leader will be the node that is closest to an already established route (Algorithm 2, Lines 7 to 9). In the case of a tie, i.e., two or more concurrent nodes have the same distance in hops to the sink (or to an established route), the node with the smallest ID maintains eligibility, as shown in Lines 11 to 13 of Algorithm 2. Another possibility is to use the energy level as a tiebreak criterion.

At the end of the election algorithm only one node in the group will be declared as the leader (Coordinator). The remaining nodes that detected the same event will be the Collaborators. The Coordinator gathers the information collected by
These nodes send an HCM message (by means of a controlled flooding) for the hop updating (Figure 2(b)). The whole cost of this process is the same of a flooding, i.e., each node will send only one packet. This algorithm for the hop updating follows the same principles of the hop tree building algorithm, described in Section 3.1.

3.3 Routing Formation and Hop Tree Updates

The elected group leader, as described in Algorithm 2, starts establishing the new route for the event dissemination. This process is described in Algorithm 3, (Lines 2 to 10). For that, the Coordinator sends a route establishment message to its NextHop node. When the NextHop node receives a route establishment message, it re-transmits the message to its NextHop and starts the hop tree updating process. These steps are repeated until either the sink is reached or a node that is part of an already established route is found. The routes are created by choosing the best neighbor at each hop. The choices for the best neighbor are twofold: (i) when the first event occurs, the node that leads to the shortest path to the sink is chosen (Figure 2(a)); and (ii) after the occurrence of subsequent events, the best neighbor is the one that leads to the closest node that is already part of an established route (Figure 2(c)). This process tends to increase the aggregation points, ensuring that they occur as close as possible to the events.

The resulting route is a tree that connects the Coordinator nodes to the sink. When the route is established, the hop tree updating phase is started. The main goal of this phase is to update the HopToTree value of all nodes so they can take into consideration the newly established route. This is done by the new relay nodes that are part of an established route. These nodes send an HCM message (by means of a controlled

the Collaborators and sends them to the sink. A key advantage of this algorithm is that all of the information gathered by the nodes sensing the same event will be aggregated at a single node (the Coordinator), which is more efficient than other aggregation mechanisms (e.g., opportunistic aggregation).

Algorithm 2: Cluster formation and leader election

```
1 Input: S // Set of nodes that detected the event
2 Output: u // A node of the set S is elected leader of the group
3 foreach u ∈ S do
4     role_u ← coordinator;
5     // Node u sends message MCC in broadcast
6     Announcement of event detection;
7     // N_u is the set of neighbors of node u ∈ S
8     foreach w ∈ N_u do
9         if HopToTree(u) > HopToTree(w) then
10            role_w ← collaborator;
11            Node u retransmits the MCC message received from node w;
12        end
13        else if HopToTree(u) = HopToTree(w) ∧
14            ID(u) > ID(w) then
15            role_u ← collaborator;
16            Node u retransmits the MCC message received from node w;
17        end
18    end
19 end
```

Algorithm 3: Route establishment and hop tree update

```
1 Leader node v of the new event sends a message REM to its NextHop;
2 repeat
3     // u is the node that received the REM message, that was sent by node v
4     if u = NextHop, then
5        HopToTree_u ← 0;
6        Role_u ← Relay;
7        Node u sends the message REM to its NextHop;
8        Node u broadcasts the message HCM with the value of HopToTree = 1;
9    Nodes that receive the HCM message sent by node u, will run the command Line 2 until the Line 14 of Algorithm 1;
10 until Find out the sink node or a node belonging to the routing structure already established;
11 repeat
12     // sons_u is the number of descendants of u
13     if sons_u > 1 then
14        Aggregates all data and sends it to the nexthop_u;
15        if Role_u = Relay then
16            Execute the mechanism of Section 3.4
17        end
18    end
19 else
20        Send data to nexthop_u;
21        if Role_u = Relay then
22            Execute the mechanism of Section 3.4
23        end
24 until The node has data to transmit/retransmit;
```
A route repair mechanism is used to send information in a reliable way. Sender nodes wait a pre-defined time period to receive a packet delivery confirmation. When the confirmation is not received by the sender node, a new destination node is selected and the message is retransmitted by that node. This route repair mechanism (Line 15 of Algorithm 3) is described in Section 3.4.

3.4 Route Repair Mechanism

The route created to send the data toward the sink node is unique and efficient since it maximizes the points of aggregation and, consequently, the information fusion. However, because this route is unique, any failure in one of its nodes will cause disruption, preventing the delivery of several gathered event data. Possible causes of failure include low energy, physical destruction, and communication blockage. Some fault tolerant algorithms for WSNs have been proposed in the literature. Some are based on periodic flooding mechanisms [33], [34], and rooted at the sink, to repair broken paths and to discover new routes to forward traffic around faulty nodes. This mechanism is not satisfactory in terms of energy saving because it wastes a lot of energy with repairing messages. Furthermore, during the network flooding period, these algorithms are unable to route data around failed nodes, causing data losses.

Our DRINA algorithm offers a piggybacked, ACK-based, route repair mechanism, which consists of two parts: failure detection at the NextHop node, and selection of a new NextHop.

When a relay node needs to forward data to its NextHop node, it simply sends the data packet, sets a timeout, and waits for the re-transmission of the data packet by its NextHop. This re-transmission is also considered an ACK message. If the sender receives its ACK from the NextHop node, it can infer that the NextHop node is alive and, for now, everything is ok. However, if the sender node does not receive the ACK from the NextHop node within the pre-determined timeout, it considers this node as offline and another one should be selected as the new NextHop node. For this, the sender chooses the neighbor with the lowest hop-to-tree level to be its new NextHop; in case of a tie, it chooses the neighbor with the highest energy level. After that, the sender updates its routing table to facilitate the forwarding of subsequent packets.

As an example, a disrupted route is shown in Figure 3(a). After the repairing mechanism is applied, a newly partial reconstructed path is created as depicted in Figure 3(b).

4 Complexity Analysis

In this section we derive the communication cost bounds for DRINA, InFRA, and SPT algorithms. More specifically, we present the limits for the communication cost of these algorithms to create the routing structure. We also present the best and worst cases, while the average case will be shown in the simulation results (see Section 5).

In the SPT algorithm, there is constant communication cost to build the routing infrastructure. In a reactive fashion operation, it is necessary one flooding started by the nodes that sensed the first event in order to build the routing tree. One more flooding, initiated by the sink node, is also necessary for the other nodes to set up their ancestors in the tree infrastructure. Hence, the constant communication cost for SPT is \(2n\), where \(n\) is number of nodes.

The InFRA algorithm also presents constant communication costs since it needs one flooding for every elected cluster head, followed by one flooding initiated by the sink node. Each flooding is necessary to set up and update the aggregated coordinators-distance at each node. Also, it is necessary \(m\) transmissions to create the cluster, where \(m\) is number of transmissions to create the clusters. For this reason, InFRA presents a constant communication cost of \((2kn + m)\), where \(n\) is number of nodes, \(k\) is number of events. The overhead of the InFRA algorithm can be reduced in some situations by...
forcing a delay before each announcement of the cluster-heads is sent by the sink node. Thus, if successive events take place almost simultaneously, only one flooding starting at the sink will be necessary and the communication cost will be lower.

Our proposed DRINA algorithm needs one flooding from the first elected cluster-head and one more flooding initiated by the sink to create the initial tree infrastructure. Successive cluster-heads will make a scope-limited flooding to update the nodes HopToTree parameter. Thus, the best case scenario for the communication cost is when successive events take place near the previously established routing tree. The closer the event takes place, the lower the communication cost is; thus, the best case will be achieved when the events happen on the routing tree. In this case, each CH is already attached to the tree. The number of transmissions to establish the initial routing tree is \(2n\) plus \(m\) transmissions to create the cluster, i.e., the cost is \((2n + m)\). The worst case of the DRINA algorithm happens when successive events take place far from the previously created tree. In this case, the number of transmissions to build the initial tree is \(2n\) plus \(k\) plus \(\sum_{i=2}^{k} |U_i| \) transmissions for the following events plus \(m\) messages to create the cluster, where \(n\) is the number of nodes, \(k\) is the number of events, \(m\) is the number of transmissions to create the clusters and \(|U_i|\) is the cardinality of the set of nodes outside the scope-limited flooding for the event \(i\), which will not update their HopToTree for this event. Thus, the worst case for the DRINA algorithm is \((2n + (k-1)n - \sum_{i=2}^{k} |U_i| + m)\).

Table 1 presents the communication cost of the algorithms assessed in this work.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Best Case</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT</td>
<td>(2n)</td>
<td>(2n)</td>
</tr>
<tr>
<td>InFRA</td>
<td>((2n + (k-1)n + m))</td>
<td>((2n + (k-1)n + m))</td>
</tr>
<tr>
<td>DRINA</td>
<td>((2n + m))</td>
<td>((2n + (k-1)n - \sum_{i=2}^{k}</td>
</tr>
</tbody>
</table>

Table 1 shows that DRINA requires more control messages compared to the SPT. However, SPT builds routing trees that are worse than the trees built by our DRINA algorithm, therefore this cost will be recovered by the higher quality of the created tree as we will show in the next section.

5 Performance Evaluation

In this section, we evaluate the proposed DRINA algorithm and compare its performance to two other known routing protocols: the InFRA and SPT algorithms. These two algorithms were chosen for being well known in the literature and have the same goals that the proposed DRINA algorithm. Table 2 shows the basic characteristics of SPT, InFRA and DRINA algorithms. We evaluate the DRINA performance under the following metrics: (i) packet delivery rate; (ii) control overhead; (iii) efficiency (packets per processed data); (iv) routing tree cost; (v) loss of raw data; (vi) loss of aggregated data; and (vii) transmissions number.

5.1 Methodology

The performance evaluation is achieved through simulations using the SinalGo version v.0.75.3 network simulator [35]. In all results, curves represent average values, while error bars represent confidence intervals for 95% of confidence from 33 different instances (seeds). The default simulation parameters are presented in Table 3. For each simulation set, a parameter shown in Table 3 will be varied as described in the evaluated scenario. The first event starts at time 1000s and all other events start at a uniformly distributed random time between the interval [1000, 3000] seconds. Also, these events occur at random positions. The network density is considered as the relation \(n r_c^2 / A\), where \(n\) is the number of nodes, \(r_c\) is the communication radius, and \(A\) is the area of the sensor field.

For each simulation in which the number of nodes is varied, the sensor field dimension is adjusted accordingly in order to maintain the node density at the same value. Sensor nodes are uniformly and randomly deployed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink node</td>
<td>1 (top left)</td>
</tr>
<tr>
<td>Network size</td>
<td>1024</td>
</tr>
<tr>
<td>Communication radius</td>
<td>80</td>
</tr>
<tr>
<td># of events</td>
<td>3</td>
</tr>
<tr>
<td>Event radius</td>
<td>50</td>
</tr>
<tr>
<td>Event duration (hours)</td>
<td>3</td>
</tr>
<tr>
<td>Loss probability (%)</td>
<td>0</td>
</tr>
<tr>
<td>Simulation duration</td>
<td>4</td>
</tr>
<tr>
<td>Notification interval</td>
<td>60</td>
</tr>
<tr>
<td>Sensor field (m²)</td>
<td>700 × 700</td>
</tr>
<tr>
<td>Node density (node/m²)</td>
<td>21.7</td>
</tr>
</tbody>
</table>

To provide a lower bound to the packet transmissions, an aggregation function was used that receives \(p\) data packets and sends only a fixed size merged packet. However, any other aggregation function can be used to take advantage of DRINA features. This function is performed at the aggregation points whenever these nodes send a packet.

The evaluated algorithms used periodic simple aggregation strategy [5] in which the aggregator nodes transmit periodically the received and aggregated information.

The following metrics were used for the performance evaluation:

- **Data packet delivery rate**: number of packets that reach the sink node. This metric indicates the quality of the routing tree built by the algorithms – the lower the packet delivery rate, the greater the aggregation rate of the built tree;
- **Control packet overhead**: number of control messages used to build the routing tree including the overhead to both create the clusters and set up all the routing parameters for each algorithm;
- **Efficiency**: packets per processed data. It is the rate
between the total packets transmitted (data and control packets) and the number of data received by the sink;
- **Routing tree cost**: total number of edges in the routing tree structure built by the algorithm;
- **Loss of aggregated data**: number of aggregated data packets lost during the routing. In this metric, if a packet contains X aggregated packets and if this packet is lost, it is accounted the loss of X packets.
- **Number of transmissions**: sum of control overhead and data transmissions, i.e., the total packets transmitted;
- **Number of Steiner nodes**: number of Steiner nodes in the routing structure, i.e., the number of relay nodes;

5.2 Number of Steiner nodes

Since the ideal aggregation is achieved when the information is routed through the minimal Steiner tree [17], in this section we evaluate the number of Steiner tree nodes (i.e., relay nodes) obtained after the construction of the routing tree structure for each of the evaluated algorithms. In this analysis, the network size is varied from 256 to 2048 sensor nodes; the density is varied from 20 to 30; and the number of events were also varied from 1 to 6.

The obtained results are presented in Figure 4. We can clearly see that the number of Steiner nodes in the routing tree built by DRINA algorithm is lower than the ones obtained by the SPT and InFRA algorithms in all studied scenarios. When compared to the MST algorithm, DRINA algorithm results in a slightly larger number of Steiner nodes. However, as mentioned before, the MST algorithm is not suitable for WSNs due to its high overhead and large amount of required memory. We are only comparing our proposed approach to the MST algorithm because the number of Steiner nodes in the routing tree built by the MST algorithm is proved to be at most twice the optimum (i.e., minimum) Steiner tree [36].

The good results obtained by the DRINA algorithm are due to its characteristic of prioritizing nodes that are closer to already existing routes. The InFRA algorithm, on the other hand, prioritizes the distance to the sink node, resulting in lower and/or later aggregations, which increases the number of Steiner nodes.

The Tables 4, 5, 6, and 7 show a different view of the results presented in Figure 4. We can see that in the average case, DRINA is very close to MST, of which, as already mentioned, cost is at most twice the optimal Steiner tree. These results also show that the proposed DRINA algorithm is scalable. For instance, Table 4 shows that, on average, the routing structure built by the InFRA algorithm has 35% more Steiner nodes than DRINA, while Table 6 shows that when increasing the number of nodes to 2048 this difference increases to 42%.

Finally, we can see that in all evaluated scenarios, the minimum routing structures created by the DRINA algorithm have fewer Steiner nodes than the minimum routing structures created by SPT, InFRA, and even the MST algorithm.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Route Structure</th>
<th>Objective</th>
<th>Aggregation Nodes</th>
<th>Overhead</th>
<th>Scalability</th>
<th>Drawback</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT</td>
<td>Tree</td>
<td>Shortest-Path</td>
<td>Opportunistic</td>
<td>Low</td>
<td>High</td>
<td>Data redundancy and static routes</td>
</tr>
<tr>
<td>InfRA</td>
<td>Tree-based cluster</td>
<td>Maximize overlap routes</td>
<td>Clusterheads and intermediate nodes</td>
<td>Very High</td>
<td>Low</td>
<td>Low scalability and high cost</td>
</tr>
<tr>
<td>DRINA</td>
<td>Tree-based cluster</td>
<td>Maximize overlap routes</td>
<td>Clusterheads and intermediate nodes</td>
<td>Medium</td>
<td>Medium</td>
<td>Static routes</td>
</tr>
</tbody>
</table>

Finally, we can see that in all evaluated scenarios, the minimum routing structures created by the DRINA algorithm have fewer Steiner nodes than the minimum routing structures created by SPT, InFRA, and even the MST algorithm.

Table 4

Scenario with 6 events, 256 nodes and density 20

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>1st Quart.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quart.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRINA</td>
<td>14</td>
<td>18</td>
<td>19</td>
<td>19.3</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>INFRA</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>26.0</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>MST</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20.4</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>SPT</td>
<td>24</td>
<td>28</td>
<td>30</td>
<td>29.8</td>
<td>32</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 5

Scenario with 6 events, 256 nodes and density 30

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>1st Quart.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quart.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRINA</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14.5</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>INFRA</td>
<td>16</td>
<td>19</td>
<td>20</td>
<td>19.7</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>MST</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>15.9</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>SPT</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>23.6</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 6

Scenario with 6 events, 2048 nodes and density 20

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>1st Quart.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quart.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRINA</td>
<td>59</td>
<td>66</td>
<td>68</td>
<td>67.6</td>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td>INFRA</td>
<td>87</td>
<td>93</td>
<td>96</td>
<td>96.2</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>MST</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>62.5</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>SPT</td>
<td>90</td>
<td>98</td>
<td>104</td>
<td>102.9</td>
<td>106</td>
<td>116</td>
</tr>
</tbody>
</table>

Table 7

Scenario with 6 events, 2048 nodes and density 30

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>1st Quart.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quart.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRINA</td>
<td>44</td>
<td>50</td>
<td>52</td>
<td>51.8</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>INFRA</td>
<td>67</td>
<td>73</td>
<td>76</td>
<td>75.4</td>
<td>79</td>
<td>83</td>
</tr>
<tr>
<td>MST</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>48.2</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>SPT</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>81.3</td>
<td>85</td>
<td>92</td>
</tr>
</tbody>
</table>
5.3 Impact of the Network Size

In this simulation scenario, the network size was varied from 128 to 1024 to evaluate the algorithms’ scalability. Figure 5 presents the results. Since we are not evaluating the number of Steiner nodes, the MST algorithm is not included in the results. In Figure 5(a) we can see that our DRINA algorithm sends only 77% of the data packets sent by InFRA and about 65% of the data packets sent by SPT. This result clearly indicates that DRINA maintains the quality of the routing tree even when the number of nodes increases. Furthermore, Figure 5(b) shows that DRINA is more scalable than the InFRA algorithm since our algorithm needs 30% less control messages to build the routing structure. On the other hand, the DRINA algorithm requires, on average, 25% more control messages than the SPT algorithm. However, the routing trees built by SPT results in 30% less efficiency than the trees built by DRINA algorithm, as depicted in Figure 5(d). At last, Figure 5(c) shows that DRINA is 20% and 28% more efficient than the InFRA and SPT algorithms, respectively. This occurs because DRINA algorithm needs less control messages to build the routing tree when compared to InFRA. Also, the routing tree built by DRINA has a better data aggregation quality than InFRA and
5.4 Impact of the Number of Events

In this simulation scenario, the number of events was varied to evaluate the behavior of the proposed algorithms in networks with 1, 2, 3, 4, 5, and 6 events occurring simultaneously. The results are presented in Figure 6. As depicted in Figure 6(a), DRINA sends less data packets than the InFRA and SPT algorithms. For instance, DRINA sends approximately 81% and 67% of the data packets sent by InFRA and SPT, respectively. This result indicates one of the main advantages of our DRINA algorithm: by varying the number of events, DRINA builds routing trees more likely to have higher data aggregation rates. Also, Figure 6(b) shows that DRINA requires less control messages to create the routing structure than InFRA but it requires more control messages than the SPT algorithm. Although DRINA requires 33% more control messages than SPT, SPT does not build a good data aggregation routing in Figure 6(c). Finally, the cost of the routing tree built by DRINA is 10% smaller than in the InFRA algorithm, and 30% smaller than in the SPT, as we can see in Figure 6(d).

5.5 Impact of the Event Duration

In this simulation scenario, the event duration was varied from 1 to 5 hours. The results are presented in Figure 7. As we can see in Figure 7(a), our proposed DRINA algorithm sends less data packets than the other evaluated algorithms. More specifically, DRINA sends approximately 84% and 64% of the data packets sent by InFRA, and SPT respectively. This indicates that by varying the time of an event duration, DRINA obtains a data aggregation rate greater than InFRA and SPT. Also, Figure 7(b) shows that DRINA requires less control messages to create the routing structure than InFRA but it requires more control messages than the SPT algorithm. Although DRINA requires 33% more control messages than SPT, SPT does not build a good data aggregation routing
infrastructure, as shown in previous results. At last, Figure 7(c) shows that DRINA is more efficient than InFRA and SPT. Our proposed algorithm outperforms the other evaluated algorithms even in scenarios of short-term events while InFRA exceeds the SPT only in scenarios where the event duration is longer (typically more than 2 hours).

5.6 Impact of Communication Failures

In this scenario, we evaluate the reliability of our proposed DRINA algorithm. For this, the communication failure probability parameter was varied from 0% to 20%. The results are presented in Figure 8. This simulation also aims to evaluate the cost of DRINA path repair mechanism. As we can see in Figure 8(a), in the DRINA algorithm, data packet transmission increases when the probability of communication failure increases. This is due to the fact that lost packets with aggregated data are retransmitted. On the other hand, SPT and InFRA protocols send less data packets when the communication failures probability increases. This happens because when a packet is lost due to communication failures the packets are not retransmitted and do not reach the sink, as shown in Figure 8(b). In this last figure, we can also see that in a scenario with 20% communication failure, the delivery rate of InFRA is only 30%, while DRINA delivers all aggregated data that have been sent. In summary, DRINA delivers aggregated data reliably with the best performance when compared to SPT and InFRA, as shown in Figure 8(c).

The results presented in this section clearly show that our proposed DRINA algorithm is more scalable than InFRA and SPT in all considered scenarios in terms of network size, events number, event duration time and communication failure probability. In the Notification Rate, DRINA is more efficient when the notification rate is greater than 0.15 notifications per seconds.
6 CONCLUSION AND FUTURE WORK

Aggregation aware routing algorithms play an important role in event based WSNs. In this work we presented the DRINA
algorithm, a novel and reliable Data Aggregation Aware Routing Protocol for WSNs. Our proposed DRINA algorithm was extensively compared to two other known routing algorithms, the InFRA and SPT, regarding scalability, communication costs, delivery efficiency, aggregation rate and aggregated data delivery rate. By maximizing the aggregation points and offering a fault tolerant mechanism to improve delivery rate, the obtained results clearly show that DRINA outperformed the InFRA and SPT algorithms for all evaluated scenarios. Also, we show that our proposed algorithm has some key aspects required by WSNs aggregation aware routing algorithms such as a reduced number of messages for setting up a routing tree, maximized number of overlapping routes, high aggregation rate, and reliable data aggregation and transmission.

As future work, spatial and temporal correlation of the aggregated data will also be taken into consideration as well as the construction of a routing tree that meets application needs. We also plan to modify DRINA algorithm to stochastically select nodes that will be part of the communication structure. The goal is to find a balance between the overhead and the quality of the routing tree. In addition, new strategies will be devised to control the waiting time for aggregator nodes based on two criteria: average distance of the event coordinators, and spatial and semantics event correlation.

ACKNOWLEDGMENT

This work was partially supported by the Canada Research Chairs program, NSERC Strategic Project Program and NSERC DIVA Network Research Program, and ORIF/MRI Program. The authors also wish to thank FAPEMIG, CNPq, FAPESP, CAPES (INCT-SEC Project, processes 573963/2008-8 and 08/57870-9).

REFERENCES

BIOGRAPHY

Azzedine Boukerche is a full professor and holds a Canada Research Chair position at the University of Ottawa (uOttawa). He is a fellow of the Canadian Academy of Engineering and the founding director of the PARADISE Research Laboratory, School of Information Technology and Engineering (SITE), Ottawa. Prior to this, he held a faculty position at the University of North Texas, and he was a senior scientist at the Simulation Engineering (SITE), Ottawa. Prior to this, he held a faculty position at the PARADISE Research Laboratory - University of Ottawa, Canada. He has been the recipient of an Ontario Early Research Excellence Award, Ontario Distinguished Researcher Award, and Glimski Research Excellence Award.

Antonio Alfredo Ferreira Loureiro received his B.Sc. and M.Sc. degrees in computer science from the Federal University of Minas Gerais (UFMG), Brazil, and the Ph.D. degree in computer science from the University of British Columbia, Canada. Currently, he is a professor of computer science at UFMG, where he leads the research group in wireless sensor networks. His main research areas are wireless sensor networks, mobile computing, and distributed algorithms. In the last 10 years he has published regularly in international conferences and journals related to those areas, and also presented tutorials at international conferences.

Leandro Aparecido Villas is a Ph.D. student of Computer Science at the Federal University of Minas Gerais, Brazil. He received his Master Degree in Computer Science from the Federal University of Sao Carlos, Brazil, in 2007. His research interests include context interpretation, distributed algorithms, routing algorithms, wireless actor and sensor networks, quality of Service. He has published papers in the area of wireless sensor networks and received the prize for best article of the XXV Brazilian Symposium on Computer Networks and Distributed Systems, SBC. He was a Visiting PhD Student for the Academic year 2010-2011 at PARADISE Research Laboratory - University of Ottawa, Canada.

Horacio A.B.F. Oliveira is an Associate Professor of Computer Science at Federal University of Amazonas (UFAM), Brazil. He received his Ph.D. in Computer Science from the Federal University of Minas Gerais, Brazil with a partial doctoral fellowship at University of Ottawa, Canada, in 2008. His research interests include wireless communications and distributed algorithms, wireless ad hoc networks, vehicular, and sensor networks. He is author of several papers in the different areas of his research interests.

Regina B. Araujo is an Associate Professor at the Computer Science Department of Federal University of Sao Carlos, SP, Brazil. Prof. Araujo research interests are context aware physical environments for emergency preparedness where wireless sensor networks, distributed simulations, context computing and collaborative virtual environments areas are integrated for accurate monitoring and visualization of physical environments subject to emergency conditions. Prof. Araujo was a Program Co-Chair for the 1st ACM Workshop on QoS and Security for Wireless Networks (Q2SWinet 2005). In 2005, she was a Visiting Professor at the PARADISE Research Laboratory, University of Ottawa. She serves as the program Co-Chair for the 2nd ACM Workshop on Wireless Multimedia Networking and Performance Modeling.

Heitor S. Ramos received his bachelor degree in Electrical Engineering from the Federal University of Campina Grande (UFCG), Brazil, and his master in Computing Modeling from the Federal University of Alagoas (UFAL), Brazil. His research interests rely on wireless networks, sensor networks, and mobile ad hoc networks. In 2010, he received the Microsoft Latin American PhD Fellowship award, and spent the 2010’s summer as an intern at the Networked Embedded Computing group (NEC) at Microsoft Research, Redmond, USA. He is currently a PhD candidate in Computer Science at the Federal University of Minas Gerais (UFMG), Brazil. He was a Visiting PhD Student for the Academic year 2010-2011 at PARADISE Research Laboratory - University of Ottawa, Canada.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.