
Embedded Video Processing on Raspberry Pi

Gabor Arva
Brno University of Technology

Department of Radio Electronics

Technicka 12, Brno, Czech Republic

Email: xarvag00@stud.feec.vutbr.cz

Tomas Fryza
Brno University of Technology

Department of Radio Electronics

Technicka 12, Brno, Czech Republic

Email: tomas.fryza@vutbr.cz

Abstract—The paper presents a study of existing methods for
motion and face detection algorithms and their application to
the on-board miniature Raspberry Pi computer. The algorithms
realized by OpenCV functions were modified to optimize their
operation on the mentioned platform, which could be used as
an embedded surveillance system. The paper also mentions the
training of a custom classifier for hand detection, what could be
further used as a basis for detecting hand gestures.

Keywords—OpenCV, Raspberry Pi, motion detection, cascade
classifiers, video surveillance.

I. INTRODUCTION

The paper deals with the design of an embedded surveil-

lance system realized on a Raspberry Pi 3 B minicomputer.

The work’s main part focuses on the study of selected

functions used by modern surveillance systems, like motion

detection methods and issues [1] and algorithms used for

detecting human faces [2]. After selecting the proper methods,

they are developed in the programming language C/C++ in

way to exploit the computational power of the embedded

minicomputer.

An external web-camera captures static scenes which are

used as input data for the image processing algorithms. These

algorithms analyze the images in real time, yielding informa-

tion about the moving objects and saving the video sequence

if a motion has occurred. To automatize these tasks, basic

Computer Vision approaches [3] are modified and applied

to the real-time camera feed. The functions are provided by

OpenCV (Open Source Computer Vision), what is an open

source library containing over 500 optimized algorithms for

image and video analysis and manipulation. It has C++, C,

Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS [4]. The functions are completely

designed with the help of OpenCV libraries and are optimized

to operate effectively on the Raspberry Pi platform.

The rest of the paper is organized as follows. Section II

shortly describes the used motion detecting process. Section III

presents an overview of the main object detecting methods

and the concept how to detect any object in a video sequence.

Section IV briefly presents the one-board miniature computer

Raspberry Pi and section V represents the achieved experi-

mental results. Section VI concludes the paper and proposes

the possible future work.

Fig. 1. Motion detecting process

II. MOTION DETECTION

The easiest way to determine a motion in a video sequence

is to compare any two consecutive frames in it. This method is

called motion detection based on frame difference, and is fur-

ther described here [5]. In the case of a constant background,

the content of the frames are the same, except in the region

of moving objects. The processed images are taken from the

camera feed. After conversion to gray-scale format, a function

calculating the absolute difference returns an output image

highlighting the actual motion. A basic segmentation method

separates this region and corresponding functions remove the

pixel noise.

The blobs appearing in the processed image (as shown in

Figure 1) are representing the position of the occurred motion.

Further a rectangle is computed around each blob thereby

they can be extracted and serve as regions of interest for the

following functions.

III. OBJECT DETECTION

Motion detecting methods provide information about actual

events in the video sequence, but they return no information

about the features of the moving object itself. The aim of the

object detecting algorithm is to recognize the predetermined

database of objects in the video sequences. In the case of

a surveillance systems, these objects could be the faces of

individuals appearing on the screen or license plates of the

978-1-5090-4591-4/17/$31.00 ©2017 IEEE

passing cars. In fact, the detected object can be almost

anything and is only limited by the user’s needs.

A. Haar Cascades

The first known algorithm for object detection included

a Cascade of simple classifiers. To detect the specific object

in an image, the first step is to learn it’s features. However,

working only with the intensity values of RGB pictures made

the feature calculation computationally expensive. As a result

in 2001, Viola and Jones [6] developed a framework using the

Haar-like features.

The Haar features could be obtained by monitoring adjacent

rectangular areas in a detection window, however, even a small

window returns an exhaustive amount of rectangle features.

The few of these, which can be combined to form an effective

classifier are selected by a learning algorithm implemented to

the project.

The chosen classifiers are gathered into cascades and are

applied to the detection window starting with the simplest ones

and a positive result from these triggers the next more complex

classifiers. With this step, the algorithm achieves increased

detection performance decreasing the required computation

time. Further information and test results are available in the

literature [6].

B. Local Binary Patterns

The LBP (Local Binary Patterns)[7] have allowed a more

modern approach to the field of object detection. Compared to

the Haar cascade based algorithm, it has improved detection

speed and a more faster learning phase of the classifier, while

the main idea remains the same.

The algorithm categorizes the pixels of an image by ap-

plying threshold function to them in a 3×3 sub-window with

center value. This step is applied to each pixel of an image

and the results are saved as 8 bit binary strings or decimal

values containing the LBP features. The approach of the LBP

operator is shown on Figure 2.

The method’s scantiness manifests in the features captured

in the small 3×3 area. These sub-windows cannot capture

larger scale structures which may contain the dominant fea-

tures of the detected object. To overcome this obstacle, a new

representation was proposed by a group of Chinese engineers

called Multi-scale Block Local Binary Patters (MS-LBP)[7].

The basis remains the same and the histogram of these labels

are then further used as a texture descriptor. In each sub-region

an average sum of image intensity is computed and another

threshold function is applied to them by the center block,

Fig. 2. Local binary patterns approach [7].

resulting in a MS-LBP process. The output images are

influenced by the scale of chosen blocks: images filtered with

small scale values represents more details and micro patterns,

while big scale values reduce pixel noise and focuses more on

the dominant features of the object.

C. Cascade of Classifiers Training

The OpenCV library offers predefined cascade classifiers

for face, eyes or mouth detection. However, if one requires

a working classifier to detect other objects, the classifier needs

to be trained individually. Fortunately the OpenCV library

includes the tools and functions to generate a custom cascade

classifier based on Haar or LBP features.

The training time of a Haar cascade classifier can take up

to weeks, while an LBP classifier for the same object can be

trained in a few hours. Due to this reason an LBP cascade

classifier will be trained for the detection of hands.

The training process itself requires a set of positive sample

images including the detected object, and a set of negative

sample images containing possibly everything except it. Ac-

cording to researches [8], the amount of positive and negative

samples may vary around a few thousand, however to acquire

such a large amount of pictures about and without the desired

object is hard to accomplish.

The negative samples, also called background images, can

be taken from random pictures not including the detected

object. Obtaining the sufficient amount of them is a time-

consuming process. One way is to gather them manually or one

can extract frames from video files saving them as individual

images. In this paper, the amount of negative images is 800.

For this custom made classifier 100 positive sample images

are used including 5 people’s hands. A few sample of a the

whole database can be seen in Figure 3. A specific OpenCV

function is utilized to significantly increase this number [9],

generating a large amount of samples from the existing images

by applying transformations and distortions to them.

IV. RASPBERRY PI

Raspberry Pi is a miniature one-board computer developed

by the Raspberry Pi Foundation [10]. The latest model is

Fig. 3. Set of positive images for classifier training.

Fig. 4. Block scheme of hardware.

the third generation of Raspberry Pi and it is available since

February 2016. As a central control unit for the proposed

embedded surveillance system, the Raspberry Pi 3 B and

the Raspbian Jessie Lite operating system was selected. The

one-board computer is equipped by the 1.2 GHz 64-bit quad-

core ARMv8 processor, 1 GB RAM, which are making this

minicomputer an appropriate choice for the processing unit

of this embedded surveillance system. The mentioned device

together with a web-camera are all the hardware required for

this project. The block scheme is shown in Figure 4.

V. EXPERIMENTAL RESULTS

A. Comparison of Cascade Classifiers

The OpenCV library includes both Haar-feature and LBP

based ready to work cascade classifiers, inter alia, for the

detection of frontal faces. The main idea for the detection

process itself comes from a tutorial available on the OpenCV

website [11]. However, using different cascade classifiers and

modifying the size of the input image significantly reduces the

computational time required for the detection. Although the

Raspberry Pi 3 B has remarkable computational power, it can

not be compared to modern computers, what the algorithm had

been originally designed for. Considering this, the paper also

contains a comparison between the available classifiers, where

the observed parameter is the computational time required for

the detection process (see Table I). ROI stands for Region of

Interest and it’s function is discussed hereinafter.

Based on the measured results, the object detection algo-

rithm using LBP cascade classifier is 3 times faster than the

Haar features based one.

TABLE I
COMPUTATIONAL TIME OF USED CASCADES

Resolution 640×480 Based on ROI

Comp. Time min max avg min max avg

[milliseconds]

Haar classifier 91 140 115.5 1.5 33 17.3

LBP clasifier 20 48 34 0.3 9 4.7

Fig. 5. The effect of rectangle merge

B. Selecting Region of Interests

Another potential to decrease the detection time of the

observed algorithm is to reduce the size of the scanned area,

limiting it’s attention to regions of interest based on ongoing

motions. The downside of this method is that the system reacts

only to moving objects, making this solution effective in terms

of computational time, however, it may not be suitable for

every situation.

For example, in the case when a person approaches towards

the camera and stops before it, the system can detect the face

until the person is moving, but not after the motion ceases,

missing the potential to capture the closest images. To avoid

the described situation, the position of the detected face is

saved in every loop and the region is further scanned until

the face is present. This makes possible to track a face on the

screen despite it is moving or not.

The motion detecting algorithm’s main role is to determine

the position of moving objects on the screen, nevertheless

it can not specify these objects as individuals. Because the

thresholded image of a moving object can consist of more

blobs as shown in Figure 5, the algorithm will separate them to

more parts. This effect is significant on close objects, since the

camera can perceive more details about them, thereby complex

objects with stronger contours cause the threshold function to

return more blobs.

As it was noted in Section II, a rectangle is computed around

each blob and their coordinates are then compared with each

other. If the area of two rectangles overlap they are merged

together, creating a new one with the correct top-left and

bottom-right points. The process iterates while rectangles are

present with interfering areas. The result is shown in Figure

5, where the final rectangles serve as regions of interest for

the object detection function.

C. Effectiveness of Face detection

Considering the results from the previous measurements,

the LBP classifier was selected and further observed. The

images shown in Figure 6 are demonstrating the function of

the detecting process. A given face is tilted to several position

while the result from the classifier is observed. The same

Fig. 6. Results of LBP face detection on face with beard, cap and glasses

procedure is repeated with adding new components to the

same face, making it more complex and difficult to detect.

These modifications are including facial hair, glasses, a cap or

all of them.

Summing up the experiment, when a person is wearing

glasses the results show that the detection returns a negative

value if the angle between the face and the camera is larger

than 45o. If one is wearing both glasses and a cap, the face is

detected only if the person looks to the camera.

D. Effectiveness of Hand detection

This section presents the results of the custom made hand

classifier. As it was mentioned in Section III C, the amount

of positive samples were artificially increased from 100 to

2000, however, classifiers trained by these samples are never

as effective as those trained by real samples [8]. The results

can be seen in Figure 7 and show the same: if the contours

between the hand and the background are strong, they are

found with high accuracy, but if the background is complex

and the hand is blurred in it, the detected object is not noticed.

The classifier could be upgraded by increasing the number of

real samples.

VI. CONCLUSION

In the paper, the basic issues and solutions of embed-

ded video processing for computer vision were presented.

The Raspberry Pi computer and several functions from the

OpenCV project was used. The ROI selecting and rectangle

merge functions significantly increased the overall frame per

second ratio of the system. The achieved modifications of the

basic video processing algorithms made possible the operation

of a surveillance system on the on-board minicomputer. The

analysis and testing of frontal face detection algorithms was

completed and in addition, a custom LBP classifier for hand

and palm detection was trained. The amount of positive

Fig. 7. Results of LBP hand detection

images used for the training process was not sufficient, but

the classifier could be upgraded by adding more samples.

ACKNOWLEDGMENT

Research described in this paper was financed by Czech

Ministry of Education in frame of National Sustainability

Program under grant LO1401, under grant LD15034, and Brno

University of Technology Internal Grant Agency under project

no. FEKT-S-17-4426. For research, infrastructure of the SIX

Centre was used.

REFERENCES

[1] J. Rahman, Md. Motion Detection for Video
Surveillance.. [Online]. Available: http://www.diva-
portal.org/smash/get/diva2:518464/FULLTEXT01.pdf

[2] B. C. Lovell, S. Chen, T. Shan. Real-time Face
Detection and Classification for ICCTV.. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.6676rank=1

[3] R. Szeliski. Computer Vision: Algorithms and Applications. [Online].
Available: http://szeliski.org/Book/

[4] OpenCV. [Online]. Available: http://opencv.org/
[5] N. Singala, “Motion Detection Based on Frame Difference Method,” in

International Journal of Information and Computation Technology. 2014,
vol. 4, 2014, pp. 1559-1565.

[6] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, 2001, pp. I–511–I–518 vol.1.

[7] Z. L. L. Z. S. Liao, X. Zhu and S. Li. Learning
Multi-scale Block Local Binary Patters for Face Recog-
nition. Center for Biometrics and Security Research &
National Laboratory of Pattern Recognition. [Online]. Available:
http://www.cbsr.ia.ac.cn/users/lzhang/papers/ICB07/ICB07 Liao.pdf

[8] S. Natoshi Tutorial: OpenCV haartraining. [Online]. Available:
http://note.sonots.com/SciSoftware/haartraining.html

[9] OpenCV. Cascade Classifier Training. [Online]. Available:
http://docs.opencv.org/trunk/dc/d88/tutorial traincascade.html

[10] Raspberry Pi. Raspberry Pi Foundation. [Online]. Available:
https://www.raspberrypi.org/

[11] Cascade Classifier. [Online]. Available:
http://docs.opencv.org/2.4/doc/tutorials/tutorials.html

