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Abstract—This paper proposes an auto-tuning proportional-
type synchronization controller for DC motor speed applications
with consideration of parameter and load variations. The pro-
posed algorithm is comprised of two parts: a proportional-type
speed tracking controller with a disturbance observer (DOB) and
second a synchronizer driven by an auto-tuning algorithm. The
first feature is to propose an auto-tuning synchronizer to reduce
synchronization error during transient operations. The second
is to introduce a DOB so that the proportional-type controller
guarantees tracking and synchronization performance recovery
without offset error. Experimental experimental data is provided
to convincingly show the effectiveness of the suggested scheme
using a 50-W dual DC motor drive system.

Index Terms—DC Motor, Speed synchronization, Auto-tuner,
Disturbance observer

I. INTRODUCTION

DC motors have been adopted for a wide range of ap-
plications, such as mobile robots, drones, 3D-printers, and
manufacturing machines. Improved power efficiency and the
capability to improve control performance are the main merits
of DC motors. It has been reported that an advanced control
algorithm can effectively enhance closed-loop control accuracy
and performance [1]–[5].

In many applications, DC motor speed is adjusted via a
cascade controller comprising a current- (inner) and speed-
loop (outer) [6]. Each-loop can be controlled using a simple
proportional-integral (PI) controller with well-tuned feedback
gains by menas of several techniques, such as trial-error,
loop-shaping, Bode, and Nyquist [7], [8]. The speed control
performance can be improved by the application of various
novel techniques used with three-phase induction and perma-
nent magnet synchronous machines, such as robust, adaptive,
neural network, feedback-linearization, sliding mode, model
predictive, and disturbance-observer (DOB) based controllers.
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This is due to the similarity between DC motor and three-
phase machine dynamics in the rotational d-q frame [9]–[19].

These methods can only establish the synchronization ob-
jective for speed regulation applications in the steady-state.
They are insufficient, however, for industrial synchronization
applications, like rolling mills and distributed paper manufac-
turing machines. There are preferred techniques, called cross-
coupling and electronic shafting, to reduce the synchronization
error using adjustable design parameters that act as an additive
compensator to the speed controller [20], [21]. Parallel-type
cross-coupling control was classically used by sharing each
motor’s speed information [22]. The relative cross-coupling
technique, whose parameters must be calculated by solving
matrix equations for each control period when the number
of machines is greater than 2, was devised for a better
performance [23], [24]. The sliding mode cross-coupling con-
troller successfully cleared this practical limitation by proper
modification of q-axis current reference signals using the
synchronization errors of each motor [20]. Nonetheless, the
motor parameter dependency problem still exists, and is the
main motivation of this study.

This paper offers an advanced proportional-type controller
accomplishing both the speed synchronization and the tracking
tasks. The parameter and load variation problems are explicitly
handled by introducing a perturbed dynamic model with DC
machine nominal parameter values. The contributions are
summarized as follows: a) an auto-tuning synchronizer updates
the feedback gain to accelerate the synchronization error decay
ratio in transient periods, and b) the introduction of a DOB
enables the proportional-type controller to achieve beneficial
closed-loop properties, namely, synchronization and tracking
performance recovery and offset-free control. The merits of
the proposed technique are experimentally confirmed using a
dual 50-W DC motor control system.

II. ELECTRICAL AND MECHANICAL BEHAVIOR OF DC
MOTORS

The application of Kirchhoff and Newton’s second laws to
the stator and rotor of the i-th DC motor leads to the set of
differential equations:

Jiω̇i = −Biωi + kT,iia,i − TL,i, (1)
La,ii̇a,i = −Ra,iia,i − ke,iω + va,i, (2)

i = 1, 2, · · · , N , ∀t ≥ 0 with the state variables of rotor
mechanical speed ωi (rad/s) armature current ia,i (A), and
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the armature voltage va,i (V) to be designed later. The load
torque, denoted as TL,i, acts as the mismatched external
disturbances coming from the load conditions. The mechanical
and electrical machine parameters are given as follows: Ji :
moment inertia, Bi : viscous damping, kT,i : torque constant,
La,i : armature inductance, Ra,i : armature resistance, ke,i :
back EMF constant.

Load conditions can cause variations of DC motor parame-
ters and load torque that must be taken into account to ensure
consistent closed-loop performance for a wide operating range.
To this end, rewrite the DC motor model of (1)-(2) using the
nominal parameter values of J0,i, B0,i, kT0,i, La0,i, Ra0,i, and
ke0,i as

J0,iω̇i = −B0,iωi + kT0,iia,i + dω,i, (3)
La0,ii̇a,i = −Ra0,iia,i − ke0,iω + va,i + dia,i, (4)

i = 1, 2, · · · , N , ∀t ≥ 0, with the unknown time-varying
lumped disturbances of dω,i and dia,i, which are used as
the basis for controller design in the next section with the
feedback signals of ωi and ia,i. It can be seen that the previous
DOB-based results are developed under similar system model
modifications [19].

III. SYNCHRONIZATION CONTROLLER DESIGN

The control task of this section is into two parts: a)
the tracking task of limt→∞ ωi = ωref , i = 1, · · · , N ,
with ωref being the speed reference; b) the synchronization
task of limt→∞ ∆ωi = ∆ωi,ref , i = 1, · · · , N − 1, with
∆ωi := ωi − ωi+1 (synchronization error), and ∆ωi,ref = 0,
∀t ≥ 0. Moreover, this study introduces the desired control
performance:

Ωi(s)

Ωref (s)
=

∆Ωi(s)

∆Ωi,ref (s)
=

ωsc

s+ ωsc
, ∀s ∈ C, (5)

for a cut-off frequency of ωsc (rad/s), where L{ωref (t)} =
Ωref (s), L{ωi(t)} = Ωi(s), L{∆ωi,ref (t)} = ∆Ωi,ref (s),
and L{∆ωi(t)} = ∆Ωi(s) with L{(·)} representing the
Laplace transform operator.

A. Control Algorithm

Before designing the controller, it is necessary to simplify
the relationship from the control input of va,i to the DC motor
speed of ωi. The armature current dynamics of (4) can be
written as ia,i = − ke0,i

Ra0,i
ω + 1

Ra,0
va,i +

1
Ra,0

dia,i −
La,0

Ra,0
i̇a,i,

i = 1, · · · , N , ∀t ≥ 0, which results in the first-order
input-output relationship between the armature voltage and the
motor speed:

J0,iRa0,i

kT0,i
ω̇i = va,i + di, i = 1, · · · , N, ∀t ≥ 0, (6)

with a lumped disturbance of di := −J0,iRa0,i

kT0,i
(B0,i +

kT0,ike0,i

Ra0,i
)ωi +

kT0,i

Ra,0
dia,i −

J0,iLa,0

kT0,i
i̇a,i + dω,i, i = 1, · · · , N ,

∀t ≥ 0. This simplification can make the controller cost low
by the elimination of the armature current feedback loop.

The controller is proposed for the DC motor dynamics of
(6) to be stabilized as

va,i =
J0,iRa0,i

kT0,i
ω̂scω̃i − d̂i, i = 1, · · · , N, ∀t ≥ 0, (7)

with the speed tracking error of ω̃i := ωref − ωi, ∀t ≥ 0,
where the feedback gain of ω̂sc is adjusted by the auto-tuning
synchronizer:

˙̂ωsc = γat

(N−1∑
i=1

∆ω2
i + ρatω̃sc

)
, ∀t ≥ 0, (8)

with γat > 0 and ρat > 0 as tuning parameters. This shows
that the synchronization error of ∆ωi excites the feedback
gain, and the error damping term of ω̃sc := ω̂sc(0) − ω̂sc

with ω̂sc(0) = ωsc stabilizes the feedback gain dynamics. The
disturbance estimate of d̂i is obtained by the DOB:

d̂i = zi + li
J0,iRa0,i

kT0,i
ωi, (9)

żi = −lizi − l2i
J0,iRa0,i

kT0,i
ωi − liva,i, ∀t ≥ 0, (10)

with design parameter of li > 0, i = 1, · · · , N .
In summary, the proposed synchronization controller can

be implemented using the state voltage command of (7), auto-
tuning synchronizer of (8), and DOB of (9)-(10) and with
adjustable design parameters of ωsc, γat, ρat, and li. Fig. 1
depicts the whole control system structure.
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Fig. 1. Control system structure

B. Analysis

This section analyzes the closed-loop properties. First, the
feedback gain lower bound of ω̂sc is established by Lemma 1.

Lemma 1: The feedback gain of ω̂sc driven by the proposed
auto-tuning synchronizer of (8) is bounded below by its initial
value of ω̂sc(0) = ωsc, i.e., ω̂sc ≥ ωsc, ∀t ≥ 0. ♢

Proof: The synchronizer of (8) corresponds
to a linear time invariant (LTI) system as ˙̂ωsc =
−γatρatω̂sc + γatρatωsc + γat

∑n−1
i=1 ∆ω2

i with the solution
of ω̂sc = e−γatρattωsc +

∫ t

0
e−γatρat(t−τ)(γatρatωsc +

γat
∑n−1

i=1 ∆ω2
i )dτ ≥ ωsc, ∀t ≥ 0, which completes the

proof.
Now, consider the closed-loop error dynamics obtained by

the substitution of (7) into (6) as

ω̇i = ω̂scω̃i +
kT0,i

J0,iRa0,i
d̃i, ∀t ≥ 0, (11)
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with d̃i := di − d̂i, i = 1, · · · , N , ∀t ≥ 0, which is utilized
to achieve the convergence and tracking performance recovery
properties in the following theorems.

Theorem 1: The proposed control scheme of (7) with auto-
tuning synchronizer of (8) and DOB of (9)-(10) guarantees that
limt→∞ |ωi(t)− ωref (t)| = 0 as ω̇ref (t) → 0 and ḋi(t) → 0,
exponentially. ♢

Proof: The DOB output of (9) can be written as zi =
d̂i − li

J0,iRa0,i

kT0,i
ωi, ∀t ≥ 0, which turns the DOB dynamics of

(10) into

˙̂
di = li(

J0,iRa0,i

kT0,i
ω̇i − va,i − d̂i) = li(di − d̂i) = lid̃i, (12)

∀t ≥ 0, where the relationship of (6) is used to the second
equality. Now, define the positive-definite function as

Vi :=
1

2
ω̃i +

κi

2
d̃2i , i = 1, · · · , N, κ > 0, ∀t ≥ 0, (13)

which satisfies that (using (11) and (12)): V̇i = ω̃i(−ω̂scω̃i −
kT0,i

J0,iRa0,i
d̃i + ω̇ref ) + κid̃i(−lid̃i + ḋi) ≤ −ωsc

2 ω̃2
i − (κili −

k2
T0,i

2ωscJ2
0,iR

2
a0,i

)d̃2i + ω̇ref ω̃i + κiḋid̃i, ∀t ≥ 0, where Lemma 1

and Young’s inequality of xy ≤ ϵ
2x

2 + 1
2ϵy

2, ∀ϵ > 0, justify

the inequality. The constant of κi :=
1
li
(

k2
T0,i

2ωscJ2
0,iR

2
a0,i

+ 1
2 ) finds

an upper bound of V̇i as V̇i ≤ −αVi + ω̇ref ω̃i + κiḋid̃i, ∀t ≥
0, with α := min{ωsc,

1
κi
}, which shows the strict passivity

of
[
ω̇ref κiḋi

]T 7→
[
ω̃i d̃i

]
that is equivalent to L2-

stability for the same input-output mapping [25]. Therefore,
it holds that ω̃i → 0 and d̃i → 0 as ω̇ref → 0 and ḋi → 0,
exponentially.

Before proving the tracking performance recovery property,
define the target tracking performance as

ω̇∗
i = ω̂sc(ωref − ω∗

i ), i = 1, · · · , N, ∀t ≥ 0, (14)

which can be interpreted as a first-order time-varying low-pass
filter (LPF). Theorem 2 asserts the speed tracking performance
recovery property with respect to (14).

Theorem 2: The proposed control scheme of (7) with auto-
tuning synchronizer of (8) and DOB of (9)-(10) guarantees that
limt→∞ |ωi(t)− ω∗

i (t)| = 0 as ḋi(t) → 0, exponentially. ♢
Proof: Defining the error of ω̃∗

i := ω∗
i − ωi, it holds that

˙̃ω∗
i = ω̇∗

i − ω̇i = −ω̂scω̃
∗
i − kT0,i

J0,iRa0,i
d̃i, (15)

i = 1, · · · , N , ∀t ≥ 0. Consider the positive-definite func-
tion of V ∗

i := 1
2 ω̃

∗
i + bi

2 d̃i, i = 1, · · · , N , ∀t ≥ 0,
which gives (using (12) and (15)) : V̇ ∗

i = ω̃∗
i (−ω̂scω̃

∗
i −

kT0,i

J0,iRa0,i
d̃i) + bid̃i(−lid̃i + ḋi) ≤ −ωsc

2 (ω̃∗
i )

2 − (bili −
k2
T0,i

2ωscJ2
0,iR

2
a0,i

)d̃2i + biḋid̃i, ∀t ≥ 0, where the inequality is
obtained by Lemma 1 and Young’s inequality. The constant
of bi :=

1
li
(

k2
T0,i

2ωscJ2
0,iR

2
a0,i

+ 1
2 ) establishes an upper bound of

V̇ ∗
i as V̇ ∗

i ≤ −βV ∗
i − biḋid̃i, i = 1, · · · , N , ∀t ≥ 0, with

β := min{ωsc,
1
bi
}, which shows that ω̃∗ → 0 as ḋi → 0,

exponentially. The proof is completed.
From Theorem 2, the closed-loop system driven by the pro-

posed controller always ensures a better tracking performance

than the originally desired performance of (5) since the target
system of (14) magnifies the cut-off frequency from its initial
value thanks to the auto-tuning synchronizer, i.e., ω̂sc ≥ ωsc,
∀t ≥ 0 (see Lemma 1).

Before showing the speed synchronization property, con-
sider the synchronization error dynamics as

∆ω̇i = −ω̂sc∆ωi +
kT0,i

J0,iRa0,i
d̃i −

kT0,i+1

J0,i+1Ra0,i+1
d̃i+1, (16)

i = 1, · · · , N , ∀t ≥ 0, which acts as the basis for the
synchronization property analysis in Theorem 3.

Theorem 3: The proposed control scheme of (7) with auto-
tuning synchronizer of (8) and DOB of (9)-(10) guarantees that
limt→∞ |ωi(t)−ωi+1(t)| = 0, i = 1, · · · , N−1 as ḋi(t) → 0,
i = 1, · · · , N , exponentially. ♢

Proof: Consider the positive-definite function:

Vsync :=
1

2

N−1∑
i=1

∆ω2
i +

N∑
i=1

ci
2
d̃2i +

1

2γat
ω̃2
sc, (17)

ci > 0, ∀t ≥ 0. The closed-loop trajectories of (8), (12),
and (16), renders V̇sync to be : V̇sync = −ωsc

∑N−1
i=1 ∆ω2

i +∑N−1
i=1 ∆ωi(

kT0,i

J0,iRa0,i
d̃i − kT0,i+1

J0,i+1Ra0,i+1
d̃i+1)−

∑N
i=1 cilid̃

2
i +∑N

i=1 ciḋid̃i − ρatω̃
2
sc ≤ −ωsc

3

∑N−1
i=1 ∆ω2

i −
∑N

i=1(cili −
ζi)d̃

2
i −ρatω̃

2
sc+

∑N
i=1 ciḋid̃i, ∀t ≥ 0, where the inequality is

obtained by Young’s inequality for some constant of ζi > 0.
The constant of ci := 1

li
(ζi+

1
2 ) results in an upper bound for

the inequality of V̇sync as V̇sync ≤ −σVsync +
∑N

i=1 ciḋid̃i,
∀t ≥ 0, with σ := min{ 2ωsc

3 , 1
c1
, · · · , 1

cn
, 2ρatγat}. This

shows that ∆ωi → 0 as ḋi → 0. The proof is completed.

Define the target synchronization performance as

∆ω̇∗
i = −ω̂sc∆ω∗

i , i = 1, · · · , N − 1, ∀t ≥ 0, (18)

which is used to assert the synchronization performance re-
covery property with respect to (18) in Theorem 4

Theorem 4: The proposed control scheme of (7) with auto-
tuning synchronizer of (8) and DOB of (9)-(10) guarantees
that limt→∞ |∆ωi(t) − ∆ω∗

i (t)| = 0, i = 1, · · · , N − 1 as
ḋi(t) → 0, i = 1, · · · , N , exponentially. ♢

Proof: The error, defined as ∆ω̃∗
i := ∆ω∗

i −∆ωi, yields:

∆ ˙̃ω∗
i = −ω̂sc∆ω̃∗

i − kT0,i

J0,iRa0,i
d̃i +

kT0,i+1

J0,i+1Ra0,i+1
d̃i+1, (19)

i = 1, · · · , N − 1, ∀t ≥ 0. Consider the positive-definite

function using (17) as V ∗
sync := Vsync

∣∣∣∣
∆ωi=∆ω̃∗

i

, ∀t ≥ 0.

Then, since the trajectories of (16) and (19) have the same
form, V̇ ∗

sync can be easily obtained as V̇ ∗
sync ≤ −σV ∗

sync +∑N
i=1 ciḋid̃i, ∀t ≥ 0, in the same manner as the proof of

Theorem 3. This completes the proof.
From the result of Theorem 4, the closed-loop system driven

by the proposed controller always ensures a better synchro-
nization performance than the originally desired performance
of (5) since the target system of (14) magnifies the cut-off
frequency from its initial value thanks to the auto-tuner, i.e.,
ω̂sc ≥ ωsc, ∀t ≥ 0 (see Lemma 1).
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The absence of integral action in the control law leads to
concern about steady-state error in actual implementations,
which is addressed in Theorem 5.

Theorem 5: The proposed control scheme of (7) with auto-
tuning synchronizer of (8) and DOB of (9)-(10) guarantees the
offset-free property for the both tracking and synchronization.
i.e., ωi,∞ = ωref,∞, ωi,∞ = ωi+1,∞, i = 1, · · · , N , where
limt→∞ f = f∞ for any convergent function of f . ♢

Proof: The closed-loop steady-state equations can be
obtained from (11), (12), and (16) as 0 = ω̂sc,∞ω̃i,∞ +

kT0,i

J0,iRa0,i
d̃i,∞, 0 = lid̃i,∞, and 0 = ω̂sc,∞∆ωi,∞ −

kT0,i

J0,iRa0,i
d̃i,∞+

kT0,i+1

J0,i+1Ra0,i+1
d̃i+1∞. The combination of these

equations confirms that the Theorem 5 holds true.

IV. EXPERIMENTAL RESULTS

This section experimentally shows the effectiveness of the
proposed scheme, by using a two-motor system, and compar-
ing it with a conventional relative cross-coupling controller
and adaptive synchronizer. A 50W prototype DC motor and
driver were used with a DC-Link voltage level of Vdc = 12V.
The control algorithms were implemented with a National
Instrument (NI) MyRIO-1900 in the math-script provided in
LabVIEW software. The sampling/control period was set to
10 ms. Fig. 2 shows the hardware implementation.

Fig. 2. Experimental setup

The DC motor parameters were identified as Ra = 3.3 Ω,
La = 1.16 mH , kT = ke = 0.373 V/rad/s, J = 9.85 ×
10−5 kg ·m2, B = 9.85× 10−6 Nm/rad/s, and the nominal
DC motor parameters used for the controller were selected as
J0,i = 0.6J , kT0,i = 1.4kT , Ra0,i = 0.8Ra, i = 1, 2. The
initial speed cut-off frequency was set to fsc = 0.2 Hz for
ωsc = 2πfsc = 1.256 rad/s. The remaining design parameters
were tuned as li = 62.8, γat = 2, and ρat = 1/γat.

A. Effectiveness of Proposed Synchronizer

The goal of the first experiment is to verify the efficacy
of the proposed synchronizer. To this end, while running at a
speed of 2000 rpm, a synchronization error was induced by
applying an abrupt load torque to the wheel attached to the
first motor. Fig. 3 shows the resulting synchronization error
behaviors while turning the synchronizer ON and OFF. The
corresponding cut-off frequency and estimated disturbance
signals are given in Fig. 4. From this result, it can bee seen that
the proposed controller accomplishes a considerable reduction
of the synchronization error in transient periods without any
overshoots.
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( )1 1 2: [rad/s]ω ω ω∆ = −
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Fig. 3. Speed synchronization error behavior comparison with and without
proposed synchronizer
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Fig. 4. Cut-off frequency and DOB responses

B. Comparison with Relative Cross-Coupling

Another recent synchronization control technique was
considered for comparison. The approach consists of a
PI controller equipped with relative cross-coupling and
active-damping compensation terms: va,i = −Bd,iωi +
J0,iRa0,i

kT0,i
ωscω̃i +Bd,iωsc

∫ t

0
ω̃i(τ)dτ + (−1)iki∆ω1, i = 1, 2,

∀t ≥ 0, with active-damping and cross-coupling gains of
Bd > 0 and ki > 0, i = 1, 2. These terms were set to
Bd = 0.1, and ki = 0.1, i = 1, 2 to achieve acceptable closed-
loop performance. It is easy to see that this controller makes
the closed-loop dynamics to be (5) in the absence of cross-
coupling terms and parameter uncertainties, i.e., J0,i = Ji,
kT0,i = kT,i, Ra0,i = Ra,i, i = 1, 2.

The experimental scenario was the same as in the first
experiment. Fig. 5 presents the synchronization error behavior
comparison. As can be seen from these results, the proposed
synchronizer more effectively eliminates synchronization er-
ror compared to the cross-coupling compensation-based con-
troller.

Time [2s/div]

Proposed Synchronizer< >

200 [rpm/div]

( )1 1 2: [rad/s]ω ω ω∆ = −

Time [2s/div]

Relative Cross Coupler< >

200 [rpm/div]

( )1 1 2: [rad/s]ω ω ω∆ = −
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�
�
��
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�
�	

�
��
�
�

��
�
�

Fig. 5. Speed synchronization error behavior comparison with cross-coupling
compensation-based controller
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C. Comparison with Adaptive Synchronizer

This section experimentally compares the synchronization
performance with a recent adaptive synchronizer by replacing
the proposed synchronizer of (8) with

˙̂ωsc = γat∆ω2
1 , ∀t ≥ 0, (20)

which was introduced as the auto-tuner for PID gains in [26].
The design parameter of γat was set to the same value as the
proposed synchronizer. Fig. 6 depicts the comparison result.
There was no difference between the speed synchronization
performances, but the adaptive synchronizer fails to stabilize
to its initial value. Note that keeping the magnified cut-off
frequency, used for the feedback gain, could result in a closed-
loop efficiency degradation, or even instability.

Time [2s/div]
200 [rpm/div]

( )1: with Proposed Synchronizerω∆

�
�
�
��

��
�
�	

�
��
�
�

��
�
�

( )1: with Adaptive Synchronizerω∆

10 [(rad/s)/div]

� ( ): Proposed Synchronizerscω
� ( ): Adaptive Synchronizerscω Time [2s/div]

�
�
��
�
��
��
��
�
�
�
�
��

� 1.25 [rad/s]scω =

Fig. 6. Speed synchronization error and cut-off frequency behavior compar-
ison with adaptive synchronizer

From these experimental results show that the useful prop-
erties derived in Section III-B do, indeed, contribute to a
considerable reduction of synchronization error.

V. CONCLUSIONS

The proposed proportional-type DC motor synchronization
scheme was designed to guarantee attractive closed-loop prop-
erties, performance recovery without steady state errors. The
practical constraints of parameter and load variations were
systematically handled in the controller design procedure. The
experimental data confirmed the advantages coming from the
closed-loop properties under a load torque variation scenario.
As a future research direction, this result will be applied to
three-phase motor control systems, such as those implemented
for induction and permanent magnet synchronous machines.
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