Constrained State Feedback Speed Control of PMSM Based on Model Predictive Approach

Tomasz Tarczewski, and Lech M. Grzesiak, Senior Member, IEEE

Abstract—This paper presents constrained state feedback speed control of permanent magnet synchronous motor (PMSM). Based on classical control theory, non-linear state-space model of PMSM is developed. A simple linearization procedure is employed to design linear state feedback controller (SFC). Digital redesign of SFC is carried out to achieve discrete form suitable for implementation in a DSP. Model predictive approach is used to a posteriori constraint introduction into control system. It overcomes limitations of motion control system with non-constrained state feedback controller resulting in low dynamic properties. The novel concept utilizes machine voltage equation model to calculate the boundary values of control signals which provide permissible values of the future state variables. Secondary control objectives, such as zero d-axis current are included. Simulation and experimental results are presented to validate the proposed constrained state feedback control algorithm in comparison to non-constrained state feedback control and cascade control structure respectively.

Index Terms—Constrained control, model predictive approach, permanent magnet synchronous motor, state feedback controller, variable speed drive.

I. INTRODUCTION

P

ERMANENT magnet synchronous motors (PMSM) are widely used in motion control applications. Due to its excellent dynamic properties and compact structure they are commonly used in a servo-drive applications such as machine tools and industrial robots [1]. Because of its superior power density and high efficiency, a new trend is to use the converter-fed based variable speed drives (VSD) with PMSM in automotive: as a main drive in an electrical vehicle (EV), hybrid vehicle (HEV) or as an auxiliary drive in a heating, ventilating, air conditioning (HVAC) or electric power steering (EPS) applications [2]–[5].

Speed control of VSD with PMSM is most often realized by using cascade control structure with PI controllers [6]. Sliding mode approach [7] or non-linear control based on fuzzy logic [8] and neural networks [9] can also be used in cascade structure in order to ensure robustness of the drive. Cascade control structure depicted above includes a few PI single-loop control systems. In such a case controllers must be tuned separately in a specified order (i.e. from the inner to the outer control loop). In order to avoid ringing and large overshoots, bandwidth of cascade linear controllers is often limited. As a result, a fairly modest speed control dynamic is achieved [10].

An alternative approach to speed control of PMSM is to use state feedback controller (SFC). In this structure only one controller for all state-space variables is designed. In spite of many advantages of this structure (i.e. guaranteed robustness and non-linearity tolerance [11], ability to control of non-linear plant [12]), the main drawbacks are: determination of SFC coefficients, taking into account constraints of a state and control variables. The traditional tuning method for SFC coefficients is based on the trial-and-error procedure. If LQR design method is employed, the diagonal elements of weighting matrices may be initially selected using Bryson’s rule [13]. On the other hand, SFC coefficients can be determined by applying computer-aided optimization methods such as: particle swarm optimization (PSO) [14] or genetic algorithm (GA) [15]. Constrained control of VSD with PMSM is not trivial due to relatively short time required for execution of control algorithm (it is in a range from 50 µs to 100 µs for a typical switching frequency 10÷20 kHz). Because of this, complex control techniques like linear matrix inequalities (LMI) cannot be used to introduce constraints into control algorithm. Good knowledge about mathematical model of the drive (i.e. PMSM with voltage source inverter (VSI)) causes that methods based on model predictive approach can be taken into account [16]. There are two approaches to cope with the constraints [17]: (1) the control design is performed directly by taking into account constraints, and (2) the constraints are added a posteriori, after synthesis of controller. The first criterion is more complex and it can be realized with the help of a model predictive control (MPC) [18]–[21]. In this approach, solution of optimal control problem over a finite horizon is required. Since computation effort of this method is high, an implementation requires fast processing units. For example, in [19] cascade MPC control structure for a PMSM is implemented in SIMULINK and downloaded into xPC target environment. In this solution the inner current control loop is based on receding horizon control using the linearized model of the PMSM. The outer loop is also an MPC. The sampling period is chosen as 100 µs for the inner loop and 200 µs for the outer loop. In [20], an MPC algorithm for PMSM is implemented in FPGA control board (Altera Cyclone IV FPGA). In this solution, the voltage saturation and the current limitation constraints are taken into account in order to define the most suitable reference current and voltage PWM. Thanks to fast processing unit an accurate discrete-time model of the drive is used. The sampling period is chosen as 102.4 µs...
while MPC algorithm is carried out in about 2.4 μs thanks to the superior FPGA computational performance. In [21], the authors use dSPACE 1004 processor for implementation of a predictive torque control of induction machine. A state-space model of machine is updated at every sampling period and employed to predict the future current and flux values. The sampling period for the predictive control algorithm is 50 μs. The overall system performance is improved by time delay compensation. A very promising solution is presented in [10], where model predictive direct speed control (MPDSC) of PMSM is implemented in TMS320F240 DSP. The designed controller is based on the finite control set (FCS) MPC approach. In order to keeping the switching frequency low and to reduce of the computation time, a switching state graph was introduced. Although the switching frequency is variable in the proposed solution, the authors report that the torque quality can be accepted. In the second approach (i.e. a posteriori constraint introduction) a two-step design process is proposed. First, the linear controller ignoring state and control variables limitations is designed. The second step is to introduce constraints to maintain state and control variables in a specified ranges. An a posteriori introduction of constraints into control algorithm seems to be attractive due to its low computational effort.

In this paper, the model predictive approach to constraints introduction (MPAC) into control system with PMSM and state feedback controller (SFC) is proposed. It overcomes limitations of non-constrained SFC resulting in low dynamic properties. The SFC for speed control of PMSM is based on linear-quadratic (LQR) optimization method. During designing process of SFC, a state-space representation of an augmented system (i.e. linearized model of a plant with auxiliary controller state) is prepared first. Next, values of weighting matrices used in a quadratic cost function are determined and optimization problem is analytically solved (typically Matlab lqr() function is used to find the solution of the Riccati equation and to obtain gain matrix of controller [22]). Finally, digital redesign of the state feedback controller is done. Chebyshev quadrature formula which provides similar behavior for control systems with discrete and continuous controllers is utilized [23].

A state-space representation of non-linear mathematical model in the rotating dq reference frame is as follows:

$$\frac{dx(t)}{dt} = A(\omega_m)x(t) + Bu(t) + Ed(t) \tag{1}$$

where

$$A(\omega_m) = \begin{bmatrix} -\frac{R_s}{L_s} & \frac{p\omega_m}{L_s} & 0 \\ -\frac{p\omega_m}{L_m} & -\frac{R_s}{L_s} & -\frac{p\psi_f}{L_s} \\ 0 & \frac{L_m}{J_m} & -\frac{B_m}{J_m} \end{bmatrix}, \quad x(t) = \begin{bmatrix} i_d(t) \\ i_q(t) \\ \omega_m(t) \end{bmatrix},$$

$$B = \begin{bmatrix} \frac{K_t}{J_m} & 0 & 0 \\ 0 & \frac{K_t}{J_m} & 0 \\ 0 & 0 & -\frac{1}{J_m} \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{J_m} \end{bmatrix},$$

$$u(t) = \begin{bmatrix} u_{sd}(t) \\ u_{sq}(t) \end{bmatrix}, \quad d(t) = T_i(t)$$

where i_d, i_q are current space vector components, R_s, L_s denote resistance and inductance of stator, ψ_f is permanent magnet flux linkage, p is the number of pole pairs, ω_m is angular speed of the PMSM shaft, J_m is moment of inertia, K_t is torque constant, B_m is viscous friction, T_i is unmeasured load torque, u_{sd}, u_{sq} are space vector components of inverter control voltages, K_p is gain coefficient of considered inverter. At this stage, nonlinearities and dynamics of the voltage source inverter (VSI) have been neglected. It was also assumed, that for a surface mounted permanent magnet machine inductances in d-axis and in q-axis are in practically equal ($L_s = L_d = L_q$).

Model of PMSM presented above contains non-linear and cross-coupled terms in the first and in the second row of a state-space equation. A short description of a simple feedback linearization procedure is given here, more detailed information can be found in [24]. Firstly, new variables were defined

$$u_{md}(t) = \frac{p\omega_m(t)L_ki_d(t)}{K_p} \tag{2}$$

$$u_{mq}(t) = \frac{p\omega_m(t)(L_ki_q(t) + \psi_f)}{K_p} \tag{3}$$

Next, variable (2) is added to the first row of (1) while variable (3) is subtracted from the second row of (1). Finally, linearized model of PMSM with an inverter can be rewritten in a standard form of a state-space equation as follows:

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) + Ed(t) \tag{4}$$

II. STATE FEEDBACK CONTROLLER

Synthesis process of a state feedback controller for speed control of PMSM can be realized with the help of LQR design method. During designing process, a state-space representation of an augmented system (i.e. linearized model of a plant with auxiliary controller state) is prepared first. Next, values of weighting matrices used in a quadratic cost function are determined and optimization problem is analytically solved (typically Matlab lqr() function is used to find the solution of the Riccati equation and to obtain gain matrix of controller [22]). Finally, digital redesign of the state feedback controller is done. Chebyshev quadrature formula which provides similar behavior for control systems with discrete and continuous controllers is utilized [23].
where

\[
A = \begin{bmatrix}
-\frac{R_s}{L_s} & 0 & 0 \\
0 & -\frac{R}{L} & 0 \\
0 & \frac{K_i}{J_m} & -\frac{B_m}{J_m}
\end{bmatrix}, \quad x(t) = \begin{bmatrix}
i_d(t) \\
i_q(t) \\
\omega_m(t)
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
\frac{K_p}{L_s} & 0 & 0 \\
0 & \frac{K_p}{L} & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad E = \begin{bmatrix}
0 \\
0 \\
-\frac{1}{J_m}
\end{bmatrix},
\]

\[
u(t) = \begin{bmatrix}
u_{id}(t) \\
u_{iq}(t)
\end{bmatrix} = \begin{bmatrix}
u_{sd}(t) + \nu_{md}(t) \\
u_{sq}(t) - \nu_{mq}(t)
\end{bmatrix}, \quad d(t) = T_1(t)
\]

In order to control angular speed of the PMSM without steady-state error (in a case of step variations of the reference speed and load torque), an internal model of the reference input should be added [24], [25]. An augmented state equation, after introduction the internal input model and assumption, that load torque is omitted, takes the following form:

\[
\frac{dx_i(t)}{dt} = A_i x_i(t) + B_i u_i(t) + F_i r_i(t) \tag{5}
\]

where

\[
A_i = \begin{bmatrix}
-\frac{R_s}{L_s} & 0 & 0 & 0 \\
0 & -\frac{R}{L} & 0 & 0 \\
0 & \frac{K_i}{J_m} & -\frac{B_m}{J_m} & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}, \quad x_i(t) = \begin{bmatrix}
i_d(t) \\
i_q(t) \\
\omega_m(t) \\
e_\omega(t)
\end{bmatrix},
\]

\[
B_i = \begin{bmatrix}
\frac{K_p}{L_s} & 0 & 0 & 0 \\
0 & \frac{K_p}{L} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad F_i = \begin{bmatrix}
0 \\
0 \\
0 \\
-1
\end{bmatrix}, \quad u_i(t) = u(t)
\]

Introduced in an augmented state equation (5) new state variable \(e_\omega\) corresponds to the integral of the angular speed error

\[
e_\omega(t) = \int_0^t [\omega_m(\tau) - \omega_m ref(\tau)] d\tau \tag{6}
\]

where \(\omega_m ref\) is reference value of angular speed.

In order to design state feedback controller for augmented state-space system (5), weighting matrices \(Q\) and \(R\) that minimizes the performance index

\[
J = \int_0^t \left(x_i(t)^T Q x_i(t) + u_i(t)^T R u_i(t) \right) dt \tag{7}
\]

have to be determined. In this paper, the most common approach based on trial-and-error procedure was used to determine weighting matrices. The following values has been chosen

\[
Q = \begin{bmatrix}
0.35 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 0.1 & 0 \\
0 & 0 & 0 & 9000
\end{bmatrix}, \quad R = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \tag{8}
\]

The control law of the resulting state feedback controller is as follows:

\[
u(t) = -K_e x_i(t) = -K_{cx} x(t) - K_{ce_\omega} e_\omega(t) \tag{9}
\]

where \(K_e = [K_{cx} \ K_{ce_\omega}]\) is gain matrix of appropriate dimension. In order to obtain gain matrix \(K_e\), the symmetric positive definite solution of the Riccati equation have to be found [22]. The resulting continuous state feedback controller provides zero steady-state error of \(\omega_m\) for step changes of \(\omega_m ref\). achieves good dynamics of angular speed control, ensures good disturbance compensation and provides control strategy with zero \(d\)-axis current.

Digital redesign of the state feedback controller was done with the help of Chebyshev quadrature formula to achieve discrete form suitable for implementation in a DSP. Discretization method used provides similar behavior for control systems with discrete and continuous controllers [23]. Utilizing Chebyshev quadrature formula, gain matrix of the discrete SFC was calculated as follows:

\[
K_d = K_e (A_{cl} T_s)^{-1} (G_e - I_n) \tag{10}
\]

where

\[
A_{cl} = A_i - B_i K_e, \quad G_e = e^{A_{cl} T_s} \tag{11}
\]

where \(T_s\) is the sampling period, \(I_n\) is identity matrix of appropriate dimension.

Discrete form of the control law (9) can be expressed by the following formula [26]:

\[
u(n) = -K_d x_i(n) = -K_{dx} x(n) - K_{d_\omega} e_\omega(n) \tag{12}
\]

with

\[
K_d = [K_{dx} \ K_{d_\omega}] = \begin{bmatrix}
k_{dx1} & k_{dx2} & k_{dx3} & k_{d_\omega1} \\
k_{dx4} & k_{dx5} & k_{dx6} & k_{d_\omega2}
\end{bmatrix} \tag{13}
\]

where \(n\) is discrete sample time index. Presented in (12) discrete form of an additional state variable \(e_\omega(n)\) was obtained by using the backward Euler integration algorithm

\[
e_\omega(n) = e_\omega(n - 1) + T_s [\omega_m(n) - \omega_m ref(n)]. \tag{14}
\]

Gain matrices of discrete SFC calculated for system (5) with parameters given in Table I and for penalty matrices (8) are as follows:

\[
K_{dx} = \begin{bmatrix}
0.39 & 0 & 0 \\
0 & 0.67 & 0.09
\end{bmatrix}, \quad K_{d_\omega} = \begin{bmatrix}
0 & 14.1
\end{bmatrix} \tag{15}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_N)</td>
<td>628</td>
<td>W</td>
<td>(R_s)</td>
<td>0.85</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(I_N)</td>
<td>3</td>
<td>A</td>
<td>(L_s)</td>
<td>4</td>
<td>mH</td>
</tr>
<tr>
<td>(T_e N)</td>
<td>1.05</td>
<td>Nm</td>
<td>(K_i)</td>
<td>0.35</td>
<td>Nm/A</td>
</tr>
<tr>
<td>(\Omega_m N)</td>
<td>366</td>
<td>rad/s</td>
<td>(U_{dc})</td>
<td>190</td>
<td>V</td>
</tr>
<tr>
<td>(p)</td>
<td>3</td>
<td></td>
<td>(K_p)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>(B_m)</td>
<td>(1.1 \times 10^{-3})</td>
<td>Nms/rad</td>
<td>(f_{PWM})</td>
<td>16</td>
<td>kHz</td>
</tr>
<tr>
<td>(J_m)</td>
<td>(1 \times 10^{-4})</td>
<td>kgm(^2)</td>
<td>(T_s)</td>
<td>62.5</td>
<td>(\mu)s</td>
</tr>
</tbody>
</table>
III. MPAC

Since mathematical model of a plant is well-known, model predictive approach can be used to constraints introduction into control system (MPAC). Although there are many papers devoted to model predictive control of PMSM (e.g., [10] and [27]), this approach is quite complex and requires solution of optimal control problem over a finite horizon in real time or explicit precalculation of this solution (for example based on piecewise affine approach [28]). The more simple solution based on model predictive approach is to introduce constraints a posteriori into developed linear control system. This framework is based on the following two-step design process: (1) design the linear controller ignoring state and control variables limitations and (2) add constraints to maintain state and control variables in a specified ranges. It has been decided to a posteriori introduce constraints into designed in a previous chapter state feedback control system. The choice is driven by relatively low computational effort with comparison to typical MPC. Model predictive approach will be used to proper limitation of state variables that are important for control process.

In a case of speed control of PMSM, it is important to impose constraints on a motor currents in order to keep electromagnetic torque produced by PMSM in an acceptable range. If zero \(d \)-axis current control strategy is employed, only one state variable (i.e. \(q \)-axis current) should be limited. Moreover, vector components of control voltage should also be limited to assure linear range of modulator operation. In order to impose constraint on \(q \)-axis current the following voltage equation will be used:

\[
 u_{sq}(t) K_p = L_s \frac{di_q(t)}{dt} + R_s i_q(t) + e_q(t). \tag{16}
\]

The space vector component of PMSM back-EMF is given by the following formula:

\[
e_q(t) = p \omega_m(t) (L_s i_d(t) + \psi_f)
\]

The following discrete-time equation can be obtained from (16) by applying zero-order hold discretization with a sampling period \(T_s \) [16]:

\[
 u_{sq}(n) K_p = \frac{1}{\delta} i_q(n + 1) - \frac{\chi}{\delta} i_q(n) + e_q(n) \tag{17}
\]

where \(\delta = \frac{1}{T_s} \left(1 - e^{-T_s R_s/L_s}\right) \) and \(\chi = e^{-T_s R_s/L_s} \).

Based on the discrete-time model (17), the boundary values of \(q \)-axis voltage that will restrict the future values of a \(q \)-axis current \(i_q(n + 1) \) to permissible level are obtained as:

\[
 u_{sat\, up}(n) = \left(\frac{1}{\delta} i_q(n + 1) + e_q(n) - \frac{\chi}{\delta} i_q(n)\right) \tag{18}
\]

\[
 u_{sat\, down}(n) = \left(-\frac{1}{\delta} i_q(n + 1) + e_q(n) - \frac{\chi}{\delta} i_q(n)\right) \tag{19}
\]

where \(u_{sat\, up}(n) \) is maximum value of \(q \)-axis voltage, \(u_{sat\, down}(n) \) is minimum value of \(q \)-axis voltage, and \(i_{qn}(n + 1) \) is boundary value of \(q \)-axis current.

The boundary value of \(q \)-axis current usually is well-known \textit{a priori} and remains constant. As a particular example, suppose that the boundary value of \(q \)-axis current is equal to the rated value of PMSM phase current \(i_{qn}(n + 1) = I_N \). On the other hand, it is possible to temporary increase the boundary value of \(q \)-axis current during start-up or in a speed reversal.

In the approach presented above \(q \)-axis control voltage \(u_{sq}(n) \) (i.e. sum of controller voltage \(u_{iq}(n) \) and decoupling voltage \(u_{mq}(n) \)) is limited by \(u_{sat\, up}(n) \) and \(u_{sat\, down}(n) \) values calculated from (18) and (19) formulas in each sampling period.

The boundary values of \(q \)-axis voltage are beyond \((-1; 1)\) range (defined by linear area of modulator operation), these are limited to \(\pm 1 \) respectively. The boundary values of control signals correspond to maximum and minimum output voltages of VSI. The proposed solution provides to maintain the \(q \)-axis current in a range of \((-I_N; I_N)\). Based on predictive equations (18) and (19) the future value of a \(q \)-axis current is limited.

Since zero \(d \)-axis current control strategy is employed to control PMSM, \(d \)-axis control voltage \(u_{sd}(n) \) is only limited by linear area of modulator operation.

For a considered control system with limited control signal and state feedback controller with internal model of reference signal (an integral path in this case), windup phenomenon may occur. In such a case performance deterioration which causes long settling time and large overshoot can be observed [29]. To overcome this windup phenomenon, the tracking back calculation method has been adopted [30]. In this method the difference between saturated and unsaturated control signals is used to generate a feedback signal that act on integrator input.

The implementation of anti-windup path requires a change of (14) to the following form

\[
e_\omega(n) = e_\omega(n-1) + T_s \left[\omega_m(n) - \omega_{m\, ref}(n) - k_{awp} u_{awp}(n) \right] \tag{20}
\]

where \(k_{awp} \) devotes the anti-windup coefficient, \(u_{awp} \) is a difference between unconstrained and constrained \(q \)-axis control voltage. The value of \(k_{awp} \) was chosen empirically in order to keep the behavior of the system during saturation as close as possible to the behavior of the system without saturation. Block diagram of designed state feedback controller with proposed MPAC and anti-windup path is shown in Fig. 1.

The flowchart of the proposed state feedback control algorithm with MPAC is shown in Fig. 2.

The general block scheme of proposed control system is presented in Fig. 3.

Simulation model of control system with proposed state feedback controller was examined in Matlab/Simulink environment. Designed discrete state feedback controller was implemented in triggered subsystem to ensure proper generation of discrete control signals. An additional decoupling unit was introduced into control system in order to complement control signals \(u_{id} \) and \(u_{iq} \) by voltages \(u_{md} \) and \(u_{mq} \). Calculations of \(u_{md} \) and \(u_{mq} \) in decoupling unit were done according to (2)
and (3) respectively. Triggered synchronization block was used to ensure that measurements are realized in a midpoint of the PWM pulse length. It was assumed that all state variables are measured directly and therefore in this particular case the use of estimators is not needed.

At first, the accuracy of the PMSM drive have been investigated and simulation results for state feedback controller with MPAC are shown in Fig. 4. It can be seen from Fig. 4.c that q-axis current of PMSM is limited properly to its rated value $i_{qn}=3$ A during start-up. Note that during start-up value of the control voltage u_{sq} is limited by maximum value of q-axis voltage $u_{sat_{up}}$ (Fig. 4.e). The speed settling time during start-up is 0.046 s. When load torque is imposed on the PMSM shaft for $t \in \langle 0.2; 0.3 \rangle$ s, the value of q-axis current increases to its rated value. An angular speed error caused by the step load...
is properly eliminated by proposed control algorithm. Proper q-axis current limitation (at level of $i_{qn} = -3$ A) caused by increasing value of q-axis control voltage can also be observed in speed reversal. The speed settling time in speed reversal is 0.076 s. Regardless of constraint introduction, control strategy with zero d-axis current is realized.

IV. EXPERIMENTAL RESULTS

The designed SFC with MPAC control algorithm was experimentally tested on a commercial PMSM drive. The laboratory setup (Fig. 5) consists of two identical 628 W permanent magnet synchronous motors (Eurotherm AC M2n0150-4/1-3), each supplied by AC-DC-AC voltage source inverters (SDMT 5 made by Industrial Research Institute for Automation and Measurements in Torun, Poland) with a 16 kHz PWM switching frequency. The conditioning & control interface of considered drive system includes: resolver to digital converter (RDC), conditioning current and voltage signals from sensors to voltage in appropriate range for DSP, IGBT drivers. The second PMSM drive operates in a torque control mode and it is used to generate load torque imposed on the primary PMSM shaft. A photo of laboratory setup is shown in Fig. 6.

Fig. 7. The experimental response of the PMSM drive with SFC and MPAC to step changes of the reference angular velocity and load torque: a) speed reference and feedback, b) load torque reference, c) q-axis and d-axis currents, d) phase currents, e) d-q control voltages and q-axis constraints.

Fig. 7.c shows proper q-axis current limitation (at level of $i_{qn} = 3$ A) caused by decreasing value of q-axis control voltage (Fig. 7.e) during start-up. The q-axis current is limited properly also in speed reversal. In this particular case q-axis control voltage is limited by $u_{sat\ down}$ value. It can be seen from Fig. 7.a that speed of PMSM is controlled without steady-state error. An angular speed error caused by the step load imposed on the PMSM shaft (Fig. 7.b) is properly eliminated by designed control algorithm. Note, that regardless of constraint introduction PMSM operates with zero d-axis current. It should be highlighted that the results of experiments (Fig. 7) are similar to simulation test results presented in Fig. 4. The speed settling time during start-up is 0.047 s while in a speed reversal is 0.075 s.

For comparative purposes, the same experimental tests were carried out for PMSM drive with non-constrained SFC. In this case gain matrices (8) of state feedback controller was redesigned in order to maintain the q-axis current in a range...
A new gain matrices of discrete SFC calculated for system (5) with parameters given in table I and for penalty matrices (21) are as follows:

\[
K_{ndx} = \begin{bmatrix} 0.39 & 0 & 0 & 0 \\ 0 & 0.67 & 0.05 & 0 \end{bmatrix}, \quad K_{ndω} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \quad (22)
\]

Experimental results for PMSM drive with non-constrained state feedback controller are shown in Fig. 8. It can be seen from Fig. 8.c that the value of \(q \)-axis current doesn't exceed its rated value but significant deterioration of a drive dynamic properties can be observed. The speed settling time during start-up is much longer (0.166 s) with comparison to result obtained for PMSM with SFC and MPAC (Fig. 7.a). Deterioration of a drive dynamic properties can also be observed in speed reversal - the speed settling time increases to 0.189 s. Shown in Fig. 8.e constant values of \(u_{sat\, up} \) and \(u_{sat\, down} \) were imposed to provide operation of modulator in a linear range. It should be highlighted that better dynamic properties can be achieved if SFC with MPAC is used.

For the sake of comparison, the PMSM drive has also been designed and tested using the conventional cascade structure (CCS) with three PI controllers for the speed and current loops. An internal model (IMC) theory is utilized to design current controllers [31]. A 500 µs rise time was selected for calculate parameters of PI current controllers. This value was chosen to obtain a suitable trade-off between bandwidth and noise of current control loop. Parameters of PI speed controller were calculated with the help of symmetric-optimum criterion and re-tuned manually in order to reduce speed overshoot [1], [32].

Experimental results tests obtained for the PMSM drive with CCS are shown in Fig. 9. Figs. 7 and 9 shows the similar behavior of the SFC with MPAC and CCS during step changes of the reference angular velocity. A better load torque compensation is observed for SFC with MPAC (maximum transient speed error caused by step change of load torque...
at \(t = 0.2 \) s is 25\% smaller and at \(t = 0.3 \) s is 30\% smaller for SFC with MPAC respectively). Enlarged part of transient speed error caused by step change of load torque is shown on Fig. 10.

Finally, dynamic properties of control schemes were examined. Small speed reference step have been applied to the drive with non-constrained SFC, SFC with MPAC and CCS respectively. The step was scaled in order to avoid saturation of \(q \)-axis current. Practical bandwidth was used as an indicator of the speed control performance [10]:

\[
f_{bw} = \frac{0.34}{t_r}
\]

(23)

where \(t_r \) is the 10\% – 90\% rise time. The step responses of the drive with different control algorithms have been studied and they are presented in Fig. 11. The rise times are about \(t_r = 88 \) ms for SFC, \(t_r = 11 \) ms for CCS and \(t_r = 9 \) ms for SFC with MPAC respectively. The corresponding practical bandwidths calculated from (23) are \(f_{bw} = 4 \) Hz for SFC, \(f_{bw} = 31 \) Hz for CCS and \(f_{bw} = 38 \) Hz for SFC with MPAC respectively. The application of MPAC causes that the dynamic properties of SFC and CCS are similar.

For a considered control system, the shape of PMSM acceleration is correlated with \(q \)-axis current for external load torque equal to zero. Analysis of \(q \)-axis current waveforms shown on Fig. 11.b indicates, that the more rapid changes of acceleration are obtained for CCS with PI. This disadvantage may have negative impact on mechanical parts of a driven machine.

V. CONCLUSION

In this paper a novel constrained state feedback control algorithm for speed control of PMSM is presented. Model predictive approach has been used to \textit{a posteriori} introduce constraints into control system. The proposed solution is based on simple and accurate discrete-time model of the PMSM electrical part. Presented SFC with MPAC has shown a better performances compared to a non-constrained SFC, particularly during start-up and in a speed reversal. Dynamic properties of the proposed control scheme are similar to cascade control structure. Moreover, it was found that the most efficient load torque compensation and the less rapid changes of PMSM acceleration are obtained for SFC with MPAC.

A relatively low computational complexity of the resulting code for constrained state feedback control is the main advantage of the proposed algorithm. Its implementation doesn’t require fast processing unit. Presented solution can be used in a motor control applications with short time required for execution of control algorithm. Obtained simulation and experimental results confirm the potential of proposed control scheme.

REFERENCES

Tomasz Tarczewski was born in Inowroclaw, Poland, in 1980. He received the M.Sc. degree in automatics and robotics from the Poznan University of Technology (PUT), Poznań, Poland, and the Ph.D. degree in automatics and robotics from the Warsaw University of Technology (WUT), Warsaw, Poland, in 2005, and 2010 respectively. Since 2010, he has been an Assistant Professor with the Institute of Physics at Nicolaus Copernicus University (NCU), Torun, Poland, where he is a member of the research group within the Department of Technical and Applied Physics. His research interests include automatic control in drives and power electronics, with emphasis on optimal, predictive and nonlinear control algorithms for these systems.

Lech M. Grzesiak (SM’03) received the M.Sc. degree in electrical engineering and the Ph.D. and D.Sc. degrees from the Warsaw University of Technology (WUT), Warsaw, Poland, in 1976, 1985, and 2002, respectively. In 1977, he joined WUT, where he is currently a Full Professor and holds the position of Dean of the Electrical Faculty. He has directed more than 30 R&D projects in the field of industrial electronics. He is the author or coauthor of more than 100 papers. He is the holder of more than 40 patents. His main research interests are in the applications of artificial intelligence in control systems, generally dedicated for adjustable-speed drives, servo drives, power electronic converters, and electrical energy generating systems. Prof. Grzesiak is an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.