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Peak-to-Average Power Ratio Reduction of OFDM Signals
Using PTS Scheme With Low Computational Complexity

Jun Hou, Jianhua Ge, and Jing Li

Abstract—Partial transmit sequences (PTS) is one of the most
attractive schemes to reduce the peak-to-average power ratio
(PAPR) in orthogonal frequency division multiplexing (OFDM)
systems. However, the conventional PTS scheme requires an
exhaustive searching over all combinations of allowed phase
factors. Consequently, the computational complexity increases
exponentially with the number of the subblocks. By utilizing the
correlation among the candidate signals generated in PTS, a novel
scheme is proposed to decrease the computational complexity. The
performance analysis shows that the proposed scheme can reduce
the computational complexity dramatically while achieving the
same PAPR reduction compared to the conventional PTS scheme.

Index Terms—Computational complexity, orthogonal frequency
division multiplexing (OFDM), partial transmit sequences (PTS),
peak-to-average power ratio (PAPR).

1. INTRODUCTION

S A MULTICARRIER modulation technique, orthog-
onal frequency division multiplexing (OFDM) [1], [2]
has gained popularity in a number of applications including
digital audio broadcasting (DAB), terrestrial digital video
broadcasting (DVB-T), the IEEE 802.11a standard for wireless
local area networks (WLAN) and the IEEE 802.16d standard
for wireless metropolitan area networks (WMAN), owing to its
high bandwidth efficiency and robustness to multipath fading.
However, some drawbacks are still unresolved in the design
of OFDM system. One of the major problems of OFDM system
is the high peak-to-average power ratio (PAPR), which may re-
sult in significant distortion when the transmitted signals passed
through a nonlinear device such as the power amplifier. To deal
with this problem, many PAPR reduction schemes have been
proposed, such as block coding [3], clipping [4], companding
transform schemes [5]-[9], selective mapping (SLM) [10]-[12],
and partial transmit sequence (PTS) [13]-[21]. Among which,
PTS is a distortionless phase optimization scheme that provides
excellent PAPR reduction with a small amount of redundancy.
In PTS, an input data sequence is divided into a number of dis-
joint subblocks [13], which are then weighted by a set of phase
factors to create a set of candidate signals. Finally, the candidate
with the lowest PAPR is chosen for transmission.
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Nevertheless, finding the optimum candidate requires the ex-
haustive search over all combinations of allowed phase fac-
tors, and the search complexity increases exponentially with the
number of subblocks. To reduce the computational complexity,
some modified techniques have been presented [14]-[19]. Most
of them focus on reducing the number of candidate signals.
For example, iterative flipping with a preset threshold algorithm
[18] has been introduced to reduce the PAPR with less com-
plexity and easier implementation. However, the combination
of its phase factors is suboptimal and there is some performance
gap between the conventional PTS scheme and the iterative flip-
ping algorithm.

In this paper, considering the correlation among the phase
factors, we present a novel PTS scheme to reduce the computa-
tional complexity. In addition, the proposed scheme mainly fo-
cuses on simplifying the computation for each candidate signal,
instead of reducing the number of candidate signals. Since the
number of candidates is not reduced, it can achieve the same
PAPR reduction compared with the conventional PTS scheme.

The rest of this paper is organized as follows. Section II
formulates the problem of high PAPR and describes the prin-
ciple of the PTS-based OFDM system. Section III puts forth
the proposed low complexity PTS scheme. The computational
complexity and PAPR performance of the proposed scheme are
evaluated in Section IV and it is followed by a conclusion in
Section V.

II. OFDM SYSTEM WITH PTS TO REDUCE PAPR

Let N denote the number of subcarriers used for parallel in-
formation transmission and X;(0 < k < N — 1) represent
the kth complex modulated symbol in a block of N information
symbols.

The outputs z,, of the N-point inverse discrete Fourier trans-
form (IDFT) of X, are given by

1 = j-2mkn
w":\/_ﬁ kZ_OXkeXp (T) (D

where j2 = —1. Accordingly, the PAPR of the OFDM signal,
defined as the ratio of the maximum power divided by the av-
erage power of the signal, is expressed as

Max {|xn|2}

PAPR =10-logy —pa =

(dB), 2

where |2, | returns the magnitude of z,, and F[-] denotes the ex-
pectation operation. The peak power occurs when the N modu-
lated symbols are added with the same phase.

As shown in Fig. 1, for PAPR reduction using PTS scheme,
the frequency domain vector X is partitioned into disjoint V'

0018-9316/$26.00 © 2010 IEEE



144

IEEE TRANSACTIONS ON BROADCASTING, VOL. 57, NO. 1, MARCH 2011

bV

oy

Weighting factor Optimization

1)
y——
) N-piont
IFFT
Serial
to x® N-piont
Parallel IFFT
X
Data )
Source and .
Partition .
into
Clusters y
x") N-piont
—  IFFT
Fig. 1. Block diagram of partial transmit sequence scheme.

subblocks, which are represented by {X(*) v = 1,2,.--,V}.
Hence,

v
X=3 x®, 3)
v=1

where X = [X{Vx ... x() ] with X = X} or 0
(1<v<V).Letb={b, =e v=1,2---,V} be the set

of phase factors which are applied to the subblocks X (). The
substitute frequency domain signals are

Vv
X'=3"0, X0 (b, = e 0 =1,2,-- V).

v=1

“4)

Note that these partial sequences are independently rotated
by phase factors b. Taking the IDFT of (4) and using the
linearity property of the IDFT, the time domain partial transmit
sequences can be expressed as

\4 Vv
o = IDFT(X') =Y b, IDFT(X™) =3 b2, (5)
v=1

v=1

The objective is to optimally combine the V' subblocks to obtain
the time domain OFDM signals with the lowest PAPR. Without
any loss of performance, one can set by = 1 and observe that
there are (V' — 1) subblocks to be optimized. Consequently, to
achieve the optimal phase factor for each input data sequence
(assume that there are W phase factors in the phase set), WV 1
combinations should be checked in order to obtain the minimum
PAPR. Therefore, the search complexity for an optimum set of
the phase factors increases exponentially with the number of
subblocks.

III. PROPOSED PTS SCHEME WITH Low COMPLEXITY

In this section, a novel PTS scheme is presented based on
listing the phase factors into multiple subsets table and utilizing

the correlation among phase factors in each subset, in order to
reduce the computational complexity.

Here, we firstly introduce the concept ‘basis vector of the
phase factors’: For a PTS-based OFDM system with V' = 2 and
W = 2, we canlist all phase factors: by = {1,1},bs = {1, —1}.
For this reason, we can take By = {1,1} as the basis vector
of the phase factors, provided the sign of the elements is not
considered. As for V. = 2 and W = 4, all phase factors are
b1 = {1, 1}, b2 = {1 —1} b3 = {1]}, and b4 = {1 —j}, SO
the basis vectors of the phase factors can be written as By =
{1,1}, B2 = {1, 7} (see j as a real number).

Then, list all phase weighting vectors in the Table subject to
the following Rules (we would like to first give the Rules and
then take an example to explain them in detail):

1 Find the basis vectors of all phase weighting vectors and
put them in the first row, note that only one element in the
adjacent basis vectors is different;

2 Ineach column, the phase weighting vectors have the same
basis vector;

3 For the adjacent phase weighting vectors in the same
column, only the sign of one element is different;

4 The sign of the last phase weighting vectors in one column
is the same as the first phase weighting vectors in the next
column.

(]

Let sgn(-) be the sign function, B; ; represent the jth ele-
ment of the basis vector B;, and bp; i ., denote the kth phase
weighting vector based on the vector B;, where m represents
this phase weighting vector applied to the mth subblock of the
transmitted signal. Now we search the optimal phase weighting
vector based on the four Rules. In the paper, we select the phase
weighting vector b = {—1,1} or b = {—1,1,—j, j}, that is,
W = 2or4.

For V > 2, 2(%) = g, list the corresponding Table according
to the Rules and let By = {1,1,-- -, 1}. Thereby, z51 1 is given
by

g1 ="+ a2+ 417, (6)
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In order to reduce the computational complexity, we can make
use of the Rule 3 to calculate x g1 > from z 51 1,

1 2 v
TB1,2 =bB1217" +bB1227" + -+ bp1avT

= Sgn(bBl,z,l)lvl"i'59”@131,2,2)1172-1-' : '+89n(bB1,2,v)$V

=xp1,1 — s9n(bB1,1,m) - 22", 0B1,2.m # bB11,m. (7)

where 2!, 22

expressed as

14

AL AR < (0, Similarly, 1,41 can be

TB1,i+1 = b31.¢‘+1,1$1 + b31,1+1,2$2 + -+ bB1,i+1,v$V
=sgn(bp1,iy1,1)z" + sgn(bpiiy1,2)r?
+- 4 sgn(bpriviy)z’
=wp1, — sgn(bp1,im) - 22", bB1,i+1,m

# bB1,im- ®)

In the same way, 51 145¢(last = 2V ~1) can be calculated.
To calculate z g2 1 from 2 g1 1qs¢, We introduce a new param-
eter, I; ;, whichis defined as: for W =2, P; ; = 1;for W = 4,

1 Bij = Bi-1,
—J Bij# Bi1jBij=1. )
j Bij#Bi_1;,Bij=3]

Thus, considering the Rule 4, provided that By ,,, # By, we
have

_ 1 2 v
Tp21 =bp21,12” +bp2122” + -+ bpo1 v

Rule4
=TB1,last — bBl,la,st,mxm + bBl,la,st,m . P?,mxm7 (10)

Pij:

’

where 2 € z(©, and last = 2Y~!. Simultaneously,
update z™ and z(®) Tlhewy = Pom - 2™, M =

{$1,$‘27 e 7xz?r110w)7 e 7'Zlv}'
By the same token, according to the Rules 3 and 4, we obtain
the following formulas
TB(k+1),1
= bp(er1),112" + bp(etn),1,00% + -+ bpgepn v

m m
= TBk,last — ka,last,mx + ka,last,m ' P(k-l—l),mx )

(11)
where last = 2V 1, B(y1),m # Br,m-Based on By 1) #
By,.m, update 2™ and z(*) Tlhewy = Prttm - 2™, (k) =

1.2 v
{z',x T pew)r " T }.
1 2
TB(k+1),i41 = OB(k+1),i41,17 + OB(kt1),i41,27

o b1yt VT
=TB(k+1),i — OB(k+1),i,m - 22" (12)
where 2™ € £, bp(ri1).i41.m 7 OBU+1)im-

Repeat this process until all possible phase weighting vectors
have been searched. O

It is straightforward to summarize the general form:

ForV>2 W =20 W =4,2* € z,(i = 1,2,---,V):
First, list the Rule Table and let z(®) = z, B; = {1,1,...,1}.
Note that, the range of u in z(*) is 0 < u < (W/2)V~! — 1.
Then, with the aid of Rule 3, we have

TBE,i+1 = TBk,i — DBki,m - 20", (13)
where ka,i+1,m 75 ka,i,m’ ™ € zk=1), Here, ka’Lm is
equal to 1 or —1.
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By combining the Rule 4 and (9), we can obtain xpr41),1
from By,1qs¢ as follows

TB(k+1),1 =TBk,last —UBk,last,mT" +bBk tast,m" Pk+1),mT",

(14)
where last = 2V7L 2™ € 2*Y By # B
Based on B(y41),m # Bi,m, update 2™ and (k) Thew) =
(Fl’(g;_l)m cam, P = {xl,x2,x’(";cw), .o, 2V}, Similar to

TB(k41),i+1 = TB(k+1),i — UB(k+1),i,m - 22", (15)

where bB(k'+1),i+1,m 7é bB(k+1)’i_’m, ™ € a:(k) This algo-
rithm iterates until 2 g(yy/2)v -1 pv-1 is obtained.

In the same manner, the number of phase weighting vectors
is searched and the corresponding PAPR values are computed
until all possible phase weighing vectors have been searched.
Finally, choose the candidate signal with the minimum PAPR
as the optimized transmitted signal. O

Let us summarize the previous deduction. It can be concluded
that the optimization search is done by using the given basis vec-
tors and the updated signal 2:(*). During the calculation from
T Bk, 10 TBE,i+1, only the complex addition is needed (consid-
ering the sign of the corresponding phase weighting vectors).
Consequently, the Rule Table can be updated (namely Sign Rule
Table) by replacing bg; k.m = sgn(bpir.m) (see j as a real
number), shown in the following example:

Take V = 3 and W = 4 to search the optimum candidate
signal. As seen in Tables I and II,

1 : The basis vectors are Bi, By, Bz, and B;. Compared
the vector By with Bs in the adjacent rows, only the last
element is different (1 and j);

2 : The basis vectors of phase weighting vectors in the first
columnareall {1, 1, 1}, other columns also have the similar
case;

3 : For the adjacent phase weighting vector in the same
column, only the sign of one element is different (e.g.,
bpi,1 and bpi 2, only the sign of the second element is
different);

4 : The sign of elements of bpy 4 is identical with that of
bB(k41),1 (see j as a real number).

Let that z = {z%, 22, 23}, bpi,1 = {1,1,1}. Hence, xp11 is
given by
TB1,1 = bBl,l,lxl + bBl,l,sz2 + bBl,l,?,JU3
=sgn(bp1,1,1)z" + sgn(bp1,1,2)2” + sgn(bpi1,3)z°.
(16)
According to the Rule 3, z 31 2 can be expressed as
rp12 =bp1217" +bp1222” + b1 232®
=sgn(bpi,2,1)7" + sgn(bp12,2)2” + sgn(bp 2,3)7°
=xp11 — sgn(bpii2) - 22°,bp122 # bp112.  (17)

Similarly, x g1 ;41 is calculated as

TB1,i+1 = bBl,71+1,15171 + bBl,7‘,+1,2Cl72 + bBl,at+1,3i173
=sgn(bpyit11)z’
+ sgn(bp1,it1,2)7” + sgn(bpiit1,3)7"
=zp1; — sgn(b1im) 22,081 i+1.m 7 VB1.im-
(13)
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TABLE 1
PHASE WEIGHTING VECTORS

phase weighting vectors

basis vector B={1 1 1} B={1 1 j} B={1 j j} B,={1 j 1}
phase bgy={+1 +1 +1} bg, ={+1 +1 —j} by ={+1 +j +j} bgy={+1+ -1}
weighting bg ,={+1 -1 +1} by ,={+1 =1 —j} by, ={+1—j +j} bgs={+1 4 —1}
vectors bg5={+1 -1 =1} bgys={+1 —1 +j} bpys={t1—j} Dbpys={+1 o +1}
bg~{+1 +1 —1} by ={+1+1 +j} by ~{+1 Hj—j} bgs~{+1+ +1}

\Lupdate

TABLE II
SIGN OF PHASE WEIGHTING VECTORS

sign of phase weighting

vectors
basis vector B={1 1 1} B={1 1 j} By={1 j j} B~={1 j 1}
phase by ={+ + +}  bgy={+ + —} bgy={+ ++ ) by, =+ + -}
weighting b ={+ — +} be={+ — =} b=+ — +}  bp={+ - -}
vectors bgi={t+ — =} bps={t — +} bpyz={+ — -}  bpy={t - +}
bgs={+ + —}  bp={t + +}  bp={+ + —} bp =+t +}
where 2™ € x. In the same way, =1 4 can be calculated. Update 22 and z?® a:%new) P372x2, z@ =

From the Rule 4 and (9), we have

1 2 3
2,1 =bp21,1% +bB21,22° +bp2,1,3%
1 2
=sgn(bp2,1,1)z" + sgn(bpa,1,2)

+ sgn(bpa 3) - Posa®

Ruled
= Sgn(bBlAJ)l'l + sgn(b3174,2)x2

+ sgn(bp1.43) - Pasr®
=xp1,4— sgn(bpiaz)r

+sgn(bp1a3) - Poaz®, Bag # Bis.  (19)

Then update z® and =) : 2} o = Poga®, 2 =
{xl,wQ,m?mw)}, note that By s # DBj3. Considering the
Rule 3, B2,;+1 can be expressed as

1 2 3
TB2,i+1 = b32,1‘,+1,1117 + b32,1‘,+1,2117 + b32,1‘,+1,3«’17
1
=sgn(bp2,i+1,1)T
2 3
+ 5gn(bpa,i+1,2)x” + sgn(bp,it1,3)z

=xpa,; — sgn(bpa,im) - 22, (20)

where bBZ,q’,-l—l,m 7é bBQ’i,m and 2™ € 37(1)
Similar to (19), xg3,1 can be obtained from z s 4,

1 2 3
zp3,1 =bps 112" +bp3 120" +bp3 13T
1
=sgn(bps,1,1)r + sgn(bps,i,2)

- Py 3? + sgn(bps.q3)z?

Ruled
u:esgn(szA,l)ivl + sgn(bpa,a,2)

- P322% + sgn(bpaa3)z®
=xpa4 — sgn(bpaa2)z® + sgn(bpa.az)

: P3,2$2,B3,2 7’5 B2,2- 21

{xl,x%new),x:”}, where B3 o # Bao.

In the same way, until z g4 4 has been searched. Then, choose
the candidate signal with the minimum PAPR as the optimized
transmitted signal. O

Set a specific V' and W, the Sign Rule Table can be deter-
mined in advance without increasing the computational com-
plexity in the transmitter and receiver. By using the general
form, we can reduce the computational complexity dramatically
and achieve the same PAPR reduction performance compared to
the conventional PTS scheme.

IV. PERFORMANCE ANALYSIS

A. Analysis of the Computational Complexity

The main contribution of the proposed scheme is to reduce
the computational complexity of the obtaining time domain
vector. In this section, we will analyze the computational
complexity and PAPR of the proposed scheme. Furthermore, it
should be noted that the multiplicative complexity dominates
the total computational complexity.

According to (14), the complex multiplication is only used
in the case of computing Tp(x41),1 from Tpg 1as:- Since the
dimension of phase weighting vectors of Sign Rule Table es-
tablished in Section IIT is 2V~ x (W/2)V~1, it is clear that
the number of the complex multiplication operations of the pro-
posed scheme needed in the process of phase weighting combi-
nation is given by

Nt = N - [(W/2)V 1 = 1], (22)
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TABLE III
COMPUTATIONAL COMPLEXITY REDUCTION RATIO

Comparison CCRR (%)
Phase factor w=4
Subblock V=4 V=6
Complex Add. 67 80
Complex Mul. 92 98

while that of the conventional PTS-based OFDM scheme can be
expressed as

Nt =N -[1-CH_ (W/2 = 1) -« +k - CF_ (W/2-1)"
+oH (V=1)-CYTi (W2 -1V 2V (23)

Here, note that the complex multiplication is only used when
the element of the basis vector of phase weighting vector is un-
equal to 1. On the other hand, in the conventional PTS scheme,
TBk,i+1 is calculated as

TBkit1 = bBriv112" +bpriv100” + - +bpriyiva’
(24)
However, in order to reduce the addition computational com-
plexity, the proposed scheme make use of the Rule 3 to calculate
TBk,i+1 fTom Ty ;

TBkit1 =bpkit12" +bpriv100” + -+ bpriti v’
=Bk, — bBk,im - 22 (25)
For this reason, it can be concluded that computing g i+1
from zpy,; by (25), the computational complexity of the pro-
posed scheme has been reduced to N additions because it is
only necessary to calculate the subblock ™ given that we know
Z Bk, Thus, the complex addition complexity of the proposed
scheme is about the one (V' — 1)th of the conventional PTS
scheme.
In [19], the computational complexity reduction ratio
(CCRR) of the proposed PTS OFDM scheme over the conven-
tional PTS OFDM scheme is defined as

complexity of proposed PTS

>>< 100%.

(26)
Table III gives CCRR of the proposed scheme over the con-
ventional PTS OFDM scheme with typical values of V and W.
As shown in Table III, compared with the conventional PTS,
the proposed scheme can significantly reduce the computational
complexity. Specially, when the number of subblocks V' = 4
and V' = 6, the complex multiplication of the proposed scheme
are only about 8% and 2% of the conventional PTS. It also
should be noted that the required side information is the same
as the conventional PTS scheme.

CCRR=(1-
< complexity of conventional PTS

B. Analysis of the PAPR

To reduce the computational complexity of a PTS-based
OFDM system, most authors focus on reducing the number
of candidate signals. Therefore, the computational complexity
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Fig. 2. CCDF’s of original OFDM, conventional PTS, and proposed PTS with
256 subcarriers, QPSK modulation, the phase factor W = 4, and oversampling
factor L = 4.

is reduced clearly at the cost of performance loss for PAPR
reduction. Unlike these methods, the proposed scheme reduces
complexity by using the correlation among the adjacent can-
didates. Since the number of candidate signals is not reduced,
it can achieve the same PAPR reduction as the conventional
PTS scheme. As shown in Fig. 2, the results of computer
simulation are coincident with the theoretical analysis. Note
that the subblock partition method is interleaved partition.

V. CONCLUSION

High PAPR of transmitted signal is one of the major draw-
backs of OFDM systems. In the conventional PTS scheme,
the computational complexity increases extensively with the
number of subblocks. In order to reduce this complexity, a novel
PTS scheme has been proposed by utilizing the correlation
among the candidate signals. Performance analysis has been
shown that the proposed scheme can obtain the same PAPR
reduction compared to the conventional PTS while significantly
reduce the complexity.
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