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Abstract—In this paper, we propose a denoising method mo-
tivated by our previous analysis of the performance bounds for
image denoising. Insights from that study are used here to derive
a high-performance practical denoising algorithm. We propose
a patch-based Wiener filter that exploits patch redundancy
for image denoising. Our framework uses both geometrically
and photometrically similar patches to estimate the different
filter parameters. We describe how these parameters can be
accurately estimated directly from the input noisy image. Our
denoising approach, designed for near-optimal performance (in
the mean-squared error sense), has a sound statistical foundation
that is analyzed in detail. The performance of our approach is
experimentally verified on a variety of images and noise levels.
The results presented here demonstrate that our proposed method
is on par or exceeding the current state of the art, both visually
and quantitatively.

Index Terms—Denoising bounds, image clustering, image
denoising, linear minimum mean-squared-error (LMMSE) esti-
mator, Wiener filter.

1. INTRODUCTION

N RECENT years, images and videos have become inte-

gral parts of our lives. Applications now range from the ca-
sual documentation of events and visual communication to the
more serious surveillance and medical fields. This has led to an
ever-increasing demand for accurate and visually pleasing im-
ages. However, images captured by modern cameras are invari-
ably corrupted by noise [3]. With increasing pixel resolution but
more or less the same aperture size, noise suppression has be-
come more relevant. While advances in optics and hardware try
to mitigate such undesirable effects, software-based denoising
approaches are more popular as they are usually device inde-
pendent and widely applicable. In the last decade, many such
methods have been proposed, leading to considerable improve-
ment in denoising performance. In [1] and [2], we studied the
problem from an estimation theory perspective to quantify the
fundamental limits of denoising. The insights gained from that
study are applied to develop a theoretically sound denoising
method in this paper.
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The challenge of any image denoising algorithm is to sup-
press noise while producing sharp images without loss of finer
details. The first modern adaptive method to successfully ad-
dress these contradictory goals can be attributed to Tomasi et al.
[4], where the authors proposed a generalization of the SUSAN
filter [5], which itself was an extension of the Yaroslavky filter
[6]. The authors there proposed denoising by weighted aver-
aging pixels similar in intensity within a local neighborhood.
Under strong noise, identifying such similar pixels can be
challenging. In [7], Takeda et al. proposed a signal-dependent
steering kernel regression (SKR) framework for denoising.
This method proved to be much more robust under strong
noise. A patch-based generalization of the bilateral filter [4]
was proposed in [8] and [9], where the concept of locality
was extended to the entire image. Although the results there
were encouraging, the true potential for this nonlocal means
(NLM) method was only realized in [10] and [11]. Another
patch redundancy-based framework, i.e., BM3D [12], adopts
a hybrid approach of grouping similar patches and performing
collaborative filtering in some transform [e.g., discrete cosine
transform (DCT)] domain. It ranks among the best performing
methods that define the current state of the art.

A significantly different approach to denoising was in-
troduced in K-SVD [13]. Building on the notion of image
patches being sparse representable [14], Elad et al. proposed
a greedy approach for dictionary learning tuned for denoising.
In [15], we proposed a hybrid approach (K-LLD) that bridged
such dictionary-based approaches with the regression-based
frameworks [4], [7], [8], [10]. The motivation there was that
similar patches shared similar subdictionaries, and such sub-
dictionaries could be used for better image modeling. A similar
observation was exploited in the form of a nonlocal sparse
model (NLSM) [16] to improve performance of the K-SVD
[13] framework.

The dictionary-based methods provide implicit modeling for
natural images. More explicit models have also been used for
denoising. In [17], Joshi et al. address the problem of denoising
color images by explicitly modeling each pixel as a combina-
tion of two colors, the basis colors themselves being estimated
from a local neighborhood. Denoising is achieved by enforcing
such a model. The use of local principal components as bases
for denoising was proposed in [18]. Zhang et al. [19] later re-
fined this idea with a local pixel grouping mechanism such that
the principal component bases are estimated from only similar
patches within a neighborhood. Another model-based approach
using Markov random fields (MRFs) as a field of experts (FOE)
was applied to denoising natural images in [20], where the pa-
rameters for the model are learned from example images. Liu et
al. [21] proposed a method where, in addition to a locally affine
signal model, the noise level is also estimated from the input
image, leading to a practical denoising method.
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Fig. 1. Outline of our proposed PLOW filtering method.

While most of the aforementioned approaches work in the
spatial domain, a vast section of image denoising literature is
devoted to transform domain methods. The main motivation in
such methods is that, in the transform (e.g., DCT, wavelets, etc.)
domain, it is possible to separate image and noise components,
and denoising can be performed through the shrinkage of the
transform coefficients. In [22], Chang et al. showed that, using
a spatially adaptive threshold parameter, along with the over-
complete wavelet basis, denoising performance can be consid-
erably improved. Another wavelet-domain method in [23] was
considered the state of the art until recently. There, the authors
perform denoising by modeling the wavelet coefficients of im-
ages as mixtures of Gaussians. Enforcing such a model for noisy
images leads to considerable denoising. In [24], an additional
global model for natural images in the form of homogeneous
Gaussian MRFs was used to improve the performance consider-
ably. In [25], Luisier et al. proposed a denoising method aimed
at reducing the estimated mean-squared error (MSE) through
wavelet thresholding.

In this paper, we propose a new denoising filter motivated
by our statistical analysis of the performance bounds for patch-
based methods [1], [2]. The contributions of our paper are as
follows: We design a patch-based statistically motivated redun-
dancy exploiting the Wiener filter, where the parameters of the
method are learned from both geometrically and photometri-
cally similar patches. As will be clear from our discussions in
the next section, our method is formulated to approach the per-
formance bounds for patch-based denoising. As a side note, we
also show that the NLM filter [8], [9] is an approximation of
the optimal filter (in the MSE sense) obtained if one ignores the
geometric structure of image patches.

Although extensively used for denoising, the Wiener filter
is usually used in conjunction with some transform basis. For
example, the collaborative Wiener filter used in BM3D [12]
works in the DCT domain where an estimate of the ground truth
(signal-to-noise ratio) is obtained through an initial filtering of
the image. Our spatial domain method is motivated by our anal-
ysis of the image denoising bounds [1], [2]. In our framework,
graphically illustrated in Fig. 1, we develop a locally optimal
Wiener filter where the parameters are learned from both ge-
ometrically and photometrically similar patches. For this, the
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Fig. 2. Clustering of a simple image based on geometric similarity. Note how
pixels in any particular cluster can have quite different intensities but similar
geometric structure (edge, corner, flat regions, etc.) (a) Box image. (b) Cluster
1. (c) Cluster 2. (d) Cluster 3. (e) Cluster 4.

noisy image is first segmented into regions of similar geometric
structure, as shown in Fig. 2. The mean and the covariance of
the patches within each cluster are then estimated. Next, for each
patch, we identify photometrically similar patches and compute
weights based on their similarity to the reference patch. These
parameters are then used to perform denoising patchwise. To re-
duce artifacts, image patches are selected to have some degree
of overlap (shared pixels) with their neighbors. A final aggrega-
tion step is then used to optimally fuse the multiple estimates for
pixels lying on the patch overlaps to form the denoised image.

The remainder of this paper is organized as follows: In
Section II, we motivate our algorithm and develop the the-
oretical formulation of our method. The details of how the
parameters are estimated from the noisy image are presented in
Section III. In Section IV, we present experimental validation
of our method and compare it, visually and quantitatively, to
some recently proposed popular denoising methods. Finally,
we conclude our paper with some directions for future research
in Section V.

II. PLOW FILTER

A. Motivation

In [1], we analyzed the performance bounds for the problem
of image denoising. This was done from an estimation theory
point of view, where we seek to estimate the pixel intensity z;
at each location ¢ from its noisy observation, i.e.,

Yi = zi + 1, Z:l,/M (D
Here, n; is assumed to be independent and identically distributed
(i.i.d.), and M is the total number of pixels in the image. In our
paper, we specifically considered patch-based methods, where
the observation model can be posed as

yi=2;+1n, )

with y; € R" representing the vectorized v/n X \/n patch cen-
tered at 7. Using a Bayesian Cramér—Rao bound [26]-[28] anal-
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ysis, we showed that the MSE of denoising (estimating) any
given patch in the image is bounded from below by

E |z — |2 > Tr [(Ji + c;l)*l] 3)

where Z; € R" is the estimate of z;, J; € R™*" is the Fisher
information matrix (FIM), C, € R™*™ is the patch covariance
matrix, and ||.|| denotes the ¢5 norm. This covariance matrix
captures the complexity of the patches and is estimated from
all the geometrically similar patches present in the given image.
Fig. 2 illustrates what we mean by geometric similarity, where it
can be seen that each cluster groups together patches containing
flat regions, edges in the horizontal or vertical directions, and
corners of the simulated box image. Note that such grouping is
done irrespective of the actual patch intensities. This is justified
for intensity-independent noise when denoising performance is
dictated by the complexity of patches, rather than their actual
intensities.

The FIM, on the other hand, is influenced by the noise char-
acteristics. When additive white Gaussian noise (WGN) is con-
sidered, the FIM takes the following form:

I
= “)

J,=N;
where I is the n X n identity matrix, o is the noise standard devi-
ation, and N; is the patch redundancy measured as the number
of patches z; within the latent image that are photometrically
similar to a given patch z;. We define such similarity as

||Eij||2 < ’}/2 where E€ij =Z; —1Z;. (5)
In [1], 7y is chosen as a small threshold dependent on the number
of pixels (n) in each patch. The relationship between similar
patches shown in (5) is based on the underlying noise-free
patches that are not known in practice. In [2], this expression
was extended to define photometric similarity between the
corresponding noisy patches y; as

||Eij||2 < ’yZ =~2+4+20%n  where €;=Yy;—Yi. (6)

The N; values can be then directly estimated from the noisy
image as the number of y; patches (including y;) that satisfy
the aforementioned criterion. Note that the condition for photo-
metric similarity, as defined here, is stricter than that for geo-
metric similarity. As such, photometric similarity can be ex-
pected to imply geometrically similar as well.

The bounds expression in (3) thus takes into account the com-
plexity of the image patches present in the image, as well as the
redundancy level and the noise variance corrupting the image.
In [1], the bound was shown to characterize the performance
of the optimal affine-biased denoising method. In particular, for
the WGN, the right-hand side of (3) is the performance achieved
by the optimal linear minimum mean-squared-error (LMMSE)
estimator, with J; and C,, being the parameters of the estimator.
The Wiener filter is, in fact, the LMMSE estimator that achieves
this lower bound [29]. Thus, a patch-based Wiener filter, where
the parameters are accurately estimated, can lead to near-op-
timal denoising. This forms the basis of our approach. We out-
line the theory behind the proposed approach next.
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B. Derivation and Analysis

Irrespective of the noise characteristics, the expression in
(3) leads to the lowest MSE theoretically achievable by any
patch-based denoising method. This expression was derived in
[1] assuming that the underlying unknown image patches z; are
(independent) realizations of a random variable z. Furthermore,
image patches that are geometrically similar were considered to
be sampled from the same (unknown) probability density func-
tion (pdf) p(z). Thus, we need to first identify geometrically
similar patches within the image and group them. As such,
image patches within each cluster will exhibit similar structure,
although the actual intensity values can be quite different, as
shown in Fig. 2. For now, we assume that such grouping is
made available through some oracle clustering method.! When
the corrupting noise is the WGN, the LMMSE estimate of
each patch z; from its noisy observation y; has the following
form [29]:

zi=2+C,C, ' (yi — 2) @)

where z and C,, are the first and second moments of the pdf p(z)
from which all patches geometrically similar to z; are assumed
to be independently sampled. The covariance of the (geometri-
cally similar) noisy image patches can be expressed as

C, =C,+ 0L ®)

Thus, the parameters of the LMMSE filter remain the same for
all patches that are considered to be similar in structure. Such an
estimator is unbiased, i.e., £[Z;] = 2, and the estimation error

can be expressed as
I\~
(C;1 + —2> ] . 9)
g

A similar approach was applied to the problem of super-res-
olution and demosaicing in [30]. The aforementioned estimator
achieves the bounds in (3) when N; = 1, which is the case when
photometric similarities are not observed in the input image.
However, in general, natural images exhibit some level of photo-
metric redundancy. Exploiting such repetitions forms the core of
many denoising methods [8]-[12], [16], where photometrically
similar patches are considering to be multiple observations of
a single latent patch with the differences arising (ideally) due
to noise only. Most similarity-based methods thus identify pho-
tometrically similar patches within the noisy image to perform
denoising, with the most similar patches exerting the greatest in-
fluence in the denoising process. Our denoising framework can
be also generalized to exploit such photometric redundancies
within any given noisy image. Moreover, these patches need not
to necessarily be spatially proximal (as in [8] and [9]), thereby
giving rise to a so-called nonlocal patch-based Wiener filter for
denoising.

As mentioned earlier, photometric similarity among patches,
as required to exploit redundancy, is a stricter condition than the
geometric similarity property used for clustering. We therefore
require an additional step of identifying the y; patches that are

FE [“Z, —/Z\i||2] =Tr

'We specify a practical method in Section III-A and in [1] and [15].
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Fig. 3. TIllustration of the data model formed by collecting all photometrically
similar patches. Here, y; is the reference patch, andy, . . . , y n are patches that
satisfy the similarity condition of (6). All these patches are then accumulated to
form the data model of (10).

photometrically similar to any given patch y;. These y; patches
all satisfy the condition of (6) and can be expressed as (see
Fig. 3)

Y; =Ayi+e =A; (Zl+nz)+(—l+ﬂi_

=A;z;+¢ + n,
——
¢

7

Am;)
(10)

where y. € "N is a vector formed by concatenating all (e.g.,
N)y; patches that are photometrically similar to y;, 5. € R"V:
is the corresponding noise patches stacked together, g; and €; are
nN;-sized vectors consisting of concatenated difference vectors
&i; and &;; of (5) and (6), respectively, and A; = [I,..., I|T €
RnNixnNi iq the matrix formed by vertically stacking N; iden-
tity matrices, each of size n x n. Letting C,; € RniNixnNi
denote the covariance matrix for the error vector ( =€+,
we can write the corresponding LMMSE filter as [29]

-1
(y; — Aiz)

-1

72 =2+ C,AT (ACZAZ-T + C¢ )

As before, parameters z and C,, are the moments obtained from
the geometrically similar patches within each cluster. The afore-
mentioned expression leads to the optimal estimator (in terms of
the MSE) when the error vector C can be assumed to be normal
distributed. Under sufficiently strong WGN, such an assumption
is justified as the €;; vectors are small by definition [see (5)] in
comparison with the noise.

The expression in (11) can be further simplified if we assume
the components of &;; vectors to be i.i.d.. Along with the fact
that the &;; vectors are independent of the 7; noise vectors, this
results in a diagonal C¢ (derivation in Appendix A), i.e.,

0

C¢ =C¢, +Cy = 87,1 (12)

where

1
65 = B llyi = v3llP"] - (13)
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Denoting w;; = zSL_] , the LMMSE estimator of (11) can be

alternately expressed as (see Appendix B)

Ni Ni
Z;, =7+ Cz_l—I—Zw”I Zwi](yj z) (14)
j=1 j=1
C—l -1 Ni Wis
=2+ | x—+1| Y 2 —(i—-2). (5

N;
j=1 Ej:l

It is shown in (14) that a weighted contribution of each sim-
ilar patch is used to come up with a denoised estimate for each
z; where the contributing factor of any y; gets larger with in-
creasing similarity (6;; %). The error covariance matrix for such
an estimator is approximately [29]

N;
C;l + Z w”I
Jj=1

Comparing the aforementioned expression to the bounds for-
mulation of (3), we can see that, when ) jwij = N; /o?, the
estimator achieves the bound.2 Such a scenario arises when the
underlying noise-free image contains [V; exact replicas for patch
z;, i.e., when E[||z; — z,;||*] = 0. In practice, such levels of re-
dundancy can be rare, and even if very similar patches exist,
identifying such patches can be challenging under noise con-
tamination, resulting in higher MSE.

Although (15) provides a nice formulation for the estimator,
it can lead to mathematical instabilities as the covariance matrix
C, can be rank deficient or ill conditioned. To circumvent the
possibility of errors due to inversion, we make use of the matrix
inversion lemma [31] to state an alternate form of the LMMSE
estimator (see Appendix B for entire derivation), ie.,

Z S
Z w“

-1

C.~ (16)

zi=z+ |[I— ZwijCz—i—I
J

i

WiV
= )
=1 Zj:lwij
-1
N;
+1) Zwuc +1] (z-y))
Jj= 12] 1w j=1
(13)

This leads to an interesting formulation where the first part of
(18) is exactly the expression for the NLM [8], [9] filter, al-
though the NLM was not the basis for our derivation. Since z
is obtained from all geometrically similar patches in a cluster, it
can be considered as a naive denoised estimate, which is over-
smoothened. The latter part of the expression in (18) filters the
residuals between the noisy similar patches and this naive esti-
mate. These filtered residuals are then added to the weighted
mean of photometrically similar patches. The latter term can

2For the sake of clarity, we assume here that the mean and the covariance in
each cluster are known and, hence, the estimator remains unbiased. In practice,
these parameters are estimated from a limited number of noisy patches resulting
in higher MSE than that predicted by the lower bound [see (16) or (3)].
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be then thought of as a correction that improves the estimate
by a directional filtering of the residuals based on their shared
geometric structure. This suppresses the noise further, while
restoring more of the finer details in the image patches. When
the structural information of image patches are ignored (i.e., all
structures are equally probable, implying a large determinant of
C.), we obtain the NLM filter as a suboptimal approximation
(in terms of the MSE) of our formulation in (18). Note that we
express patch-based locally optimal Wiener (PLOW) filter as
a summation of two related parts (NLM and residual filtering)
only to gain theoretical insights. In practice, we use (17) to ob-
tain the denoised estimate for each patch.

Until now, we have presented and analyzed the theoretical
basis for our proposed approach. In the next section, we provide
a practical outline for our algorithm that details the estimation of
each parameter of the proposed filter from a given noisy image.

Algorithm 1 PLOW denoising

Input: Noisy image: Y
Output: Denoised image: Z

1: Set parameters: patch size n = 11 X 11, number of clusters
K = 15;

2: Estimate noise standard deviation & [see (21)];

3: Set parameter: h? = 1.756%n;

4: Y? < Prefilter image to obtain pilot estimate;

5: {yi,y)} < extract overlapping patches of size n from Y
&YY;

6: L <= compute LARK features for each y?;

7: Q) < geometric clustering with K -means (L, K);

8: foreach Cluster Q;, do

9:  Estimate mean patch z from X? € Q. [see (19)];

10:  Estimate cluster covariance C, from y? € Q. [see (20)];

11:  foreach Patchy? € Q. do

12: y? <« identify photometrically similar patches [see
©)];

13: w;; <= compute weights for all yg [see (23)];

14: z; < estimate denoised patch using y; [see (17)];

15: C,, < calculate estimate error covariance [see (16)];

16: end

17: end

18: Z < aggregate multiple estimates from all {Z;} and {C,, }
[see (27)].

III. PARAMETER ESTIMATION FOR DENOISING

Our proposed denoising framework, graphically outlined in
Fig. 1, requires us to infer various parameters from the observed
noisy image. The procedure is algorithmically represented in
Algorithm 1. We first identify geometrically similar patches
within the noisy image. Once such patches are identified, we
can use these patches to estimate the moments ( z and C,) of
the cluster, taking care to account for noise (steps 9 and 10 of
Algorithm 1). Next, we identify the photometrically similar
patches and calculate weights w;; that control the amount of
influence that any given patch exerts on denoising patches sim-
ilar to it. These parameters are then used in (18) to denoise each
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Fig. 4. Clustering based on the geometric similarity of patches illustrated on
noise-free and noisy Barbara images with a standard deviation of 15. Note how
clustering in the noisy image largely corresponds to that from the noise-free
image. (a) Barbara image. (b) Noise-free clusters. (c) Noisy clusters.

patch. Since we use overlapping patches, multiple estimates
are obtained for pixels lying in the overlapping regions. These
multiple estimates are then optimally aggregated to obtain the
final denoised image. Below, we describe each step in greater
detail.

A. Geometric Clustering

In Section II, our proposed filter was derived assuming geo-
metrically similar patches to be sampled from some unknown
pdf. So far, we have assumed such clustering to be available to
us from an “oracle.” To perform practical clustering, we need to
identify features that capture the underlying geometric structure
of each patch from its noisy observations. Such features need to
be robust to the presence of noise, as well as to differences in
contrast and intensity among patches exhibiting similar struc-
tural characteristics. An example of such variations among ge-
ometrically similar patches is shown in Fig. 2. Possible choices
of features include contrast-adjusted image patches [30] or prin-
cipal components in conjunction with predetermined clustering
guides [32]. For our purposes, where the image patches can be
considerably noisy, we make use of the locally adaptive regres-
sion kernels (LARKS) introduced for denoising in [7] and sub-
sequently adapted as features for geometric clustering [15] and
object detection [33]. We refer the interested reader to [7], where
the design of the kernels is covered in detail.

Using the LARK features, we run K-means [34] to cluster
the noisy image into regions containing geometrically similar
patches. In Fig. 4, we illustrate the robustness of clustering using
LARK features, 3 even in the presence of noise with a standard
deviation of 15. Note that the five clusters from the noisy Bar-
bara image are largely in keeping with those obtained from the
noise-free image.

As noted in [15], the number of clusters chosen affects the
denoising result. In general, too few clusters can lead to struc-
turally dissimilar patches being clustered together resulting in
the incorrect estimation of the moments. On the other hand,
too many clusters lead to too few patches within each cluster,
making the moment estimation process less robust. Fortunately,
the denoised output is not too sensitive to the choice of the
number of clusters (K ). In our experiments, we found that using
a fixed value of K = 15 yields good results for any given image,
with the MSE fairly close to that obtained by tuning the number
of clusters for that particular image.

3In Fig. 4, we color code the center pixel y; of each patch y, depending on
cluster €2, in which the corresponding LARK feature lies. Each patch therefore
belongs to a single cluster, which we denote as y; € €.
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B. Estimating Cluster Moments

Once the image is segmented into structurally similar regions,
we estimate the moments, namely, mean and covariance, from
the noisy member patches of each cluster. Since the 7, noise
patches are assumed to be zero mean i.i.d., the mean of the un-
derlying noise-free image can be approximated by the expecta-
tion of the noisy patches within each cluster as

~ 1
z:E[yiEQk]zﬁ Z Yi
kyq'GQk

19)

where Q. denotes the kth cluster with cardinality My,. Note that
the stability of this estimate is dependent on M. If too few
patches are present, the mean vector will remain noisy.

The covariance matrix C, is also estimated from the noisy
patches within the cluster. For this, we make use of the rela-
tion between the covariance of the noisy (Cy ) and noise-free
patches (C,) from (8). We thus need to first estimate C,. Co-
variance estimation is an active research area with a wide va-
riety of applications [35]-[37]. The simplest of such estimators,
i.e., the sample covariance, is the maximum likelihood estimate.
Although other estimators, for example, bootstrapping [35] and
shrinkage-based [36] methods, exist, we found no discernible
improvement in the denoising performance when more complex
estimators were used. When the number of samples (patches in
a cluster) are few compared with the dimensionality (number
of pixels in each patch), the sample covariance can be unstable.
For such cases, robust estimators proposed in [37] may also be
used. R

Working with the sample covariance Cy, we estimate the co-
variance of the underlying noise-free patches as

G, = [éy _ 021} (20)
+

where o2 is the noise covariance and [X], denotes matrix X

with its negative eigenvalues replaced by zero (or a very small

positive value), as done in [2]. For this, we need to accurately

estimate the noise standard deviation first. Here, we use a gra-

dient-based estimator as [38]

o = 1.4826 median (][VY — median(VY)|) 21

where VY is the vectorized form of the gradient of the input
image Y. The gradient image VY is calculated as

VY = —vec (Y* [ 2 _1D .
V6 -1 0

Here, vec(.) denotes the vectorization operation (column- or
rowwise) and the convolution (x) operation simply implies the
addition of the forward gradients in the horizontal and vertical
directions. In [2], we showed that the shrinkage estimator of
(20) is accurate enough to compute the bounds directly from
the noisy image. In the present case of denoising, a similar ob-
servation holds.

We point out that, in deriving bounds [1] (3) and our
PLOW filter (see Section II-A), we assume that the underlying
noise-free patches z; are independent samples of a random
variable z. In practice, when working with overlapping patches,
this assumption is not strictly accurate. As with all other

(22)
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patch-based methods, since we estimate each patch inde-
pendently without explicitly taking into account information
from estimates of other overlapping patches, the estimation
framework is in line with the assumption of the independence
of underlying (noise-free) patches. However, in estimating the
covariance matrix (in PLOW and also for the bounds in [1] and
[2]), we do not enforce independence on the patches, and the
covariance matrix estimated from overlapping patches is not
necessarily diagonal. Therefore, both in our bounds and our
current paper, the correlation among the underlying noise-free
patches are implicitly taken into account.

The issue is more subtle when considering the overlapping
noise patches. In that case, our assumption of 7, patches being
independent is a simplification mainly used for the ease of
mathematical derivation. By now, this is a standard practice
employed in all patch-based methods (NLM [8], BM3D [12],
NLSM [16], etc.), where information shared among overlap-
ping noisy patches are not exploited. We hazard a guess that
one can expect some modest improvement in the performance
if such information are accounted for in the denoising process.
Doing so is however nontrivial and may be a good direction for
future research.

The parameters estimated from each cluster of the image
can be directly used for denoising using (7). However, as men-
tioned earlier, the performance can be improved by exploiting
the self-similarities within an image. Using photometrically
similar patches can then contribute to the better denoising of
the reference patch. We describe this process next.

C. Calculating Weights for Similar Patches

In our paper, we first identify patches within the noisy image
that are photometrically similar to a given reference patch. Once
the similar patches are identified for a given reference patch,
we perform denoising with the more similar patches exerting
greater influence in the denoising process. This is ensured by
the analytically derived weight w;;, which determines the con-
tributing factor for patch y; in denoising the reference patch y;.
Weight w;; is related to the inverse of the expected squared £
distance between the underlying noise-free patches and a noise
term [see (13)].

Although the weight calculation in (13) is statistically well
motivated, it is impractical as we need to approximate E|||y; —
y;||?] from a single y;-and- y; pair. Here, we approximate this
similarity measure (see Appendix C for derivation) by 4

vyl
Vg2 P h?

where the scalar multiplier 1/0% also ensures that the denoiser
defaults to that of (7) when no photometrically similar patches
are observed, i.e., when y,; = y;. The smoothing parameter /2
is a positive parameter that controls the rate at which the con-
tributing factor is driven to zero as the patches become less sim-
ilar. Although tunable in general, in our algorithm, this param-
eter is kept fixed at h? = 1.7502n. This was empirically found

(23)

“4Note that the expression in (23) is similar to that introduced in [8]. In Ap-
pendix C, we motivate this formulation statistically and derive it as an approxi-
mation to the distance metric in (13).



CHATTERJEE AND MILANFAR: PATCH-BASED NEAR-OPTIMAL IMAGE DENOISING

Fig.5. Illustration of how a pixel is estimated multiple times due to overlapping
patches. Here, we show three such overlapping patches. In each estimated patch
Z, (here r = 1,2, 3), the same pixel is estimated as its /,.th pixel, which we
denote as Z,;. These estimates are combined to form the final estimate Z;.

to be close to the optimal h? value for a wide range of images
and across different noise levels.

Note that photometrically similar patches are necessarily ge-
ometrically similar as well, and hence, we could limit our search
within the cluster of the reference patch. However, errors in clus-
tering (see Fig. 4) can limit the number of similar patches iden-
tified. On the other hand, scanning the entire image can be time
consuming. Consequently, we restrict ourselves to a relatively
small search window (30 x 30 pixels). Apart from speed con-
siderations, as the motivation was in [8], this also leads to better
performance [39].

D. Aggregating Multiple Pixel Estimates

Until now, we have estimated all the parameters needed to
perform the filtering of (18). The filter is run on a per-patch basis
(although parameters are estimated from multiple patches),
yielding denoised estimates for each patch of the noisy input.
To avoid block artifacts at the patch boundaries, the patches are
chosen to overlap each other. As a result, we obtain multiple
estimates for the pixels lying in the overlapping regions. This
is shown in Fig. 5 where z; is estimated multiple times as a
part of different patches. These multiple estimates need to be
aggregated to form a final denoised image.

The simplest method of aggregating such multiple estimates
is to average them. However, such naive averaging will lead to
an oversmoothened image. Alternatively, in keeping with ear-
lier formulation, we can combine the multiple estimates in an
LMMSE scheme that takes into account the relative confidence
in each estimate. The covariance of our proposed estimator is
approximated by [see (16)]

-1

N;
Com |G+ wiI 24)
j=1

Let us denote z,; as the denoised estimate for the [th pixel in
the rth patch (see Fig. 5). Then, variance v,.; associated with the
[th pixel estimate is given by the [th diagonal element of C..
Concatenating the multiple (i.e., R) estimates 2,.; in vector Z;,.,
we can write

Zir = 12:1 + Tir

(25)
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where 1 € R is a vector of all ones and 7 € RE is the error
vector assumed to be zero mean Gaussian with covariance C, =
diag[... vy ...]. The LMMSE estimate for the ith pixel of the
image is then

3 = (02—2 + ].TC;I]_)_I 1TC;1/Z\iT

Zf—l Ur_ll Zrl
== 1. = (26)
r Url to:
where 03 is the variance of z;, which forms the prior informa-
tion. Note that, although we estimate the covariance of the image
patches (C,), this does not provide us with a pixelwise variance
estimate 2. This is a result of considering overlapping patches
where any given pixel z; can lie in different locations in different
patches (see Fig. 5). Moreover, the overlapping patches may
also lie in different clusters where the C, matrices can also be
different. In the absence of a particular o, we consider all pos-
sible z; values (within the intensity range [0-255]) to be equally
likely, leading to the variance of the discrete uniform distribu-
tion 02 = (256 — 1)/12 = o2 = 0. This reduces (26) to the
weighted least-square solution, i.e.,

R —1aA
A Uy Zrl
Zi = E = -1
r=1 Z'rv

rl

27)

where the number of estimates (R) of the ith pixel depends
on the size of the patch (n), the amount of overlap,5 and the
position of the pixel in the patches (pixels toward the edge of
a patch are more likely to lie in overlapping regions). Here, r
indexes only those R patches that include the ith pixel of the
image and position [ of the ith pixel is dependent upon the patch
r being considered. Such a weighted least-square estimate ob-
tained using the error variance from multiple estimates (v,;),
dating at least back to [40], also forms the basis for aggregation
in [12], [41], and [42]. In every case, such aggregation leads to
an improved final pixel estimate compared with other naive ap-
proaches (e.g., simple averaging).

As shown, the necessary parameters of our proposed filter
can be estimated from a given noisy image. The accuracy of
estimating such parameters is dependent on the strength of the
noise corrupting the image. Noise affects different parameter es-
timation steps differently. The moment estimation step is depen-
dent on the ability of the clustering step to classify structurally
similar patches. Although the LARK features are quite robust,
errors in clustering due to noise cannot be fully avoided. This
is directly shown in Fig. 4, where differences in clustering the
noisy and noise-free images are apparent.

Furthermore, even with accurate clustering, noise causes the
eigenvalues of the sample covariance matrix Cy, to be unequally
shifted (some are shifted by more than o2, whereas others are
shifted less) by a factor dictated by the size of the patches, the
number of patches within a cluster, and the strength of the noise

SNote that a larger overlap implies more patches for clustering, moment es-
timation, and higher levels of redundancy among image patches. This makes
the estimation process robust and allows for improved performance. However,
this performance comes at the cost of speed. A reasonable approach is to use
all patches (at 1-pixel shifts) for parameter estimation and denoise only every
few (overlapping) patches. The aggregation step can be then used to reconstruct
the entire image. The performance of such a scheme, visually and MSE-wise,
is reasonably close to that obtained by denoising densely.
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[43]. With strong noise, the lower eigenvalues of the sample
covariance are considerably underestimated, leading to a lower
rank estimate of C, in (20). Using such a C, in our denoising
framework results in the loss of finer details as the second term
in (18) is projected onto a lower dimensional subspace.

Additionally, the weight calculation process of (23) is quite
sensitive to noise. Identifying photometrically similar patches
becomes challenging in the presence of strong noise [2], [44],
which, in turn, influences the similarity measure calculation of
(23). To alleviate these detrimental effects of noise, we prefilter
the image once before the parameters of the proposed frame-
work are learned. Note that prefiltering to obtain a “pilot” es-
timate is quite typical of competing approaches [12], [19] and
is necessary only for strong noise. While any denoising method
can be employed, for consistency, as a preprocessor, we apply
our algorithm with a reduced noise variance estimate (heuristi-
cally chosen as 0.7562) to ensure that finer details are not lost in
the prefiltered image. The necessary filter parameters are then
learned from the resultant noise-suppressed image. These pa-
rameters are then applied to the original noisy image for de-
noising. For strong noise, such prefiltering invariably results in
noticeably improved denoising performance. The performance
of our method is demonstrated next.

IV. RESULTS

Here, we evaluate the proposed denoising method through
experiments on various images at different noise levels. Since
our method is motivated by our bounds formulation [1], we first
compare the ideal denoising performance of our method (using
“oracle” parameters) with the MSE predicted by the bounds.
Later, we estimate the parameters directly from the noisy im-
ages, as outlined in Section III, and compare those results with
various popular denoising methods. We also apply our method,
with a minor modification, to color images. Finally, we address
the practical case of denoising real noisy images where the noise
characteristics are unknown and not necessarily Gaussian, or
uncorrelated. In each case, we will show that our results are
comparable, in terms of the MSE [peak signal-to-noise ratio
(PSNR®)], SSIM [45], and the recently introduced no-reference
quality metric () [46] (Wherever applicable), with those obtained
by state-of-the-art denoising methods and are, in many cases, vi-
sually superior.

Since our method was specifically designed with the aim
of achieving the theoretical limits of the performance, we first
compare our results to the predicted performance bounds [1].
For this first experiment, we compute the “oracle” denoising
parameters from the noise-free images. To be precise, we com-
pute the structure-capturing LARK features from the noise-free
image and perform clustering. These “oracle” clusters are then
used to estimate moments z and C, from the latent image. We
also use the ground-truth image to identify the photometrically
similar patches and compute weights w;; for each noise-free
reference patch. The final denoising using the “oracle” param-
eters is, of course, applied to the noisy image.

SPSNR is measured in decibels and is calculated as 101og,,(2552/MSE)
for images with intensity range of [0-255]. An improvement of 1 dB reduces
the MSE by approximately 20%.
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Not surprisingly, the results are quite impressive in terms
of denoising achieved with finer details being retained at the
same time. The MSE obtained for the Barbara and house images
are 49.42 and 27.97, respectively. For the Barbara image, the
lowest MSE predicted by the denoising bound (MSE of 50.24)
is achieved,” whereas for the house image, the bound (MSE
of 14.82) is still lower. One reason for such discrepancy be-
tween the theoretical prediction and what we obtain in practice,
even with oracle parameters, is that the theory in the bounds
[1] is built on the assumption of exact replicas of patches being
observed. However, in reality, such replicas are rare, even in
“noise-free” images.8 It is encouraging to note that the op-
timal MSE is well below the state of the art for the house image
for which the bounds predict the possibility of improved per-
formance [1]. On the other hand, the optimal performance for
the more complicated Barbara image is comparable with that
of BM3D, in keeping with the bounds predicting little improve-
ment to be gained. The improvement is also visually apparent at
the finely detailed regions where parameter estimation is more
error prone [see Fig. 6(c)].

Having established that our method performs near-optimal de-
noising with “oracle” knowledge of parameters, we experiment
with the more practical case when the parameters are directly es-
timated from the noisy image, as outlined in Section III. In Figs. 6
—8, we compare our results to various high-fidelity methods for
image denoising. In Table I, we quantify the performances for
a variety of benchmark images, across different noise levels,
with different performance measures (PSNR, SSIM [45], and
the no-reference quality metric () [46]). The best results are
shown in bold for ease of comparison. Additionally, we also
highlight results where the difference from the best results are
statistically insignificant (0.1 dB in PSNR and 0.01 for SSIM).
In terms of all the quantitative measures, Table I shows that our
method is quite comparable with BM3D [12] and NLSM [16].
While BM3D’s high performance has not been well justified
on theoretical grounds yet, the steps involved in NLSM can be
quite complex and time consuming (about 170 s on a 256 x 256
grayscale image). Our method is however well motivated and
provides a statistical explanation for its performance.

In terms of visual quality, our method is comparable with
NLSM and BM3D, even outperforming them in many cases
where images exhibit higher levels of redundancy. This can be
observed in Fig. 7, where our result is more visually pleasing
when compared with NLSM and BM3D, both of which pro-
duce more structured artifacts in the smoother floor and face re-
gions (better noticed when viewed at native resolutions online at
http://users.soe.ucsc.edu/~priyam/PLOWY/). Images containing
more semistochastic textures typically exhibit lower levels of
patch redundancy. For such images, BM3D typically does a
better job of denoising. However, even in such cases, our de-
noising results are visually comparable with the state of the art.

It may seem here that the lower bounds are breached, albeit marginally, for
the Barbara image. However, in [1], the bounds were calculated with five clus-
ters, whereas we use 15 clusters here. It was shown in [1] that using more clusters
reduces the bounds further, although the reduction is nominal.

8The term “noise-free” here is an idealization used to imply the original image
before noise is added. In general, images captured are invariably noisy due to
the imaging process [3]. That images considered to be ground-truth also contain
noise, albeit in low strengths, has been illustrated in [47].
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(a) House

(d) BLS-GSM

(b) Noisy

(e) SKR
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(c) “Oracle” denoised

e < =g

(f) FOE

(2) NLSM

(h) BM3D

(i) PLOW

Fig. 6. Comparison of denoising results on noisy house image corrupted by WGN of ¢ = 25. (a) Original image, (b) noisy input, (c) proposed method with
“oracle” parameters (MSE of 27.97), (d) BLS-GSM [23] (MSE of 49.16), (e) SKR [7] (MSE of 47.69), (f) FOE [20] (MSE of 50.36), (g) NLSM [16] (MSE of
32.31), (h) BM3D [12] (MSE of 33.36), and (i) PLOW (MSE of 34.51). High-resolution images can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.

Asanextstep, we apply our method to the problem of denoising
colorimages. In [48], it was pointed out that frequencies at which
the human eye perceives each of the red, green, and blue (RGB)
colors have considerable overlap. Consequently, many color
denoising methods take into account such dependencies, either
implicitly orexplicitly. Mairal ez al. [49]illustrated the usefulness
of enforcing constraints across color channels to reduce color
washing effects. Other methods, such as [17], perform denoising
by explicitly modeling the color information at each pixel.

A different approach to treating such correlated color infor-
mation is through color-space conversion where the information
between color spaces can be largely decorrelated. Such an ap-
proach was employed in [12] in extending the BM3D algorithm
for color images (CBM3D). There, the authors identify similar
patches using the luminance channel, to which the human visual
system is more sensitive. Denoising is however performed on
all channels simultaneously. In general, any grayscale denoising
method can be applied to denoising color images through such

transformations. However, such color-space conversions corrupt
the noise characteristics. Consequently, we perform denoising in
the RGB color space, but only the noisy image luminance is used
to perform geometric clustering. The parameters for denoising
are however individually learned in each color channel.

Fig. 9 illustrates the results obtained by our method with its
naive extension to color images. The noisy images are formed
by adding simulated 5% WGN in each channel.® In terms of
the PSNR, the best performing method overall is CBM3D [12].
However, visually, our method is quite comparable with it and is
significantly better than that in [21], where there is considerable
loss of finer details, and Joshi et al. [17], where the denoised
images still retain some noise. These results are encouraging

9The original and noisy images, along with results for methods in [21] and
[17], were obtained from http://research.microsoft.com/en-us/um/redmond/
groups/ivm/twocolordeconvolution/supplemental_results/denoising.html. The
5% noise corresponds to a standard deviation of approximately 12 in each color
channel.
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(e) BM3D
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(f) PLOW

Fig. 7. Denoising of the Barbara image for WGN with ¢ = 25. Regions cropped from the images are compared. (f) Our proposed method (MSE of 62.64)
produces visually superior results when compared with (c) K-SVD [13] (MSE of 73.95), (d) NLSM [16] (MSE of 61.00), and (e) BM3D [12] (MSE of 56.17).
High-resolution images can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.

13
Stream

Boat

Pei)pers

Lena

Fig. 8. Some benchmark images that we use to perform the quantitative eval-
uation of method performances.

considering that CBM3D and [17] are specifically designed to
handle color images.

Until now, our experiments involved images corrupted by
simulated WGN. Although the Gaussian pdf makes a good noise
model, real noise is signal dependent [3], [21]. To demonstrate
our performance in such situations, we apply our method to de-
noising some real noisy images with unknown noise character-
istics. For these experiments, an estimate of the noise variance
was used as an input to our method. The best results optimized
using the (Q-metric [46] are shown in Fig. 10, where we compare
our results to the commercial Neat Image denoising method that
specifically handles intensity-dependent noise profiles. Even for
such non-Gaussian correlated noise, our method suppresses the
noise effectively, while retaining the finer details.

We point out that the parameters used for our method are kept
fixed across all noise levels and images. For all our experiments,
we use a patch size of n = 11 x 11, with the number of clus-
ters K set to 15. The smoothing parameter, which controls the
amount of denoising, is also kept fixed at h? = 1.7502n. In
general, these parameters can be tuned on a per-image basis,
manually or using some no-reference image quality measure
[46]. In our opinion, such tunable parameters make a method
less practical. Results presented in this paper thus use the fixed
parameter settings previously mentioned. However, for highly
textured images (e.g., boat and stream images), the noise vari-
ance tends to be overestimated by (21) when considering strong
noise (o > 25). This results in slightly oversmoothened de-
noised images. For such cases, we provided our algorithm with a
lower noise variance. While these parameters influence the per-
formance of the PLOW, other parameters such as those used to
compute the LARK, the number of iterations in K-means, and
the size of the search window, also exert some effect on the de-
noising result. However, these are also kept fixed without any
need for tuning by the user.

In terms of computational complexity, denoising a 256 x 256
grayscale image with a nonoptimized (MATLAB and Mex) im-
plementation of our method takes approximately 75 s, with the
prefiltering step accounting for about half the processing time.
The feature formation and clustering step takes roughly 10%
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TABLE I
DENOISING PERFORMANCE OF SOME POPULAR METHODS (NLSM [16] AND BM3D [12]) UNDER WGN CORRUPTION, COMPARED WITH PLOW, WITH
AND WITHOUT ORACLE INFORMATION. RESULTS NOTED ARE AVERAGE (TOP) PSNR, (MIDDLE) SSIM [45], AND (BOTTOM) (- MEASURE [46] OVER FIVE
INDEPENDENT NOISE REALIZATIONS FOR EACH o

House (256 x 256) Lena (512 x 512) Barbara (512 x 512)
NLSM | BM3D | PLOW || NLSM | BM3D | PLOW || NLSM | BM3D | PLOW
39.91 39.80 39.52 38.72 38.73 38.66 38.46 38.30 37.98
5 0.958 0.957 0.954 0.945 0.945 0.946 0.965 0.965 0.946
42.35 42.58 42.20 35.18 35.37 34.75 69.80 69.60 69.14
173527 | 3495 | 3472 [ 3417 | 3426 | 3390 || 3298 | 33.09 | 32117 |
15 0.902 0.890 0.893 0.893 0.895 0.890 0.920 0.923 0.913
36.10 36.37 36.98 21.08 21.07 21.59 5541 55.25 55.28
173304 | 3289 | 3270 || 3184 | 3207 | 31.92" [ 30.34 | 30.67 | 3020 |
25 0.866 0.859 0.859 0.855 0.861 0.859 0.876 0.886 0.879
20.07 20.11 20.39 11.43 11.45 11.69 37.87 37.80 37.72

T17 2899 | 2925 29.08 27.55 28.58 | 2832 || 25.68 | 2675 | 26.19
50 | 0.814 0.802 0.780 0.774 0.788 0.759 0.748 0.778 0.755

Peppers (256 x 256) Boat (512 x 512) Stream (512 x 512)
NLSM | BM3D | PLOW NLSM | BM3D | PLOW || NLSM | BM3D | PLOW
38.14 38.06 37.69 37.36 37.28 37.24 35.75 35.75 35.59
5 0.955 0.956 0.954 0.941 0.939 0.941 0.964 0.964 0.962
76.37 76.17 75.60 37.21 37.38 36.95 31.12 30.94 30.58
T17 3276 | 3265 | 31.82 || 3217 | 3211 | 31537 || 2888 | 28.74 | 2871 ]
15 0.905 0.906 0.899 0.855 0.854 0.840 0.852 0.845 0.849

64.00 64.02 64.99 27.16 27.47 28.38 21.51 22.21 19.74
“30.06 | 30.07 | 2953 || 29.73 | 29.83 | 29.59 || 26.27 | 26.14 | 26.20 ]
25 0.864 0.868 0.859 0.794 0.800 0.794 0.745 0.735 0.747
49.55 49.87 50.13 14.38 14.49 14.19 12.18 12.54 12.14

2516 | 2585 26.32 25.46 2620 | 26.13° || 2243 23.08 23.38
50 | 0.766 0.775 0.752 0.656 0.685 0.674 0.489 0.535 0.571

Noisy images are clipped to lie within the [0-255] intensity range. This, along with the fact that we report the average result of five runs in each case, may
result in BM3D and NLSM figures differing from those reported in [12] and [16], respectively. Reliance on detecting anisotropic regions in noisy images
makes the ()-measure inapplicable for o = 50 cases [46].

Original

Original

CBM3D 33.64dB

1%

Joshi 32.41dB PLOW 32.98dB Joshi 32.54dB

Jdghi 33.15dB PLOW 33.82dB

Fig. 9. Comparison of the denoising performance for color images corrupted by 5% WGN in each color channel. Methods compared with are CBM3D [12] and
the works in [21] (first order) and [17]. Note that CBM3D and the method of Joshi ez al. are specifically for color images. Images at native resolutions are available
at http://users.soe.ucsc.edu/~priyam/PLOW/.

of the execution time, whereas the majority (88%) of the time counting for the remaining 2% of the time, along with other
is spent in estimating the PLOW parameters and filtering the overheads. Compared with our method, NLSM takes, on av-
noisy patches. The aggregation step takes negligible time, ac- erage, 170 s to denoise the same images, whereas the optimized
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Statues (noisy)

Neat ImageT
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PLOW

Fig. 10. Denoising of some real noisy color images. Our results are visually comparable with those obtained from the commercial Neat Image denoising method,
although Neat Image specifically addresses color images with real noise profiles. Neat Image denoising software is available at http://www.neatimage.com. High-
resolution versions of images shown here can be compared at http://users.soe.ucsc.edu/~priyam/PLOW/.

(Mex) code for BM3D is much faster (about 1 s). A simple
speedup for our method can be achieved by denoising only every
third patch, bringing the average execution time down to ap-
proximately 17 s. Although this results in a minor drop of 0.2 dB
in the PSNR, the visual differences are almost imperceptible.

V. SUMMARY AND FUTURE WORK

In this paper, we have proposed a method of denoising mo-
tivated from our previous work in analyzing the performance
bounds of patch-based denoising methods. We have developed
alocally optimal Wiener-filter-based method and have extended
it to take advantage of patch redundancy to improve the de-
noising performance. Our denoising approach does not require
parameter tuning and is practical, with the added benefit of a
clean statistical motivation and analytical formulation. We an-
alyzed the framework in depth to show its relation to nonlocal
means and residual filtering methods such as [50]. Through ex-
perimental validation, we have shown that our method produces
results quite comparable with the state of the art.

While mainly developed for grayscale images, with trivial
modification, our method achieves near state-of-the-art per-
formance in denoising color images as well. The denoising
performance can be expected to improve further by taking

into account the correlation across color components. Since the
method works by learning the moments in geometrically similar
patches, the interchannel color dependences can be implicitly
captured in this framework. In a more practical setting where
signal-dependent noise is observed, the clustering step needs to
take into account color (or intensity) information as well. The
noise in each cluster can be then assumed to be homogeneous
[21], and the proposed filter can be independently applied in
each cluster.

APPENDIX A
DERIVATION OF EXPRESSION FOR C¢

Here, we derive an expression for the covariance matrix C¢
based on the data model [see (10)], i.e.,

y,=Aizit+¢g +n, (28)
——
<
where g; = [...€};...]T and n, = [. .17 ...]7 obtained from

all patches y; similar to a given y;. As per definition of €;; [see
(5)], €; and 7, are independent of each other, which leads to the
covariance matrix being

C; =Cy +Ce,. (29)
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Assuming the noisy patches y; and, hence, the noise 7, to be
i.i.d., the covariance matrix C,, takes the following form:

C, =1, (30)
where I is the ¢ X ¢ identity matrix with dimension ¢ = n.N;
dependent on the level of redundancy exhibited by the y; patch.
Furthermore, assuming that the pixels within a (noise-free)
patch z; and, as aresult, €;; are i.i.d., we obtain a diagonal form

for C,,. The diagonal elements for this matrix can be derived
from the definition of (5) as

&ij =2 — 2z = (y; —¥i) — (n; —m;)

= E [lles11’) =E [I(y; —yi) — (n; —m,)I1%]
=E (lly; = vill’] + E [lln; — m:|?]
—2E [(y; —yi)" (n; —m)]
=E|ly; - vill?]
- 2(E [(ZJ - Zi)T(ﬂj - "7;')]
+E [(n; —m)" (n; —my)]) +20°n
=E [lly; - yill"] —20°n 31

where the last step assumes the noise to be independent of z. As
mentioned before, assuming the €;; vectors to be i.i.d., we can
write

1
C., = (EE lly; — vill*] - 202) I (32)
0
=C.=| C. (33)
0
from which we obtain the covariance matrix C¢ as
0
C; =C., +Cy = 631 (34)
0
where &7 = (1/n) Ellles;|I°] = (1/n) Ellly; - yill”] - o*.

Note that, in the aforementioned expression, the covariance for

€, and, hence, ( are estimated patchwise, whereas the covari-
ance related to (homogeneous) noise 7, only varies in dimen-
sionality depending on the redundancy | level of the patch under
consideration.

APPENDIX B
DERIVATION OF REDUNDANCY EXPLOITING
WIENER FILTER

Here, we derive the LMMSE estimator for the data model in
(10). As shown in (11), the LMMSE estimator for each patch
can be obtained using its N; nearest neighbors as

1
7=7+ (C;1 + A,L-TCC_IA,L-) ATC My, - Aiz) (35)
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where A; = [I,...,I]T is formed by stacking together N; iden-
tity matrices, each of size n x n. With C¢ having a diagonal
form [see (12)], we can simplify (35) by noting that

ATC (y — A7)
0 y1 z
= [L...1] [65°T] |-
0 YN z
N;
=[.6571. ) | (vi—2) | =) 8;(y;—2) (36)
j=1
A,L-TC;IA
I .
=[ 670 ] | =) 65T (37)
1] =

This gives rise to a simplified LMMSE estimator expression

Nq' Ni
Zi=z+ (C7 + Y 67T D 6y (38)
i=1 j=1
c;! N —2
=7+ | =2 +1 v i —2). 39
<Za 15t12 ) 12:1 ZJ 1 LJ

Implementing this estimator requires C, to be invertible. How-
ever, C, can be ill conditioned and even rank deficient, leading
to an inaccurate estimation of z;. To alleviate this problem, we
make use of the matrix inversion lemma [31] to obtain a form
that does not require inversion of C:

c;! B
=5 S +I| =I-|) 6;°C,+I
7 j

This leads to an alternative expression for the LMMSE estimator
as

-1

(40)

-1

6.2
Zi =2+ |I—- | > 6;°C,+1 Y =ty 2)
J J Zj&i]’
_Z+Z —7)
J 7.7
-1
62
- Y 67C+1| > =Lyi—2)
7 ALY
-1
62 Z )
1] —_ —
=Y =2 |vi- 077C.+1| (y;-2)
J ZJ bij J ’
|5 55y
- -2
j Z]’(sw
B —1
85
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Note that the first part of the aforementioned formulation is
closely related to NLM [8], [9] (using weights w;; = E,i_]-z) with
an added term that processes the residuals between the noisy
patches and the estimated mean patch.

APPENDIX C
DERIVATION OF APPROXIMATE SIMILARITY MEASURE

In Section II-B, we derived an extension for the Wiener filter
where photometrically similar patches contribute in denoising
a given reference patch. This was analyzed through a modified
per-patch data model. In the final filter formulation, the con-
tributing weights of photometrically similar patches were deter-
mined to be w;; = 6;]»2, where

bz = %E [z — z;]|?] + o> (42)
However, computing 6,; for a pair of z; and z; random vec-
tors is not possible given only the two observations. Further-
more, this would require access to the noise-free image. In prac-
tice, 6;; and, hence, w;; need to be estimated from the corre-
sponding noisy observations y; and y;, respectively. However,
let us first assume that the noise-free patches are made available
to us. Next, we show that the weight formulation employed in
(23) is simply an approximation that can be derived from (42).

Let us rewrite (23) in terms of the original noise-free image

patches as
1 1z — 21|
wij = 53 X {‘T “3)
= 62 = =o2ex M (44)
i = Wij = P h2 :

Note that the aforementioned equation would be the ideal
weights that we estimate using the noisy observations y; and
y; in (23). Let us define u = ||z; — z;||?/h2. Since we consider
only photometrically similar patches that satisfy the condition
in (5), we know that ||z; — z;||> < ¥* < o>n [1]. Thus, by
choosing h? > o2n, we can guarantee that u < 1. Conse-
quently, as h? increases, u approaches 0. We can then write the
Taylor expansion of the exponential function around » = 0 as

e =14+u+0w?) ~1+u
12i — 2>

o2n

[since u < 1]
=1+

= 6,’2] :Uzeu

~ 0 + Sz — 2. 45)
n

Comparing (42) with the above expression, it is easy to observe

their similarities. As mentioned earlier, the expected value of

(42) cannot be accurately calculated from a single pair of z; and

z; observations. As a result, it is dropped when computing the

weights.

The aforementioned derivation assumed the knowledge of the
distance between the noise-free similar patches. As such, these
are the “oracle” weights that we would ideally want to use for
denoising. However, in practice, only the noisy patches are ob-
served. As a result, the actual weight function is approximated
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by replacing the noise-free z; and z; patches with their corre-
sponding noisy y; and y; observations, giving rise to the ex-
pression in (23) as

LS i yil?
wij = s XD 2 .

Note that the distance between noisy patches can be much
higher than those between the underlying noise-free patches.
As aresult, a larger smoothing term is needed for denoising. In
our paper, we set h2 = 1.7502n for all noise levels and images.

(46)
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