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Undersampled Face Recognition via Robust
Auxiliary Dictionary Learning

Chia-Po Wei and Yu-Chiang Frank Wang, Member, IEEE

Abstract—1In this paper, we address the problem of robust
face recognition with undersampled training data. Given only
one or few training images available per subject, we present
a novel recognition approach, which not only handles test
images with large intraclass variations such as illumination and
expression. The proposed method is also to handle the corrupted
ones due to occlusion or disguise, which is not present during
training. This is achieved by the learning of a robust auxiliary
dictionary from the subjects not of interest. Together with the
undersampled training data, both intra and interclass variations
can thus be successfully handled, while the unseen occlusions
can be automatically disregarded for improved recognition. Our
experiments on four face image datasets confirm the effectiveness
and robustness of our approach, which is shown to outperform
state-of-the-art sparse representation-based methods.

Index Terms— Dictionary learning, sparse representation, face
recognition.

I. INTRODUCTION

ACE recognition has been an active research topic, since it
is challenging to recognize face images with illumination
and expression variations as well as corruptions due to occlu-
sion or disguise. A typical solution is to collect a sufficient
amount of training data in advance, so that the above intra-
class variations can be properly handled. However, in practice,
there is no guarantee that such data collection is applicable, nor
the collected data would exhibit satisfactory generalization.
Moreover, for real-world applications, e.g. e-passport, driving
license, or ID card identification, only one or very few face
images of the subject of interest might be captured during the
data acquisition stage. As a result, one would encounter the
challenging task of undersampled face recognition [1].
Existing solutions to undersampled face recognition can be
typically divided into two categories: patch-based methods and
generic learning from external data. For patch-based methods,
one can either extract discriminative information from
patches collected by different images, or utilize/integrate the
corresponding classification results for achieving recognition.
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For example, the former has considered local binary
pattern (LBP) [2], Gabor features [3], or manifold learning [4],
while the latter advanced weighted plurality voting [5] or
margin distribution optimization [6]. Nevertheless, the major
concern of patch-based methods comes from the fact that
local patches extracted from undersampled training data only
contain limited information, especially for the scenario of
single-sample face recognition (i.e., one training image per
person). As a result, the classification results would degrade
significantly when there exists large variations between the
query and the gallery ones. Moreover, patch-based methods
often assume that the image patches are free from occlusion;
this would limit their uses in practical scenarios.

In contrast to patch-based approaches for undersampled face
recognition, the second type of methods advocate the use
of external data which contain the subjects not of interest.
These approaches aim at learning the classifiers with improved
recognition abilities (see [7], [8]), or modeling the intra-class
variations (see [9]-[11]). For example, based on the assump-
tion that the face images of different subjects are independent,
adaptive generic learning (AGL) [7] utilized external data for
estimating the within-class scatter matrix for each subject
to be recognized. Different from AGL which requires the
above assumption, Kan et al. [8] further proposed a nonlinear
estimation model to calculate the within-class scatter matrix.

Different from [7] and [8], recent works like [9]-[11]
employed external data for describing possible intra-class
variations when performing recognition. Although promising
result have been shown in [9] and [10], these approaches
require the query image and the external data to exhibit the
same type of occlusion, which might not be practical. Since
we typically do not have the prior knowledge on the occlusion
of concern, how to select external data for learning intra-class
variations would become a problem for methods like [9], [10].
Recently, [11] considered the modeling of intra-class varia-
tions without using the prior knowledge of occlusion, and
it characterized occlusion as sparse errors when performing
recognition. As noted in [12], such characterization might not
be accurate and would be insufficient to describe the occlusion
presented in real-world face images.

In this paper, we advocate the extraction of representative
information from external data via dictionary learning without
assuming the prior knowledge of occlusion in query images.
This framework is considered as robust auxiliary dictionary
learning (RADL). With the same setting as [9]-[11], we
consider the scenario that only one or few non-occluded
training images are available for each subject of interest.
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Ilustration of our proposed method for undersampled face recognition, in which the gallery set only contains one or few face images per subject of

interest, while the auxiliary dictionary is learned from external data for observing possible image variants. Note that the corrupted image regions of the query

input can be automatically disregarded using our proposed method.

Unlike [9], [10], which require the prior knowledge of the
occlusion, our approach eliminates such assumptions by intro-
ducing a novel classification method based on robust sparse
coding. It is worth noting that existing dictionary learning
algorithms like KSVD [13] can also be used to learn dictionar-
ies for images from external datasets. However, these learned
dictionaries cannot guarantee the recognition performance
for the subjects of interest, since KSVD only considers the
representation ability of dictionaries. In our work, we jointly
solve the tasks of auxiliary dictionary learning and robust
sparse coding in a unified optimization framework (detailed
in Section IIT). This makes our approach able to improve the
performance for robust face recognition under the scenario of
undersampled training data.

Fig. 1 illustrates our idea of the proposed method.
By learning an auxiliary dictionary from an external
dataset together with robust sparse coding, the benefits of
our approach are threefold. Firstly, we are able to address
undersampled face recognition problem, since only one or few
training images of the subjects to be recognized are required
for training. Therefore, there is no need to collect a large
training dataset for covering image variants for all subjects of
interest. Secondly, our approach provides a new tool for recog-
nizing occluded face images by means of robust sparse coding
and the auxiliary dictionary, while no assumptions are made
about the information on occlusion. Finally, our algorithm for
auxiliary dictionary learning allows one to model intra-class
variations including illumination and expression changes from
external data. By solving both auxiliary dictionary learning
and robust face recognition in a unified framework, improved
recognition performance can be expected.

The remaining of this paper is organized as follows.
Section II reviews related works on sparse representation
based approaches for face recognition and dictionary learning.
In Section III, we present our proposed algorithm for auxil-
iary dictionary learning and undersampled face recognition,
including the optimization details. Experimental results on
three face image databases are presented in Section I'V. Finally,
Section V concludes this paper.

II. RELATED WORK
A. SRC and Extended SRC

Recently, Wright et al. [14] proposed sparse representation
based classification (SRC) for face recognition. Since our
proposed method is extended from SRC, we briefly review this
classification technique for the completeness of this paper.

Given a test image y, SRC represents y as a sparse linear
combination of a codebook D = [D;,D»,---, D], where
D; denotes the training images associated with class i.
Precisely, SRC derives the sparse coefficient x of y by solving
the following L1-minimization problem:

min |y — Dx[3 + 41x]11 ()

After the sparse coefficient x is obtained, the test input y is
recognized as class £* if it satisfies

* = argm{jn |y — Do (x)|

5 )

where d¢(x) is a vector whose only nonzero entries are the
entries in x that are associated with class £. That is, the test
image y will be assigned to the class with the minimum class-
wise reconstruction error. The idea of SRC is that the test
image y can be best linearly reconstructed by the columns
of Dy« if it belongs to class £*. As a result, most non-zero
elements of x will be associated with class ¢*, and
ly — Ddg«(x) |, gives the minimum reconstruction error.

A major assumption of SRC is that it requires the
collection of a large amount of training data as the
over-complete dictionary D. Therefore, directly applying
SRC to tackle undersampled face recognition will lead to
degraded performance. To address this issue, Deng et al. [9]
proposed Extended SRC (ESRC), which solves the following
minimization problem:

y—[D, Al [i"}

where X = [Xq; Xa]. In the scenario of undersampled face
recognition, each subject in D only has one or few images.

min
X

2
+ A1, 3)
2
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To be able to model all possible variations of interests,
ESRC introduces the intra-class variant dictionary A, which
consists of image data collected from an external dataset
(e.g., subjects not of interest). In a similar spirit of SRC,
ESRC proposed the following classification criterion:

y— D, Al [5€(Xd):|

" = arg mgin

. “)

Xa )

We note that, compared to (2), the operator d,(-) in (4)
is only applied to xq instead of the entire coefficient
vector X. This is because that x, is not associated with any
class label information. Although ESRC has shown promising
results on undersampled face recognition, there are three
concerns with ESRC. Firstly, ESRC directly apply external
data as A, which might be noisy or contain undesirable
artifacts. Secondly, the computation of (3) would be very
expensive due to the large size of A. This is due to the fact
that ESRC needs the matrix A for covering all intra-class
variations of interest. Finally, ESRC regards occlusion as
intra-class variations during the collection of A from external
data. In other words, ESRC assumes the type of occlusion to
be known when collecting external data, which might not be
practical.

B. Dictionary Learning for Sparse Coding

Recent research on computer vision and image processing
has shown that the learning of data or application-driven
dictionaries outperforms approaches using predefined
ones [16]. In general, the optimization algorithms for
dictionary learning can be designed in an unsupervised or
supervised manner. Unsupervised dictionary learning such as
MOD [17] or KSVD [13] focuses on data representation, and
is suitable for image synthesis tasks like image denoising.

Nevertheless, for addressing recognition tasks, one requires
supervised dictionary learning strategies which aim at
introducing improved discriminative capability for the
observed learning model. Several approaches have been
proposed by introducing different classification criteria
to the objective function. For example, Ramirez er al
incorporated an incoherent term on dictionaries from different
classes into the sparse representation based formulation [18].
Yang et al. added the Fisher discrimination term to the
objective function such that the learned dictionaries would
favor data classification [19]. Another common approach
integrated classifier design into the sparse representation
framework, so that both classifiers and dictionaries will be
jointly learned for improved recognition [20]-[23].

The above dictionary learning approaches all require
a sufficient amount of training data, and thus they will
not generalize well for undersampled face recognition.
Recent works [10], [11] address this issue via the learning
of intra-class variations from external data. However, as
ESRC discussed in the previous subsection, [10] also views
occlusion as the intra-class variation. Consequently, [10]
demands the information on occlusion of test images for
learning intra-class dictionaries, which largely limits their
applications in practice. In this paper, we also consider the
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TABLE I
COMPARISONS OF RECENT SRC-BASED APPROACHES
FOR FACE RECOGNITION

Undersampled | Dictionary | Robustness to
Gallery Set Learning Occlusion

SRC [14] X X X

RSC [12] X X Vv

LRSI [15] X X V4

ESRC [9] Vv X X

ADL [10] Vv vV X

SVDL [11] | / Vv X

Ours vV Vv Vv

learning of an auxiliary dictionary for modeling intra-class
variations using external data, but unlike [10], our approach
treat occlusion as the pixels that have large reconstruction
errors. As a result, our learned intra-class dictionary does not
depend on the occlusion information in test images. Another
recent work [11] characterized occlusion as sparse errors
when performing recognition. This approach does not require
the prior knowledge of occlusion, but as noted in [12], such
characterization might be imprecise and would be insufficient
to represent the occlusion presented in real-world face images.

C. Remarks on SRC-Based Approaches for Face Recognition

We highlight and compare the properties of recent sparse
representation based face recognition methods in Table I, in
which SRC [14], ESRC [9], ADL [10], SVDL [11] have been
discussed in previous two subsections. It is worth mentioning
that Yang et al. [12] have proposed an iteratively reweighted
sparse coding algorithm to improve SRC for better dealing
with outliers such as occlusion or corruption. Another recent
work [15] utilized low-rank matrix decomposition with struc-
tural incoherence to address the scenario where both training
and test data can have occluded images. Both [12], [15] do
not require the knowledge of occlusion in test images, but
they need a sufficient amount of training data to cover image
variants for all subjects of interest. Directly applying the
methods of [12] and [15] to undersampled face recognition
can lead to degraded recognition performance. Later in the
experiments, we will confirm that our approach outperforms
state-of-the-art SRC based methods.

III. OUR PROPOSED METHOD

A. Face Recognition via Robust Auxiliary
Dictionary Learning

1) Our Classification Formulation: We now present our
classification algorithm for undersampled face recognition via
robust auxiliary dictionary learning, as shown in the upper
part of Fig. 2. Let y € R? be the query image and D € R?*"
be the gallery matrix. The gallery matrix D is composed of
data matrices from L classes, i.e. D = [Dy, D3, ..., Dz]. The
auxiliary dictionary A € R*" is learned from external data,
and the detailed algorithms for learning A will be discussed
in Section III-B. Our goal is to determine the identity of the
query input y.

Although ESRC in (3) can be employed to classify y, it
assumes that the types of occlusion (or corruption) of the test
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Fig. 2. Flowchart for our proposed framework for undersampled face
recognition.

image y must be known and present in their pre-collected
dictionary A. It is obvious that this assumption might not
be practical in real-world scenarios. To address this issue,
instead of solving (3), we consider the following minimization
problem:

mxinp (y —[D, A] I:;:::D + Allx|l1, (5)

where X = [Xq; Xa] is the sparse coefficient of y, and the
residual function p(-): RY — R is defined as

d
pe) =D plew),
k=1

1
plex) = “2a (ln (1 + exp(—puej + /15))
—In(1 + exp ud)), (6)

where ey, is the kth entry of e = y—[D, A]x, and the parameters
1 and 6 will be detailed at the end of this subsection.
In the theory of robust M-estimators [24], the residual
function p(-) in (5) is designed to minimize the influence
of outliers. Standard residual functions used in robust
M-estimators include Huber, Cauchy, and the Welsch
functions. We consider the residual function p(-) defined
in (6), because this type of residual functions has shown
promising results in recent literatures of robust face
recognition [12], [25].

We note that, similar to the least-squares approach, ESRC
utilizes the L2-norm in (3) as the residual function, which
is known to be sensitive to outliers. This is because that the
L2-norm grows quadratically as the absolute value of its input
increases (see the blue curve in Fig. 3(a)). The red and green
curves in Fig. 3(a) plot our residual function and the Welsch
function, respectively. After deriving the solution of (5), we
will discuss how the three residual functions in Fig. 3(a)
affect face recognition.

2) Remarks on Robust Sparse Coding: It is worth mention-
ing that both robust sparse coding [12] and our formulation (5)
aim at solving a non-convex optimization problem with
L1-norm regularization. However, our approach to obtain the
optimal solution is very different from the one used in [12].
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Fig. 3. (a) The residual function p(-) and (b) the corresponding weight

function w(-).

In particular, [12] assumes that the objective function can
be approximated by a first order Taylor expansion with a
quadratic residual term. As a result, what RSC minimizes is an
approximated version of the original objective function. On the
other hand, our approach directly solves the optimization
problem by the technique of variable substitution and the
chain rule for calculating the derivatives (see Section III-A3
for detailed derivations). We note that the derivations of RSC
and ours lead to similar algorithms that both iteratively solve a
weighted sparse coding problem and update the weight matrix
accordingly. However, our derivation guarantees the optimal
solution, while the derivation of RSC might result in an
approximated one. We note that RSC is extended from SRC,
which requires a sufficient amount of training data (i.e., an
over-complete dictionary) and thus is not able to handle
undersampled recognition problems. Later in our experiments,
the superiority of our approach over RSC can be verified.

3) Optimization: Next, we show how to derive the solution
of (5). Taking the derivative of the objective function in (5)
with respect to x leads to

d

d d
— (p(©) + AIx]h) = k:zl Tople) +Adlxl, (D)

where 0||x||; represents the derivative of ||x||;. Using the chain
rule of derivatives, (7) can be expressed as

d
dp(ey) dey
P EINT
=1 ek
d 2
1 dp(er) 1 dej,
A WNLASOE Y
2; FE— + A0[1x]ly
d 2
1 dej,
= 5 zw(Ek)d_X +/16||X”1’ (8)
k=1
where
dp(er) 1 exp(—ue; + ud)
w(ex) = P )_ - ©

der e 1+ exp(—,ue,% + ud)’
If w(ex) in (8) is fixed as a constant, then (8) becomes the
derivative of

d

1
> wler)e; + Axl = 7| Well; + Al
k=1

1

5 (10)
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where e =y — [D, A]x and

W = diag(w(er), w(ea), ..., wleq))/?. (11)

From the above derivation, we know that the solution of (5)
can be calculated by repeatedly solving

o-m )

and updating W according to (11), where e; is the
kth entry of e. Notice that with W fixed, (12) is in the
form of the standard L1-minimization problem, and one
can apply existing techniques such as Homotopy, Iterative
Shrinkage-Thresholding, or Alternating Direction Method for
solving (12). In our work, we choose the Homotopy method
because of its effectiveness and efficiency as suggested in [26].

We see from (10) that w(er) is multiplied with e,%, and
thus w(er) can be viewed as the weight of e,%. We plot
the weight function w(-) corresponding to different residual
functions p(-) in Fig. 3(b). It can be seen from the figure that
the weight function of L2-norm is a constant function, while
our weight function outputs a smaller value for large |ek|. This
property makes our w(-) able to detect occlusion from the
test image, since occlusion often leads to large reconstruction
errors than ordinary pixels do. Although the Welsch function
in Fig. 3(b) also possesses this property, it is more
sensitive to the magnitude of e; than our weight function is.
When e, slightly deviates from zero, the output of the
Welsch function quickly drops, while the output of our weight
function remains unchanged.

After obtaining the optimal solution of (5), denoted by x*
and its corresponding weight matrix W* we propose the
following classification rule to classify y:

a

2
+ Allxll1, 12)
2

min
X

* = argmgin , (13)

2

where x* = [x3; x;]. Namely, we assign y to the class with the
smallest reconstruct error. Different from the classification rule
of ESRC in (4), the weight matrix W* in (13) lowers the influ-
ence of pixels that are poorly reconstructed. As a result, (13)
achieves better recognition performance than ESRC, especially
when the test image y is occluded or corrupted. Algorithm 1
summarizes our algorithm for classifying y.

4) Parameter Selection: Next, we discuss how to choose
the parameters # and J for the weight function in (9). The
goal is to select ¢ and J such that the output of the weight
function in (9) is similar to the red curve in Fig. 3(b). Notice
that when e approaches zero, we have w(ex) =~ exp(ud)/
(1+exp(ud)). If the product ud is large enough, then w(ey) ~
exp(ud)/exp(ud) = 1. To this end, we let ud = C,5, where
Cus is a constant whose value is equal to or larger than 8.
Next, we show how to determine J. Notice that w(eg) in (9)
can be expressed as

oer) = _SPEO =)
T T e - )’

and thus w(ex) = 1/2 when 0 = e,%. That is, 0 determines
when the output of w(ex) will pass through 1/2. To decide the
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Algorithm 1 Undersampled Face Recognition via RADL

Input: Training data D = [D1, D5, ..., D] from L subjects, intra-

class dictionary A, and the test input y
Step 0: Normalize y and the columns of D to have unit £2-norm
Step 1: Initialize W =1
Step 2: Calculate the optimal solution of (5), denoted by x*, and
the associated weight matrix W™
while not converged do

x + arg mine [W (y — [D, AJx)[2 + Alx]h

e+ y—[D,Alx

W <« diag(w(e1), ...

end while

,w(eq))? with w(-) defined in (9)

Step 3: Classify y via weighted reconstruction errors

W (y_ D, A [ag@ig)D

Output: identity(y) <+ £*

* .
¢ = argmin

¢e{1,2,....L}

2

value of J, we sort the vector [elz, e%, R eﬁ] in descending
order and denote the sorted vector by e;. We let J be the jth
largest element of e;, where j is the nearest integer to td
with 7 € [0.6,0.8] and d = length(es). Once ¢ is obtained,
u can be readily calculated as 4 = C,s/J. This mechanism
for adjusting # and J has been utilized in [12] and [25].

B. Robust Auxiliary Dictionary Learning (RADL)

1) Our Proposed Algorithm for RADL: In Section III-A,
we present an ESRC-based algorithm for undersampled face
recognition, with the introduced residual function can be
applied to identify and disregard corrupted image regions due
to occlusion. We now discuss how we learn the auxiliary
dictionary A in (5) for properly handling intra-class variants of
interest. Inspired by [9]-[11], we utilize images collected from
external data to learn the auxiliary dictionary. More specif-
ically, our objective function integrates dictionary learning
and the classification rule of (13) for improved and robust
recognition performance.

We now detail our proposed algorithm for RADL, which
is depicted in the lower part of Fig. 2. Suppose the external
dataset contains p subjects. We partition these external
images into a probe set Y, and a gallery set D, (note that
the subscript e indicates external data). The probe matrix
Y, = [y;,yz, . ..,yév] € R¥*N consists of N images in R4
with different intra-class variations to be modeled. The gallery
matrix D, € R?*'P contains only one or few face images
per subject, where r is the number of images per subject.
If each subject in the gallery set only has one face image,
then D, € R?*?. To learn an auxiliary dictionary for modeling
intra-class image variants, we propose to solve the following
minimization problem during training:

N i .
%;p (y; ~ D, Al [id}) +2[x,

+77 p(y. — Dedi, (xi) — AxY), (14)
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where the auxiliary dictionary A € R?*™ is to be learned
(m specifies the number of dictionary atoms), and the
function p(-) is defined as in (6). The vector x = [xfi; x;]
is the sparse coefficient of yi, in which x; € R”*! and x}, €
R™*! indicate the coefficients associated with the gallery D,
and the auxiliary dictionary A, respectively. We denote by
X = [xl,xz,...,xN] e Rm+PXN the sparse coefficient
matrix for Y.. The function dJ;, (Xfl) outputs a vector whose
only nonzero entries are the entries in xg that are associated
with class i¢ (i¢ denotes the label of y,, in the external data set).
Parameters A and # control the weights of the sparsity and the
class-wise reconstruction error, respectively.

In (14), the first term indicates data representation, the
second term introduces the sparsity constraint, while the last
term p(y, — D.d;, (x) — Ax) is the reconstruction error for
class iy. Notice that our classification rule in (13) assigns the
test image to the class with the minimum reconstruction error.
Since the label of yé is iy, we introduce the last term in (14)
to minimize the reconstruction error for class iy. This explains
how we effectively integrate both robust auxiliary dictionary
learning and classification into a unified framework.

2) Optimization for RADL: We now provide optimization
details for solving (14) during training. The objective function
in (14) is nonlinear with respect to variables X and A.
To solve (14), we employ the alternating direction
method [27], which iterates between the stages of sparse
coding and dictionary update for obtaining the optimal solution
of (14).

a) Sparse coding for updating X: In the sparse coding
stage, we fix A and optimize (14) with respective to X, which
is equivalent to solving the following problem:

min p(y} — [De, AIX) + 4|x
XI
+1 (3} — Dedy, (x}) — AX})

for i = 1,2,...,N. Following similar steps as
in Section III-A3, we can obtain the solution of (15) by
iteratively solving

15)

min [ W, (5! — (Do ARO[ + 4],

4 [Wey! — Ded, (xi) — AXL) |3 (16)
with
W, = diag(w(g1), w(g2), ..., w(ga) "2,
W, = diag(w(cy), w(cp), .- ., w(cd))l/z, (17)

where w(-) is defined as in (9), and g and c; are the
kth entries of

g =y, — D, AlX,

¢ =y, — Do, (xi) — Ax}, (18)

respectively. Notice that (16) can be written as the following

L1 minimization problem:
T wWeyi 1 [ weDe WA X i
min [ywcyé yWedie(De) 7 WA || xi X

x!

2
+z’
2

1’
19)
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where y = #'2 and 6;,(D,) € RYP whose only
nonzero columns are those columns of D, that are associated
with class i,. Hence, one can utilize existing techniques
mentioned in Section III-A3 to solve (19).

b) Dictionary update for A: In the dictionary update
stage, we fix X and optimize (14) with respect to A, whose
solution can be obtained by solving the following problem:

N
min > p(y, — [De, Ax)
* =1

+1 (¥, — Dedi, (xj) — Axh) (20)
for j = 1,2,...,m, where o/ is the jth column of A,
ie. A = [a',a? ...,a™]. Following similar steps as

in Section III-A3, we calculate the solution of (20) by itera-
tively solving

N
min 3" [W, (% ~ D, Alx) 5
@izl

+17 |We(y, — Dedi, (xg) — Axp)|5, 1)
where W, and W, are defined as in (17). Once the solution
of (21), denoted by «’*, is obtained, the jth column of A is
updated as
AG, j) =aol*. (22)

Repeating the above process for j = 1,2,...,m, we finish
the update of A.

Next, we show how to derive the solution of (21). The
objective function of (21) can be written as

N . . 2 ; < 2
50w ool e
i=1
where
P, = Wy |y, — Dexq — Z“kx;,k ’
k#j
- ) ) m .
o, =W, |y, — Ddj, (xg) — Z“kxé,k @4
k#j
and
W= xi W, Wi=xi W, 25)

where x;, j is the jth entry of xg Since (23) is a quadratic
function of a/, the solution of (21) can be obtained by setting
the partial derivative of (23) with respect to &/ equal to
zero, i.e.,

N
2> (W) @) — (Wi)T Wie
i=1

+n(W)T @ — n(W)Wia/) =0.  (26)
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Fig. 4. Example images of the Extended Yale B database.

In view of (26), the optimal solution of (21) is

N -1
o/t = (Z(W;)TW; + n(Wé>TWé)

i=1

N
x (Z(w;)%; + n(wg%g).

i=1

27)

We summarize our algorithm for learning the auxiliary
dictionary in Algorithm 2. Note that the coefficient matrix
X = [x1, X2, ..., Xy], where x; is initially set as
P m
x; =[1,1,...,1,0,0,...,0]"

fori =1,2,..., N. On the other hand, we apply the settings
of ESRC for initializing the auxiliary dictionary A (as detailed
later in Section IV).

IV. EXPERIMENTAL RESULTS
A. Extended Yale B Database

First, we consider the Extended Yale B database [28] for
our experiments. This database contains 38 subjects with about
64 frontal face images for each (see example images in Fig. 4),
and the face images are taken under various illumination
conditions [29]. All images are converted into grayscale and
are downsampled to 34x30 pixels prior to our experiments.
We select 32 subjects from the database to be recognized,
and the remaining 6 subjects are considered as external data
(i.e., subjects not of interest) for robust auxiliary dictionary
learning.

For the 32 subjects of interest, we select 3 images from
each of the 32 subjects as the gallery D, and the remaining
61 images for testing. The three gallery images correspond to
the three illumination conditions: A+000E+00, A-085E+20,
and A+085E+20 (A+085 refers to 85 degrees azimuth, and
E+420 refers to 20 degrees elevation [28]). For the training
stage of robust auxiliary dictionary learning using external
data (i.e., the six subjects not of interest), we choose the
same images corresponding to A+000E~+00, A-085E+20,
and A+4085E+20 as the gallery D,, and thus D, contains
a total of 6x3 images. The probe Y, consists of the random
selection of 29 images from the remaining images of these
6 subjects. We will vary the number of dictionary atoms m
and evaluate the performance of our approach.

For comparison purposes, we consider several SRC-based
approaches: SRC [14], RSC [12], ESRC [9], and ADL [10].
To construct the auxiliary dictionary of ESRC, first we
follow the procedure in [9] to build an intra-class variant
dictionary Ao from an external dataset. Then, we randomly
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Algorithm 2 Robust Auxiliary Dictionary Learning

Input: The gallery matrix D, € R**? and the probe Y, € R¥*¥N
Step 0: Normalize the columns of D, and Y. to have unit £2-norm
Step 1: Initialize X € R®+™*N gpd A € RIX™
Step 2: Calculate the optimal solution of (14)
while not converged do

Sparse Coding Stage: update X
fori=1: N do
Calculate W, and W, by (17) with g and c in (18)
Obtain x* via solving (19)
end for
Dictionary Update Stage: update A
for j=1:m do
fori=1:N do
Calculate ®, ®. in (24) and W}, W in (25)
end for
Obtain o via solving (27)
Update the jth column of A, ie. A(:,j) = of
end for
end while

Output: Auxiliary dictionary A
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Fig. 5. Performance comparisons on the Extended Yale B database
with different numbers of dictionary atoms in A.

select the columns of Ap to form the auxiliary dictionary A
with the desired number of columns m. Throughout our
experiments, we let m be a multiple of r, where r is the
number of images per subject. Note that when randomly
selecting the columns of Ap, we choose r images of the same
subject at a time. We also test our method without dictionary
learning, which is denoted by Ours w/o DL, i.e., we use
Algorithm 1 as the classification method with A derived from
ESRC instead of from Algorithm 2. For our RADL, we utilize
the auxiliary dictionary of ESRC as the initial value of A
in Algorithm 2. For this and all subsequent experiments, the
parameter 1 in (5) is set as 1074 and the parameters A and 7
in (15) are set as 10~* and 1, respectively. By varying the
number of atoms m of the auxiliary dictionary A, we show
the performance comparisons in Fig. 5. We have m = 0 for
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illumination changes

sunglasses & illumination scarf & illumination

Fig. 6. Example images of the AR database. Note that only the neural image
of each subject is included in the gallery set, while the rest are viewed as
query images to be recognized.

SRC and RSC, since they do not consider any external data.
It is worth noting that, if no external data is available, methods
of ESRC and ADL are equivalent to SRC, and our method
turns into RSC.

Note that the Extended Yale B dataset contains some face
images taken at extreme illumination conditions. Hence, it is
likely that some pixels of these images have large residuals,
which can result in inaccurate classification results. Our
methods assign small weights to pixels that lead to large
residuals, and thus better recognition performance can be
expected. As shown in Fig. 5, our method clearly outperformed
other SRC-based (with and without learning) approaches
when different numbers of auxiliary dictionary atoms were
considered. In the following parts of our experiments, we
consider more challenging databases which contain not only
face images with illumination and expressions variations, but
also the occluded ones for recognition.

B. AR Database

1) Face Recognition and RADL With the Same Domain:
The AR database [30] consists of over 4,000 frontal face
images of 126 individuals. The images are taken under
different variations, including illumination, expression, and
facial occlusion/disguise in two separate sessions. For each
session there are thirteen images, in which three images
are with sunglasses, another three are with scarfs, and
the remaining seven are with illumination and expressions
variations. In our experiments, we consider a subset of
AR consisting of 50 men and 50 women. All images are
converted to grayscale and cropped to 165x120 pixels.
We select 80 subjects of interest for training and testing, and
the remaining 20 subjects are considered as external data for
robust auxiliary dictionary learning.

For the scenario of undersampled face recognition, we
choose only the neutral image of each of the 80 subjects
(40 men and 40 women) in Session 1 as the gallery, and the
rest images in Sessions 1 and 2 are for testing, see Fig. 6 for
example. It is worth noting that the setting for the AR database
is more challenging than that of the Extended Yale B database.
We not only have to deal with image variants of illumination,
expression, and occlusion, but we also require only one face
image for each person as the gallery for recognition. To learn
the auxiliary dictionary A from the external data, we form the
gallery matrix D, by calculating the mean of non-occluded
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images of each individual, and thus D, contains a total
of 20 images. The probe matrix Y, consists of all images
from the above 20 external subjects, i.e., Y, includes a total
of 520 images.

We consider several recent approaches (using pixel-based
or Gabor features) for comparisons: SRC [14], RSC [12],
PCRC [6], ESRC [9], ADL [10], and SVDL [11]. Same as
in the previous subsection, the random sampling technique is
applied for ESRC and Our w/o DL to obtain the auxiliary
dictionary. The pixel-based feature vector is obtained by
downsampling the original image to 38 x28 pixels. The Gabor
feature vector of length 2,304 is derived by evaluating the
Gabor kernel at three scales and four orientations (see [31] for
more detailed information). By varying the number of atoms m
of the auxiliary dictionary A, we show the performance
comparisons in Fig. 7. The gallery matrix D is collected
from Session 1, while the query image y can be chosen from
Sessions 1 or 2, which corresponds to the left and the right
columns of Fig. 7, respectively. As a result, the scenario of the
right column is more challenging than that of the left column.
It can be seen from Fig. 7 that our method outperformed other
SRC-based approaches across different features and sessions.

While AGL [7] has also been applied to solve undersampled
face recognition problems, it is not particularly designed
to recognize face images with occlusion. In addition, it
requires a sufficient amount of external data for handling
image variants (i.e., within-class variations). As a result, if
applying the same setting as those in Fig. 7(d), AGL would
achieve a lower recognition rate of 60.58%. We note that,
as shown in Fig. 7, recognition performances of ESRC and
Ours w/o DL degraded remarkably when the number of
dictionary atoms became small. On the other hand, dictionary
learning based methods like ADL and ours did not suffer from
this problem. This illustrates the importance of the learning
of dictionary atoms for obtaining satisfactory recognition
performance when a compact dictionary is required. We note
that it is expected that the difference between our method
with and without DL would become smaller as the number
of dictionary atoms increases. This is because the use of
more external data can give comparable performance as
learning-based approaches do (but is more expensive in terms
of both computation and storage costs).

Finally, we compare the performance of ESRC [9],
KSVD [13], ADL [10], and ours over a range of feature
dimensions. For KSVD, we directly apply its algorithm
to the gallery D, for learning the auxiliary dictionary A
with m = 13, and use our Algorithm 1 as the classification
method. We plot the performance comparisons using
pixel-based features with m = 13 in Fig. 8. Note that KSVD
only considers the representation ability of dictionaries, while
our formulation (14) incorporates the classification rule into
the objective function. It can be observed from Fig. 8 that
our approach clearly outperformed KSVD and others, which
supports the use of our method even when lower feature
dimensions are of interest.

2) Face Recognition and RADL With Different Domains:
In the previous experiments, the external dataset for building
auxiliary dictionaries is a disjoint subset of the same database
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Fig. 8. Performance comparisons on the AR database with different
pixel-based feature dimensions.

(i.e., images of the same dataset but different from those for
training and testing). To evaluate the generalization ability
of our approach, we conduct a new experiment on the
AR database with auxiliary dictionaries learned from a subset
of the Multi-PIE database [32]. We randomly choose
20 subjects from the Multi-PIE database, and each of the
subject has 20 frontal face images. Note that the subset
of Multi-PIE only includes illumination changes, while
the subset of AR contains intra-class variations due to
illumination, expression, and occlusion. Using Multi-PIE for
learning auxiliary dictionaries makes the recognition problem
more challenging. The experimental setting for training and

testing is the same as that in Section IV-B1. The number of
dictionary atoms is set as 26, and Gabor filters are used to
extract the image features.

We compare our methods with recent SRC-based
approaches: SRC [14], RSC [12], ESRC [9], ADL [10],
and SVDL [11]. Table II lists and compares the recognition
results, in which the first row indicates the session number
of test data (training data is from Session 1), and the
second row indicates the subsets for learning auxiliary
dictionaries. It can be seen that, since SRC requires an
overcomplete dictionary for handling occluded test inputs
(i.e., an oversampled instead of undersampled setting), it
was not able to achieve satisfactory performance. As for
RSC, while it well recognized test images of Session 1, its
recognition performance degraded rapidly (about 19%) when
the test images were from a different session (i.e., Session 2).
From Table II, we see that the recognition rates of ESRC
and ADL degraded remarkably when the external data was
selected from Multi-PIE instead of AR. This is because
that both ESRC and ADL directly applied external data as
(or for learning) the auxiliary dictionary to model intra-class
variations, including occlusion. If such data does not contain
the information about occlusion (such as Multi-PIE), ESRC
and ADL will not be able to achieve satisfactory recognition
performance. In contrast, our method does not suffer from this
problem. Our approach not only performs dictionary learning
for dealing with image variants, it is also able to identify
occluded pixels with large reconstruction errors as outliers.
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TABLE II
PERFORMANCE COMPARISONS ON THE AR DATABASE. NOTE THAT THE GALLERY SET IS FROM SESSION 1, WHILE THE PROBE IMAGES

ARE FROM SESSIONS 1 OR 2. FOR EACH EXPERIMENT, THE AUXILIARY DICTIONARY IS LEARNED FROM AR OR MULTI-PIE

DATABASES. NOTE THAT * INDICATES THE METHODS WITHOUT USING ANY EXTERNAL DATA

Methods Ses§i0n 1 Ses§i0n 2

AR Multi-PIE AR Multi-PIE
SRC* [14] 75.31 75.31 57.50 57.50
RSC* [12] 92.08 92.08 72.98 72.98
ESRC [9] 87.92 77.60 11032 | 71.54 59.23 } 12.31
ADL [10] 92.92 80.31 1 12.61 | 80.58 61.83 } 18.75
SVDL [11] 86.98 83.44 1354 66.44 63.08 13.36
Ours w/o DL | 95.21 93.54 1 1.67 79.04 76.92 1212
Ours 95.94 94.00 1194 82.88 80.10 1278

- DR IEPE

- JEHECESENRAEE

@

Fig. 9. The auxiliary dictionaries learned or selected from a subset of the AR database by (a) ESRC [9] (b) ADL [10], and (c) our method.

Fig. 9 shows the auxiliary dictionaries learned or selected
from the AR subset by ESRC, ADL, and our method.
From this figure, we see that the auxiliary dictionaries of
ESRC and ADL include the intra-class variations due to
sunglasses and scarfs, while ours does not depend on the
occlusion presented in the AR subset.

We note that our experimental setup is actually different
from that of SVDL [I1]. In [11], SVDL consistently
outperformed ESRC while the external data did not contain
any corrupted images. In our work, we consider the cases
when the external dataset is with or without occluded data.
Take Fig. 7 for example, we have training/test and external data
from the same AR database, and occluded images (i.e., those
with sunglasses and scarves) are presented in both test and
external datasets. ESRC performed favorably against SVDL
in this experiment, since ESRC directly applied such external
data in which the image variants exhibit exactly the same types
of image corruption. On the other hand, we have additional
experiments shown in Table I where we take AR or Multi-PIE
as external datasets (while training/test images are from AR).
We see that, when applying images of Multi-PIE as external
data, ESRC was not able to handle occluded test images as
expected. This is due to its direct use of non-occluded images
as image variants. In this case, SVDL still achieved improved
performance than the ESRC did (e.g., 83.44% vs. 77.6%, and
63.08% vs. 59.23%). Therefore, our results and observations
are still consistent with those reported in [11].

It is worth repeating that, SVDL [11] characterizes
occlusion as sparse errors during classification, which
could also recognize occluded test images without the prior
knowledge of occlusion. However, as indicated in [12],
such characterization might not be sufficiently accurate,

and thus would be difficult to describe real-world occluded
face images. From Table II, we see that the recognition
performance of SVDL was inferior to ours in both sessions.
It is of practical interest to know whether our approach can
generalize well to the case, in which the auxiliary dictionary
is learned across different datasets. From Table II, we see that
our method achieved the best generalization ability among
all the methods considered, and thus the robustness of our
approach can be successfully verified.

C. CAS-PEAL Database

Finally, we consider the CAS-PEAL database [33].
This database contains 1,040 individuals with variations
including facing direction, expression, accessory, lighting,
time, background, and distance. Every subject is captured
under at least two kinds of these variations. To the best of our
knowledge, CAS-PEAL is currently the largest public face
database with corrupted face images available. We utilize all
434 subjects from the Normal and the Accessory categories
of CAS-PEAL (recall that AR only has face images of
100 subjects). Thus, each subject has 1 neutral image,
3 images with hats, and 3 images with glasses/sunglasses.
We select 374 subjects of interest for training and testing,
and the remaining 60 subjects are considered as external data
for robust auxiliary dictionary learning.

In our experiments, we choose only the neutral image of
each of the 374 subjects as the gallery, and the rest images
for testing, see Fig. 10 for example. To learn the auxiliary
dictionary A from the external data, we choose the neutral
image of every subject in the external data to form the
gallery matrix D, and thus D, contains a total of 60 images.
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Fig. 11. Performance comparisons on the CAS-PEAL database with different
numbers of dictionary atoms in A using (a) pixel-based and (b) Gabor features.

The probe matrix Y, consists of the remaining images from
the above 60 external subjects, i.e., Y, includes a total of
360 images.

Similarly, using pixel-based or Gabor features, we consider
several recent SRC-based approaches for comparisons:
SRC [14], RSC [12], ESRC [9], and ADL [10]. We also
compare our weight function with the Welsch function,
i.e., replace the weight functions in Algorithms 1 and 2 with
w(exr) = exp(—(ex/c)?), and denote this face recognition
method by Welsh (the parameter ¢ of the Welsch function
is adjusted to achieve the best recognition performance).
The pixel-based feature vector is obtained by downsampling
the original image to 35x28 pixels. The other settings
are the same as those in the previous subsections. By varying
the number of atoms m of the auxiliary dictionary A,
we show the performance comparisons in Fig. 11. It can
be seen that our method outperformed other baseline and
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TABLE III

PERFORMANCE COMPARISONS ON CAS-PEAL WITH AUXILIARY
DICTIONARIES LEARNED FROM ITS ACCESSORY AND EXPRESSION

SUBSETS (I.E., WITH AND WITHOUT OCCLUDED IMAGES).

THE GALLERY SET CONTAINS ONLY THE NEUTRAL IMAGE

OF EACH SUBJECT, WHILE THE QUERY IMAGES ARE
FROM THE ACCESSORY CATEGORY. NOTE THAT *
INDICATES METHODS WITHOUT USING
ANY EXTERNAL DATA

Methods Accessory | Expression

SRC* [14] 86.45 86.45

RSC* [12] 91.62 91.62

ESRC [9] 89.71 86.63 1 3.08
ADL [10] 91.84 87.21 1 4.63
SVDL [11] 93.98 91.58 J 240
Ours w/o DL 93.58 9291 1 0.67
Ours 95.05 93.63 1 1.42

state-of-the-art approaches. Therefore, we conclude that a joint
optimization framework which considers both auxiliary dictio-
nary learning and classification (like ours) would be preferable
for addressing undersampled face recognition problems.

Next, we provide additional experiments (with the same
Gabor features), in which the external data are selected from
either a subset of its Expression category or from a subset of
the Accessory category (from 60 subjects not of interest). The
Expression category includes non-occluded images with only
expression changes, while the Accessory category contains
occluded images due to hats or glasses. As a result, if the
Expression category is considered, the external data will
consist of 5 images with different facial expressions for each
subject not of interest; if the Accessory category is used, each
subject in the external dataset will consist of 3 images with
hats and 3 images with glasses. The gallery and probe sets
are the same as those used in Fig. 11, and the number of
dictionary atoms is set as 6.

With the above experimental setting, we compare our
methods with recent SRC-based approaches: SRC [14],
RSC [12], ESRC [9], ADL [10], and SVDL [11]. Table III
lists and compares the recognition results. From this table, we
see that our method was able to achieve comparable results
while the performances of ESRC, ADL and SVDL degraded
when the external dataset was changed from Accessory to
Expression. In other words, even with no occlusion infor-
mation observed in external data, our method still performs
favorably against recent SRC and dictionary learning based
approaches.

Finally, we present two examples recognition results
in Fig. 12. For both examples shown in this figure, our
method successfully determined the correct identity for the
query input while other SRC-based approaches failed. We note
that, the query image in the first example is with a pair of
sunglasses, which is viewed as occlusion. For the methods of
ADL and ESRC, they simply selected the subjects wearing
similar glasses for recognition. Note that the weighting matrix
derived by RSC contained more extreme errors (dark pixels)
than ours did. This is because that RSC does not have
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Fig. 12. Example results of AR (top row) and CAS-PEAL (bottom row).
The query images are shown in (a), while the subjects identified by ADL,
ESRC, RSC, and ours are in (b) to (e), respectively. Note that the weighting
matrixes of RSC and ours are also illustrated.

a mechanism to model intra-class variations. On the other
hand, the query image in the second example is with a hat,
which also results in occluded image regions. Although both
weighting matrices of RSC and ours were very similar to
each other (i.e., the hat regions were successfully treated as
outliers), RSC did not correctly identify the query, which again
is due to its lack of ability in handling intra-class variations.
With the introduction of robust auxiliary dictionary learn-
ing, our method overcame the aforementioned problems and
achieved improved recognition. From the above experiments,
the effectiveness and robustness of our proposed algorithm can
be successfully verified.

D. Multi-PIE Database

As noted in previous subsections, the use of external data
is to cover intra-class variations such as expression and
illumination changes. Therefore, it would be best to have the
collected external dataset contain the same image variants as
the training and test ones do. However, in practical scenarios,
one cannot expect the type of image variants to be fixed or
known in advance. Therefore, our strategy is to select external
data which exhibit intra-class variations of interest, so that
the image variants of the test set can be covered via linearly
approximation/reconstruction.

To verify our claim, we now conduct experiments on
Multi-PIE with external data collected from AR or Multi-PIE.
For training and testing, 80 subjects from Multi-PIE are
selected to be recognized, while a different set of 20 subjects
from AR or Multi-PIE are chosen for learning the auxiliary
dictionary. For the training set, we choose the image with
neutral expression captured by camera 05_1 of each of the
80 subjects. On the other hand, 13 images with a neutral
expression under different illumination conditions of each of
the 80 subjects are selected for testing. The external dataset
from Multi-PIE contains 14 face images with illumination
variations for each of the 20 subjects. If the external dataset is
from AR, then there are two scenarios to be considered. In the
first scenario, denoted by ARj4, the external dataset consists
of 14 face images (7 images from Session 1, and 7 images
from Session 2) with expression and illumination variations
for each subject not of interest. The second scenario, denoted
by ARg, is similar to the first scenario except that each subject
has 8 face images with only expression variations.
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TABLE IV
RECOGNITION PERFORMANCE ON MULTI-PIE USING DIFFERENT
EXTERNAL DATASETS. EXTERNAL DATA MULTI-PIE|4 DENOTES
A SUBSET OF MULTI-PIE, WHICH CONTAINS 14 IMAGES WITH
ILLUMINATION VARIATIONS FOR EACH SUBJECT NOT OF
INTEREST. AR14 DENOTES A SUBSET OF AR, WHICH
CONTAINS 14 IMAGES WITH EXPRESSION AND
ILLUMINATION VARIATIONS. FINALLY,
ARg CONTAINS ONLY IMAGES WITH
EXPRESSION VARIATIONS

None
80.19

External data ARg

82.88

AR14
91.73

Multi-PIE1 4
94.42

Accuracy

Table IV lists and compares the recognition rates using
different external datasets with our method RADL. The base-
line method is RSC (i.e., the first entry of Table IV, denoted
as None), which does not utilize any external data. Recall that
each subject in the test set has 13 images with illumination
variations. To achieve satisfactory recognition performance,
the external data should contain sufficient information about
illumination variations. As expected, the use of Multi-PIE4
as external data lead to the best recognition rate, since both
training/test and external data were from the same dataset.
Compared to Multi-PIE4, the recognition rate of ARj4 was
slightly dropped by 2.69%, while the recognition rate of ARg
decreased 11.54%. This is because that ARg only contained
image variants of expression changes and thus failed to cover
illumination variations presented in the test data. The above
experimental results verify that one should properly select
image variants as external data for performance guarantees.

V. CONCLUSION

We presented a novel learning-based algorithm for under-
sampled face recognition. We advocated the learning of an
auxiliary dictionary from external data for modeling intra-class
image variants of interest, and utilized a residual function in a
joint optimization formulation for identifying and disregarding
corrupted image regions due to occlusion. As a result, the
proposed algorithm allows one to recognize occluded face
images, or those with illumination and expressions variations,
even only one or few gallery images per subject are available
during training. Experimental results on four different face
image datasets confirmed the effectiveness and robustness of
our method, which was shown to outperform state-of-the-art
sparse representation and dictionary learning based approaches
with or without using external face data.
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