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Critical-Path Analysis and Low-Complexity
Implementation of the LMS Adaptive Algorithm
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Abstract—This paper presents a precise analysis of the critical
path of the least-mean-square (LMS) adaptive filter for deriving its
architectures for high-speed and low-complexity implementation.
It is shown that the direct-form LMS adaptive filter has nearly the
same critical path as its transpose-form counterpart, but provides
much faster convergence and lower register complexity. From the
critical-path evaluation, it is further shown that no pipelining is
required for implementing a direct-form LMS adaptive filter for
most practical cases, and can be realized with a very small adap-
tation delay in cases where a very high sampling rate is required.
Based on these findings, this paper proposes three structures of the
LMS adaptive filter: (i) Design 1 having no adaptation delays, (ii)
Design 2 with only one adaptation delay, and (iii) Design 3 with
two adaptation delays. Design 1 involves the minimum area and
the minimum energy per sample (EPS). The best of existing di-
rect-form structures requires 80.4% more area and 41.9% more
EPS compared to Design 1. Designs 2 and 3 involve slightly more
EPS than the Design 1 but offer nearly twice and thrice the MUF
at a cost of 55.0% and 60.6% more area, respectively.

Index Terms—Adaptive filters, critical-path optimization, least
mean square algorithms, LMS adaptive filter.

I. INTRODUCTION

A DAPTIVE digital filters find wide application in several
digital signal processing (DSP) areas, e.g., noise and echo

cancellation, system identification, channel estimation, channel
equalization, etc. The tapped-delay-line finite-impulse-response
(FIR) filter whose weights are updated by the famous Widrow-
Hoff least-mean-square (LMS) algorithm [1] may be considered
as the simplest known adaptive filter. The LMS adaptive filter
is popular not only due to its low-complexity, but also due to
its stability and satisfactory convergence performance [2]. Due
to its several important applications of current relevance and
increasing constraints on area, time, and power complexity, ef-
ficient implementation of the LMS adaptive filter is still quite
important.
To implement the LMS algorithm, one has to update the filter

weights during each sampling period using the estimated error,
which equals the difference between the current filter output and
the desired response. The weights of the LMS adaptive filter
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Fig. 1. Structure of conventional LMS adaptive filter.

during the th iteration are updated according to the following
equations.

(1a)

where

(1b)

(1c)

with input vector and weight vector at the th iteration
are given by, respectively,

and where is the desired response, is the filter output of
the th iteration, denotes the error computed during the th
iteration, which is used to update the weights, is the conver-
gence factor or step-size, which is usually assumed to be a pos-
itive number, and is the number of weights used in the LMS
adaptive filter. The structure of a conventional LMS adaptive
filter is shown in Fig. 1.
Since all weights are updated concurrently in every cycle to

compute the output according to (1), direct-form realization of
the FIR filter is a natural candidate for implementation. How-
ever, the direct-form LMS adaptive filter is often believed to
have a long critical path due to an inner product computation to
obtain the filter output. This is mainly based on the assumption
that an arithmetic operation starts only after the complete input
operand words are available/generated. For example, in the ex-
isting literature on implementation of LMS adaptive filters, it is
assumed that the addition in a multiply-add operation (shown in
Fig. 2) can proceed only after completion of the multiplication,
and with this assumption, the critical path of the multiply-add
operation becomes , where and

are the time required for a multiplication and an addi-
tion, respectively. Under such assumption, the critical path of
the direct-form LMS adaptive filer (without pipelining) can be
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Fig. 2. Example of multiply-add operation for the study of delay in composite
operations.

estimated as . Since this crit-
ical-path estimate is quite high, it could exceed the sample pe-
riod required in many practical situations, and calls for a reduc-
tion of critical-path delay by pipelined implementation. But, the
conventional LMS algorithm does not support pipelined imple-
mentation. Therefore, it is modified to a form called the delayed
LMS (DLMS) algorithm [3], [4], which allows pipelined imple-
mentation of different sections of the adaptive filter. Note that
the transpose-form FIR LMS adaptive filter is inherently of a
delayed LMS kind, where the adaptation delay varies across the
sequence of filter weights. Several works have been reported in
the literature over the last twenty years [5]–[11] for efficient im-
plementation of the DLMS algorithm.
Van and Feng [5] have proposed an interesting systolic archi-

tecture, where they have used relatively large processing ele-
ments (PEs) for achieving lower adaptation delay compared to
other DLMS systolic structures with critical path of one MAC
operation. Yi et al. [10] have proposed a fine-grained pipelined
design of an adaptive filter based on direct-form FIR filtering,
using a fully pipelined binary adder-tree implementation of all
the multiplications in the error-computation path and weight-
update path to limit the critical path to a maximum of one addi-
tion time. This architecture supports high sampling frequency,
but involves large pipeline depth, which has two adverse ef-
fects. First, the register complexity, and hence the power dissi-
pation, increases. Secondly, the adaptation delay increases and
convergence performance degrades. However, in the following
discussion, we establish that such aggressive pipelining is often
uncalled for, since the assumption that the arithmetic operations
start only after generation of their complete input operand words
is not valid for the implementation of composite functions in
dedicated hardware. Such an assumption could be valid when
multipliers and adders are used as discrete components, which
is not the case in ASIC and FPGA implementation these days.
On the other hand, we can assume that an arithmetic operation
can start as soon as the LSBs of the operands are available. Ac-
cordingly, the propagation delay for the multiply-add operation
in Fig. 2 could be taken to be ,
where and are the delays of carry and sum gener-
ation in a 1-bit full-adder circuit. Therefore, is much less
than . In Table I, we have shown the propagation
delays of a multiplier, an adder, and carry-and-sum generation
in a 1-bit full-adder circuit, and multiply-add circuit in TSMC
90-nm [12] and 0.13- m [13] processes to validate our asser-
tion in this context. From this table, we can also find that is
much less than . In Section III, we further show
that the critical path of the direct-form LMS adaptive filter is
much less than , and would amount to
nearly , where .
Besides, we have shown that no pipelining is required for imple-
menting the LMS algorithm for most practical cases, and could

TABLE I
PROPAGATION DELAY (NS) BASED ON SYNTHESIS OF TSMC 0.13- M AND

90-NM CMOS TECHNOLOGY LIBRARIES

be realized with very small adaption delay of one or two sam-
ples in cases like radar applications where very high sampling
rate is required [10]. The highest sampling rate, which could be
as high as 30.72 Msps, supported by the fastest wireless com-
munication standard (long-term evolution) LTE-Advanced [14].
Moreover, computation of the filter output and weight update
could be multiplexed to share hardware resources in the adap-
tive filter structure to reduce the area consumption.
Further effort has been made by Meher and Maheswari [15]

to reduce the number of adaptation delays as well as the crit-
ical path by an optimized implementation of the inner product
using a unified pipelined carry-save chain in the forward path.
Meher and Park [8], [9] have proposed a 2-bit multiplication
cell, and used that with an efficient adder tree for the implemen-
tation of pipelined inner-product computation to minimize the
critical path and silicon area without increasing the number of
adaptation delays. But, in these works, the critical-path analysis
and necessary design considerations are not taken into account.
Due to that, the designs of [8], [9], [15] still consume higher
area, which could be substantially reduced. Keeping the above
observations in mind, we present a systematic critical-path anal-
ysis of the LMS adaptive filter, and based on that, we derive
an architecture for the LMS adaptive filter with minimal use of
pipeline stages, which will result in lower area complexity and
less power consumption without compromising the desired pro-
cessing throughput.
The rest of the paper is organized as follows. In the next sec-

tion, we review the direct-form and transpose-form implemen-
tations of the DLMS algorithm, along-with their convergence
behavior. The critical-path analysis of both these implementa-
tions is discussed in Section III. The proposed low-complexity
designs of the LMS adaptive filter are described in Section IV.
The performance of the proposed designs in terms of hardware
requirement, timings, and power consumption is discussed in
Section V. Conclusions are presented in Section VI.

II. REVIEW OF DELAYED LMS ALGORITHM AND ITS
IMPLEMENTATION

In this section, we discuss the implementation and conver-
gence performance of direct-form and transpose-form DLMS
adaptive filters.
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Fig. 3. Generalized block diagram of direct-form DLMS adaptive filter.

Fig. 4. Error-computation block of Fig. 3.

Fig. 5. Weight-update block of Fig. 3.

A. Implementation of Direct-Form Delayed LMS Algorithm

Assuming that the error-computation path is implemented in
pipelined stages, the latency of error computation is cy-

cles, so that the error computed by the structure at the th cycle
is , and is used with the input samples delayed by cy-
cles to generate the weight-increment term. The weight-update
equation of the DLMS algorithm is given by

(2a)

where

(2b)

and

(2c)

A generalized block diagram of direct-form DLMS adaptive
filter is shown in Fig. 3. It consists of an error-computation block
(shown in Fig. 4) and a weight-update block (shown in Fig. 5).
The number of delays shown in Fig. 3 corresponds to the
pipeline delays introduced due to pipelining of the error-com-
putation block.

Fig. 6. Convergence of direct-form delayed LMS adaptive filter.

Direct-form adaptive filters with different values of adapta-
tion delay are simulated for a system identification problem,
where the system is defined by a bandpass filter with impulse
response given by

(3)

for , and otherwise. Parameters and
represent the high and low cutoff frequencies of the pass-

band, and are set to and , respectively.
Fig. 6 shows the learning curves for identification of a 32-tap
filter with Gaussian random input of zero mean and unit vari-
ance, obtained by averaging 50 runs for , and 10. The
step-size is set to 1/40, 1/50, and 1/60 for and ,
respectively, so that they provide the fastest convergence. In all
cases, the output of the known system is of unity power, and con-
taminated with white Gaussian noise of dB strength. It can
be seen that as the number of delays increases, the convergence
is slowed down, although the steady-state mean-square-error
(MSE) remains almost the same in all cases.

B. Implementation of Transpose-Form Delayed LMS
Algorithm

The transpose-form FIR structure cannot be used to imple-
ment the LMS algorithm given by (1), since the filter output at
any instant of time has contributions from filter weights updated
at different iterations, where the adaptation delay of the weights
could vary from 1 to . It could, however, be implemented
by a different set of equations as follows:

(4a)

(4b)

where , and the symbols have the same meaning
as those described in (1). In (4), it is assumed that no additional
delays are incorporated to reduce the critical path during compu-
tation of filter output and weight update. If additional delays
are introduced in the error computation at any instant, then the
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Fig. 7. Structure of transpose-form DLMS adaptive filter. The additional adap-
tation delay could be at most 2 if no more delays are incorporated within the
multiplication unit or between the multipliers and adders. If one delay could be
placed after the computation of and another after the computation of , then

.

weights are required to be updated according to the following
equation

(5)

but, the equation to compute the filter output remains the same as
that of (4a). The structure of the transpose-formDLMS adaptive
filter is shown in Fig. 7.
It is noted that in (4a), the weight values used to compute the

filter output at the th cycle are updated at different cycles,
such that the th weight value is updated cy-
cles back, where . The transpose-form LMS
is, therefore, inherently a delayed LMS and consequently pro-
vides slower convergence performance. To compare the conver-
gence performance of LMS adaptive filters of different config-
urations, we have simulated the direct-form LMS, direct-form
DLMS, and transpose-formLMS for the same system identifica-
tion problem, where the system is defined by (3) using the same
simulation configuration. The learning curves thus obtained for
filter length , and are shown in Fig. 8. We find
that the direct from LMS adaptive filter provides much faster
convergence than the transpose LMS adaptive filter in all cases.
The direct-formDLMS adaptive filter with delay 5 also provides
faster convergence compared to the transpose-form LMS adap-
tive filter without any delay. However, the residual mean-square
error is found to be nearly the same in all cases.
From Fig. 7, it can be further observed that the transpose-form

LMS involves significantly higher register complexity over
the direct-form implementation, since it requires an additional
signal-path delay line for weight updating, and the registers on
the adder-line to compute the filter output are at least twice the
size of the delay line of the direct-form LMS adaptive filter.

III. CRITICAL-PATH ANALYSIS OF LMS ADAPTIVE FILTER AND
IMPLEMENTATION STRATEGY

The critical path of the LMS adaptive filter of Fig. 1 for direct
implementation is given by

(6)

Fig. 8. Convergence comparison of direct-form and transpose-form adaptive
filters. (a) . (b) . (c) . Adaptation delay is set to 5 for
the direct-form DLMS adaptive filter.

where and are, respectively, the time in-
volved in error computation and weight updating. When the
error computation and weight updating are performed in two
separate pipeline stages, the critical path becomes

(7)

Using (6) and (7), we discuss in the following the critical paths
of direct-form and transpose-form LMS adaptive filters.

A. Critical Path of Direct Form

To find the critical path of the direct-form LMS
adaptive filter, let us consider the implementation of an inner
product of length
4. The implementation of this inner product is shown in Fig. 9,
where all multiplications proceed concurrently, and additions
of product words start as soon as the LSBs of products are
available. Computations of the first-level adders (ADD-1 and
ADD-2) are completed in time , where
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Fig. 9. Critical path of an inner product computation. (a) Detailed block diagram to show critical path of inner product computation of length 4. (b) Block diagram
of inner product computation of . (c) HA, FA, and 3-input XOR gate.

is the delay due to the 3-input XOR operation for the ad-
dition of the last bits (without computing the carry bits), and

, where and are the prop-
agation delays of AND and XOR operations, respectively. For
convenience of representation, we take

(8)

Similarly, the addition of the second-level adder (ADD-3) (and
hence the inner-product computation of length 4) is completed
in time . In general, an inner product of length
(shown in Fig. 4) involves a delay of

(9)

In order to validate (9), we show in Table II the time required
for the computation of inner products of different length for
word-length 8 and 16 using TSMC 0.13- m and 90-nm process
libraries. Using multiplication time and time required for carry-
and-sum generation in a 1-bit full-adder, obtained from Table I,
we find that the results shown in Table II are in conformity with

TABLE II
SYNTHESIS RESULT OF INNER PRODUCT COMPUTATION TIME (NS) USING

TSMC 0.13- M AND 90-NM CMOS TECHNOLOGY LIBRARIES

those given by (9). The critical path of the error-computation
block therefore amounts to

(10)

For computation of the weight-update unit shown in Fig. 5, if
we assume the step-size to be a power of 2 fraction, i.e., of the
form , then the multiplication with can be implemented
by rewiring, without involving any hardware or time delay. The
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critical path then consists of a multiply-add operation, which
can be shown to be

(11)

Using (6), (10), and (11), we can find the critical path of the
non-pipelined direct-form LMS adaptive filter to be

(12)

If the error computation and weight updating are performed
in two pipelined stages, then from (7), we can find the critical
path to be

(13)

This could be further reduced if we introduce delays in the error-
computation block to have a pipelined implementation.

B. Critical Path of Transpose Form

In the error-computation block of the transpose-form LMS
adaptive filter (Fig. 7), we can see that all multiplications are
performed simultaneously, which involves time . After
multiplications, the results are transferred through preceding
registers to be added with another product word in the next
cycle. Since the addition operation starts as soon as the first bit
of the product word is available (as in the direct-form LMS), the
critical path of the error-computation block is

(14)

If one delay is inserted after the computation of , then the
critical path given by (14) will change to .
We have assumed here that the critical path is comprised of the
last multiply-add operation to compute the filter output. Note
that as the sum of product words traverses across the adder line,
more and more product words are accumulated, and the width
of the accumulated sum finally becomes ,
where is the width of the input as well as the weight values.
The critical path of the weight-updating block is similarly

found to be

(15)

However, for , i.e., the delay is inserted after only,
the critical path will include the additional delay introduced
by the subtraction for the computation of the error term, and

. Without any adaptation delay, the
critical path would be

(16)

Interestingly, the critical paths of the direct-form and trans-
pose-form structures without additional adaptation delay are
nearly the same. If the weight updating and error computation
in the transpose-form structure happen in two different pipeline

stages, the critical path of the complete transpose-form adaptive
filter structure with adaptation delay , amounts to

(17)

From (13) and (17), we can find that the critical path of the
transpose-form DLMS adaptive filter is nearly the same as that
of direct-form implementation where weight updating and error
computation are performed in two separate pipeline stages.

C. Proposed Design Strategy

We find that the direct-form FIR structure not only is the nat-
ural candidate for implementation of the LMS algorithm in its
original form, but also provides better convergence speed with
the same residual MSE. It also involves less register complexity
and nearly the same critical path as the transpose-form struc-
ture. Therefore, we have preferred to design a low-complexity
direct-form structure for implementation of the LMS adaptive
filter.
From Tables I and II, we can find that the critical path of

the direct-implementation LMS algorithm is around 7.3 ns for
filter length with 16-bit implementation using the
0.13- m technology library, which can be used for sampling
rate as high as 100 Msps. The critical path increases by one
full-adder delay (nearly 0.2 ns) when the filter order is doubled.
So, for filter order , the critical path still remains
within 8 ns. On the other hand, the highest sampling frequency
of LTE-Advanced amounts to 30.72 Msps [14]. For still higher
data rates, such as those of some acoustic echo cancelers, we can
have structures with one and two adaptation delays, which can
respectively support about twice and thrice the sampling rate of
the zero-adaptation delay structure.

IV. PROPOSED STRUCTURE

In this section, we discuss area- and power-efficient ap-
proaches for the implementation of direct-form LMS adaptive
filters with zero, one, and two adaptation delays.

A. Zero Adaptation Delay

As shown in Fig. 3, there are two main computing blocks in
the direct-form LMS adaptive filter, namely, i) the error-compu-
tation block (shown in Fig. 4) and ii) the weight-update block
(shown in Fig. 5). It can be observed in Figs. 4 and 5 that most
of the area-intensive components are common in the error-com-
putation and weight-update blocks: the multipliers, weight reg-
isters, and tapped-delay line. The adder tree and subtractor in
Fig. 4 and the adders for weight updating in Fig. 5, which con-
stitute only a small part of the circuit, are different in these two
computing blocks. For the zero-adaptation-delay implementa-
tion, the computation of both these blocks is required to be
performed in the same cycle. Moreover, since the structure is
of the non-pipelined type, weight updating and error computa-
tion cannot occur concurrently. Therefore, themultiplications of
both these phases could be multiplexed by the same set of mul-
tipliers, while the same registers could be used for both these
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Fig. 10. Proposed structure for zero-adaptation-delay time-multiplexed direct-form LMS adaptive filter.

phases if error computation is performed in the first half cycle,
while weight update is performed in the second-half cycle.
The proposed time-multiplexed zero-adaptation-delay struc-

ture for a direct-form -tap LMS adaptive filter is shown in
Fig. 10, which consists of multipliers. The input samples are
fed to the multipliers from a common tapped delay line. The
weight values (stored in registers) and the estimated error

value (after right-shifting by a fixed number of locations to re-
alize multiplication by the step size ) are fed to the multipliers
as the other input through a 2:1 multiplexer. Apart from this,
the proposed structure requires adders for modification of
weights, and an adder tree to add the output of multipliers for
computation of the filter output. Also, it requires a subtractor to
compute the error value and 2:1 de-multiplexors to move the
product values either towards the adder tree or weight-update
circuit. All the multiplexors and de-multiplexors are controlled
by a clock signal.
The registers in the delay line are clocked at the rising edge

of the clock pulse and remain unchanged for a complete clock
period since the structure is required to take one new sample in
every clock cycle. During the first half of each clock period, the
weight values stored in different registers are fed to the multi-
plier through the multiplexors to compute the filter output. The
product words are then fed to the adder tree though the de-mul-
tiplexors. The filter output is computed by the adder tree and
the error value is computed by a subtractor. Then the computed
error value is right-shifted to obtain and is broadcasted to
all multipliers in the weight-update circuits. Note that the
LMS adaptive filter requires at least one delay at a suitable lo-
cation to break the recursive loop. A delay could be inserted
either after the adder tree, after the computation, or after the

computation. If the delay is placed just after the adder tree,
then the critical path shifts to the weight-updating circuit and
gets increased by . Therefore, we should place the delay
after computation of or , but preferably after com-
putation to reduce the register width.

The first half-cycle of each clock period ends with the
computation of , and during the second half cycle, the

value is fed to the multipliers though the multiplexors to
calculate and de-multiplexed out to be added to the
stored weight values to produce the new weights according to
(2a). The computation during the second half of a clock period
is completed once a new set of weight values is computed. The
updated weight values are used in the first half-cycle of the
next clock cycle for computation of the filter output and for
subsequent error estimation. When the next cycle begins, the
weight registers are also updated by the new weight values.
Therefore, the weight registers are also clocked at the rising
edge of each clock pulse.
The time required for error computation is more than that

of weight updating. The system clock period could be less if
we just perform these operations one after the other in every
cycle. This is possible since all the register contents also change
once at the beginning of a clock cycle, but we cannot exactly
determine when the error computation is over and when weight
updating is completed. Therefore, we need to perform the error
computation during the first half-cycle and the weight updating
during the second half-cycle. Accordingly, the clock period of
the proposed structure is twice the critical-path delay for the
error-computation block , which we can find using (14)
as

(18)

where is the time required for multiplexing and de-mul-
tiplexing.

B. One Adaptation Delay

The proposed structure for a one-adaptation-delay LMS
adaptive filter consists of one error-computation unit as shown
in Fig. 4 and one weight-update unit as shown in Fig. 5. A
pipeline latch is introduced after computation of . The



MEHER AND PARK: CRITICAL-PATH ANALYSIS AND LOW-COMPLEXITY IMPLEMENTATION OF THE LMS ADAPTIVE ALGORITHM 785

Fig. 11. Proposed structure for two-adaptation-delay direct-form LMS adaptive filter.

multiplication with requires only a hardwired shift, since
is assumed to be a power of 2 fraction. So there is no register
overhead in pipelining. Also, the registers in the tapped delay
line and filter weights can be shared by the error-computation
unit and weight-updating unit. The critical path of this structure
is the same as [derived in (10)], given by

(19)

C. Two Adaptation Delays

The proposed structure for a two-adaptation-delay LMS
adaptive filter is shown in Fig. 11, which consists of three
pipeline stages, where the first stage ends after the first level of
the adder tree in the error-computation unit, and the rest of the
error-computation block comprises the next pipeline stage. The
weight-update block comprises the third pipeline stage. The
two-adaptation-delay structure involves additional regis-
ters over the one-adaptation-delay structure. The critical path
of this structure is the same as either that of the weight-update
unit [derived in (11)] or the second pipeline stage,
given by

(20)

where refers to the adder-tree delay of stages
to add words along with the time required for subtraction
in the error computation.

D. Structure for High Sampling Rate and Large-Order Filters

We find that in many popular applications like channel
equalization and channel estimation in wireless communica-
tion, noise cancellation in speech processing, and power-line
interference cancellation, removal of muscle artifacts, and elec-
trode motion artifacts for ECG [16]–[22], the filter order could
vary from 5 to 100. However, in some applications like acoustic
echo cancellation and seismic signal acquisition, the filter order
requirement could be more than 1000 [23]–[25]. Therefore, we
discuss here the impact of increase in filter order on critical
path along with the design considerations for implementation
of large order filters for high-speed applications.
For large-order filters, i.e., for large , the critical-path delay

for 1-stage pipeline implementation in (19) increases by when
the filter order is doubled. For 2-stage pipeline implementation,

in (20) could be larger than , and could be
the critical-path delay of the structure. also increases by
when the filter order is doubled. When 90-nm CMOS tech-

nology is used, the critical-path delay could be nearly 5.97 ns
and 3.66 ns for 1 and 2-stage pipeline implementations, respec-
tively, when and . Therefore, in order to
support input sampling rates higher than 273 Msps, additional
delays could be incorporated at the tail-end of the adder tree
using only a small number of registers. Note that if a pipeline
stage is introduced just before the last level of addition in the
adder tree, then only one pipeline register is required. If we in-
troduce the pipeline stage at levels up from the last adder in
the adder tree, then we need additional registers. The delay
of the adder block however does not increase fast with the filter
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TABLE III
COMPARISON OF HARDWARE AND TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES

order since the adder tree is only increased one level when the
filter length is doubled, and introduces only one extra delay of
in the critical path.
The critical path could be reduced only incrementally if we

pipeline the adaptive filter after every addition, which will in-
volve enormous register complexity. For a further increase in
clock rate, one can use the block-LMS adaptive filter [26]. A
block-LMS adaptive filter with block length would support
times higher sampling rate without increasing the energy per

sample (EPS). Therefore, pipelining of the multiplication block
or adder tree after every addition is not a preferable option to
implement adaptive filters for high-sampling rate or for large
filter orders.

V. COMPLEXITY CONSIDERATIONS

The hardware and time complexities of the proposed and ex-
isting designs are listed in Table III. A transpose-form fine-
grained retimed DLMS (TF-RDLMS), a tree direct-form fine-
grained retimedDLMS (TDF-RDLMS) [10], the best of systolic
structures [5], and our most recent direct-form structure [9] are
compared with the proposed structures. The proposed design
with 0, 1, and 2 adaptation delays (presented in Section IV) are
referred to as proposed Design 1, Design 2, and Design 3, in
Table III. The direct-form LMS and transpose-form LMS algo-
rithm based on the structure of Figs. 4, 5, and 7 without any
adaptation delays, e.g., , and the DLMS structure pro-
posed in [3] are also listed in this table for reference. It is found
that proposed Design 1 has the longest critical path, but involves
only half the number of multipliers of other designs except [9],
and does not require any adaptation delay. Proposed Design 2
and Design 3 have less adaption delay compared to existing de-
signs, with the same number of adders and multipliers, and in-
volve fewer delay registers.
We have coded all the proposed designs in VHDL and

synthesized them using the Synopsys Design Compiler with
the TSMC 90-nm CMOS library [12] for different filter orders.
The structures of [10], [5], and [9] were also similarly coded,
and synthesized using the same tool. The word-length of input
samples and weights are chosen to be 12, and internal data
are not truncated before the computation of filter output
to minimize quantization noise. Then, is truncated to 12

bits, while the step size is chosen to be to realize its
multiplication without any additional circuitry. The data arrival
time (DAT), maximum usable frequency (MUF), adaptation
delay, area, area-delay product (ADP), power consumption
at maximum usable frequency (PCMUF), normalized power
consumption at 50MHz, and energy per sample (EPS) are listed
in Table IV. Note that power consumption increases linearly
with frequency, and PCMUF gives the power consumption
when the circuit is used at its highest possible frequency. All
the proposed designs have significantly less PCMUF compared
to the existing designs. However, the circuits need not always
be operated at the highest frequency. Therefore, PCMUF is
not a suitable measure for power performance. The normalized
power consumption at a given frequency provides a relatively
better figure of merit to compare the power-efficiency of dif-
ferent designs. The EPS similarly does not change much with
operating frequency for a given technology and given operating
voltage, and could be a useful measure.
The transpose-form structure of [10], TF-RDLMS provides

the relatively high MUF, which is 8.1% more than that of pro-
posed Design 3, but involves 19.4% more area, 10.4% more
ADP, and 59.3% more EPS. Besides, the transpose-form struc-
ture [10] provides slower convergence than the proposed direct-
form structure. The direct-form structure of [10], TDF-RDLMS,
has nearly the same complexity as the transpose-form counter-
part of [10]. It involves 13.8% more area, 8.0% more ADP and
35.6%more EPS, and 5.4% higher MUF compared with Design
3. Besides, it requires 4, 5, and 6more adaptation delays than the
proposed Design 3 for filter length 8, 16, and 32, respectively.
The structure of [5] provides nearly the same MUF as that of
proposed Design 3, but requires 19.0% more area, 17.6% more
ADP, and 20.4% more EPS. The structure of [9] provides the
highest MUF since the critical-path delay is only , how-
ever, it requires more adaptation delay than the proposed de-
signs. Also, the structure of [9] involves 4.7% less ADP, but
12.2% more area and 26.2% more EPS than the proposed De-
sign 3. Proposed Design 1 has the minimum MUF among all
the structures, but that is adequate to support the highest data
rate in current communication systems. It involves theminimum
area and the minimum EPS of all the designs. The direct-form
structure of [10] requires 82.8%more area and 52.4%more EPS
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TABLE IV
PERFORMANCE COMPARISON OF DLMS ADAPTIVE FILTER CHARACTERISTICS BASED ON SYNTHESIS USING TSMC 90-NM LIBRARY

compared to proposed Design 1. Similarly, the structure of [5]
involves 91.3% more area and 35.4% more EPS compared with
proposed Design 1. Proposed Design 2 and Design 3 involve
nearly the same (slightly more) EPS than the proposed Design
1 but offer nearly twice and thrice the MUF at a cost of 55.0%
and 60.6% more area, respectively.

VI. CONCLUSION

Based on a precise critical-path analysis, we have derived
low-complexity architectures for the LMS adaptive filter. We
have shown that the direct-form and transpose-form LMS
adaptive filters have nearly the same critical-path delay. The
direct-from LMS adaptive filter, however, involves less register
complexity and provides much faster convergence than its
transpose-form counterpart since the latter inherently performs
delayed weight adaptation. We have proposed three different
structures of direct-form LMS adaptive filter with i) zero adap-
tation delay, ii) one adaptation delay, and iii) two adaptation
delays. Proposed Design 1 does not involve any adaptation
delay. It has the minimum of MUF among all the structures,
but that is adequate to support the highest data rate in current
communication systems. It involves the minimum area and the
minimum EPS of all the designs. The direct-form structure of
[10] requires 82.8% more area and 52.4% more EPS compared
to proposed Design 1, and the transpose-form structure of
[10] involves still higher complexity. The structure of [5]
involves 91.3% more area and 35.4% more EPS compared
with proposed Design 1. Similarly, the structure of [9] involves
80.4% more area and 41.9% more EPS than proposed Design 1.
Proposed Design 3 involves relatively fewer adaptation delays
and provides similar MUF as the structures of [10] and [5]. It
involves slightly less ADP but provides around 16% to 26% of

savings in EPS over the others. Proposed Design 2 and Design 3
involve nearly the same (slightly more) EPS than the proposed
Design 1 but offer nearly twice or thrice the MUF at the cost of
55.0% and 60.6% more area, respectively. However, proposed
Design 1 could be the preferred choice instead of proposed
Design 2 and Design 3 in most communication applications,
since it provides adequate speed performance, and involves
significantly less area and EPS.
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