
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 2, FEBRUARY 2016 171

A Method to Design Single Error Correction Codes
With Fast Decoding for a Subset of Critical Bits

Pedro Reviriego, Mustafa Demirci, Adrian Evans, and Juan Antonio Maestro

Abstract—Single error correction (SEC) codes are widely used
to protect data stored in memories and registers. In some ap-
plications, such as networking, a few control bits are added to
the data to facilitate their processing. For example, flags to mark
the start or the end of a packet are widely used. Therefore, it is
important to have SEC codes that protect both the data and the
associated control bits. It is attractive for these codes to provide
fast decoding of the control bits, as these are used to determine
the processing of the data and are commonly on the critical timing
path. In this brief, a method to extend SEC codes to support a few
additional control bits is presented. The derived codes support fast
decoding of the additional control bits and are therefore suitable
for networking applications.

Index Terms—Error correction codes, high-speed networking,
memory, single error correction (SEC).

I. INTRODUCTION

N ETWORKING applications require high-speed process-
ing of data and thus rely on complex integrated circuits

[1]. In routers and switches, packets typically enter the device
through one port, are processed, and are then sent to one or
more output ports. During this processing, data are stored and
moved through the device [2].

Reliability is a key requirement for networking equipment
such as core routers [3]. Therefore, the stored data must be
protected to detect and correct errors. This is commonly done
using error-correcting codes (ECCs) [4]. For memories and
registers, single error correction (SEC) codes that can correct
1-bit errors are commonly used [5], [6].

One problem that occurs when protecting the data in net-
working applications is that, to facilitate its processing, a few
control bits are added to each data block. For example, flags to
mark the start of a packet (SOP), the end of a packet (EOP), or
an error (ERR) are commonly used [7]. These flags are used to
determine the processing of the data, and the associated control
logic is commonly on the critical timing path. To access the
control bits, if they are protected with an ECC, they must first
be decoded. This decoding adds delay and may limit the overall

Manuscript received June 12, 2015; revised July 27, 2015; accepted
August 23, 2015. Date of publication September 28, 2015; date of current
version January 28, 2016. This brief was recommended by Associate Editor
B.-D. Liu.

P. Reviriego and J. A. Maestro are with Universidad Antonio de Nebrija,
28040 Madrid, Spain (e-mail: previrie@nebrija.es; jmaestro@nebrija.es).

M. Demirci is with Aselsan, Ankara 06370, Turkey, (e-mail: mdemirci@
aselsan.com.tr).

A. Evans is with Iroc Technologies, 38000 Grenoble, France (e-mail: adrian.
evans@iroctech.com).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2015.2483362

Fig. 1. Typical packet data storage in a networking application.

frequency. One option is to protect the data and the control bits
as different data blocks using separate ECCs. For example, let
us assume 128-bit data blocks with 3 control bits. Then, a SEC
code can protect a data block using 8 parity check bits, and
another SEC code can protect the 3 control bits using 3 parity
check bits. This option provides independent decoding of data
and control bits which reduces the delay but requires additional
parity check bits. Another option is to use a single ECC to
protect both the data and control bits. Protecting 128 + 3 bits
requires only 8 parity check bits, thus saving 3 bits compared to
the use of separate ECCs. However, in this case, the decoding
of the control bits is more complex and incurs more delay.

In this brief, a method to extend a SEC code to also protect
a few additional control bits is proposed. In the resulting codes,
the control bits can be decoded using a subset of the parity
check bits. This reduces the decoding delay and makes them
suitable for networking applications. To evaluate the method,
several codes have been constructed and implemented. They
are then compared with existing solutions in terms of decoding
delay and area.

The rest of this brief is organized as follows. In Section II, the
problem of control bit decoding in networking applications is
described. In Section III, the proposed method to construct the
codes to support fast decoding of the control bits is presented.
The proposed scheme is evaluated for some relevant examples
in Section IV. Finally, the conclusion and some ideas for future
work are presented in Section V.

II. DATA PROTECTION IN NETWORKING APPLICATIONS

Modern networking equipment supports data rates that range
from 10 to 400 Gbit/s, and terabit rates are expected in the
near future [8]. The clock frequencies used in current ASICs
are typically in the range of 300 MHz to 1 GHz, and the clock
frequencies in FPGAs are typically lower (under 400 MHz).
To support these high data rates, on-chip packet data buses are
wide, with typical widths between 64 and 2048 bits [9], [10].

1549-7747 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 2, FEBRUARY 2016

Fig. 2. Parity check matrix for a minimum-weight SEC code that protects 128 data bits.

Fig. 3. Parity check matrix for a minimum-weight SEC code that protects 128 data and 3 control bits.

Fig. 4. Decoding of a control bit for single and independent SEC codes for data and control. (a) SEC code for both data and control bits. (b) Independent SEC
codes for data and control bits.

Packet data must frequently be stored in RAMs, e.g., in
FIFOs for adapting processing rates. When storing packet data,
it is necessary to delineate the packet boundaries. In the abso-
lute simplest case, each segment on the bus can be delineated
with a single EOP marker. The next valid segment is then
assumed to be the start of the following packet. In practice,
designers also use a SOP marker to explicitly mark the start of
packets. There are also many cases in packet processing where
a packet is in error and it must be dropped. To mark such errored
packets, an additional control signal (ERR) may be required [7].

As mentioned in the introduction, from an error protection
perspective, it is attractive to store the data and the markers in a
single wide memory, as shown in Fig. 1. In this way, relatively
fewer ECC bits are required. The problem with this approach is
when the data are read out. Typically, the markers feed into a
state machine that controls the reading of the subsequent data.
For example, the state machine may need to read out a single
packet (up to an EOP), or it may need to read out a fixed

number of bytes of data (e.g., deficit round robin scheduler).
The critical timing path then consists of the ECC correction
logic, followed by the state machine logic, as shown in red.
With a traditional Hamming SEC code, as the data bus increases
in width, the number of layers of logic required to decode
the syndrome and perform correction also increases. Circuit
designers frequently observe critical timing on the signal paths
related to the correction of the markers which feed downstream
state machines. For this reason, special ECC codes which can
provide a fast decode of the small number of marker bits are
extremely attractive.

In some cases, it is sufficient for the system to deal with the
packet data with a granularity of the block size. This would
be the case, for example, when the data are simply being
transferred from one location to another. However, in other
cases, it is important to know the packet data size with a byte
resolution. This would be the case when the bit rate is important
(scheduling and policing) or when maximum transfer unit

REVIRIEGO et al.: METHOD TO DESIGN SEC CODES WITH FAST DECODING FOR A SUBSET OF CRITICAL BITS 173

Fig. 5. Proposed parity check matrix for a SEC code that protects 128 data and 3 control bits.

length checks are performed. The simple SOP and EOP markers
are not sufficient to know the exact packet size; thus, it may
be necessary to store additional marker bits called EOPSIZE,
which indicate how many of the bytes in the EOP transfer are
valid. Note that it is always assumed that all transfers prior to
the EOP are complete. Thus, on a 128-bit data bus, additional
4 bits of EOPSIZE may be required, bringing the total number
of marker bits to 7 (SOP, EOP, ERR, and EOPSIZE[3:0]).

III. PROPOSED METHOD TO DESIGN THE CODES

As discussed in the introduction, the goal is to design SEC
codes that can protect a data block plus a few control bits
such that the control bits can be decoded with low delay. As
mentioned before, the data blocks to be protected have a size
that is commonly a power of two, e.g., 64 or 128 bits. To protect
a 64-bit data block with a SEC code, 7 parity check bits are
needed, while 8 are enough to protect 128 bits. In the first case,
there are 27 = 128 possible syndromes, and therefore, the SEC
code can be extended to cover a few additional control bits. The
same is true for 128 bits and, in general, for a SEC code that
protects a data block that is a power of two. This means that
the control bits can also be protected with no additional parity
check bits. This is more efficient than using two separate SEC
codes (one for the data bits and the other for the control bits) as
this requires additional parity check bits. The main problem in
using an extended SEC code is that the decoding of the control
bits is more complex. To illustrate this issue, let us consider
a 128-bit data block and 3 control bits. The initial SEC code
for the 128-bit data block has the parity check matrix shown in
Fig. 2. This code has a parity check matrix with minimum total
weight and balanced row weights to minimize encoding and
decoding delay [4]. Three additional data columns can be easily
added to obtain a code that protects the additional control bits.
For example, the matrix in Fig. 3 can be used, in which three
additional columns (marked as control bits) have been added to
the left.

The problem is that now, to decode the 3 control bits, we
need to compute the 8 parity check bits and compare the results
against the columns of the control bits. This is significantly
more complex than the decoding of an independent SEC code
for the three control bits. The decoding of a bit in each case is
shown in Fig. 4, and the difference in complexity is apparent.

As discussed earlier, our goal is to simplify the decoding of
the control bits while using a single SEC code for both data and
control bits. To do so, the first step is to note that, in some cases,
SEC decoding can be simplified to check only some of the
syndrome bits. One example is the decoding of constant-weight
SEC codes proposed in [11]. In this case, only the syndrome

Fig. 6. Bit decoding of a control bit in the proposed SEC code.

TABLE I
MINIMUM NUMBER OF Pcd BITS FOR 128 AND 256 DATA BITS

bits that have a 1 in the column of the parity check matrix
need to be checked. This simplifies the decoding for all bits
but, in most cases, requires additional parity check bits. In our
case, the main focus is to simplify the decoding of the control
bits as those are commonly on the critical path. To do so, the
parity check bits can be divided in two groups: a first group
that is shared by both data and control bits and a second that
is used only for the data bits. Then, the decoding of the control
bits only requires the recomputation of the first group of parity
check bits. This scheme is better illustrated with an example.
Let us consider a 128-bit data block and 3 control bits protected
with 8 parity check bits. Those 8 bits are divided in a group
of 3 shared between data and control bits and a second group
of 5 that is used only for the data bits. To protect the control bits,
the first three parity check bits can be assigned different values
for each control bit, and the remaining parity check bits are not
used to protect the control bits. The rest of the values are used to
protect the data bits, and for each value, different values of the

174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 2, FEBRUARY 2016

Fig. 7. Proposed parity check matrix for a SEC code that protects 128 data and 7 control bits.

remaining five parity check bits can be used. In this example,
the first group has 3 bits that can take 8 values, and three of
them are used for the columns that correspond to the control
bits. This leaves 5 values that can be used to protect the data
bits. The second group of parity check bits has 5 bits that can
be used to code 32 values for each of the 5 values on the first
group. Therefore, a maximum of 5× 32 = 160 data bits can be
protected. In fact, the number is lower as the zero value on the
first group cannot be combined with a zero or a single one on the
second group as the corresponding column would have weight
of zero or one. In any case, 128 data bits can be easily protected.
An example of the parity check matrix of a SEC code derived
using this method is shown in Fig. 5. The three first columns
correspond to the added control bits. The two groups of parity
check bits are also separated, and the first three rows are shared
for data and control bits, while the last five only protect the data
bits. It can be observed that the control bits can be decoded by
simply recomputing the first three parity check bits. In addition,
the zero value on these three bits is also used for some data bits.
This means that those bits are not needed to recompute the first
three parity check bits.

The decoding of one of the control bits is illustrated in Fig. 6.
It can be observed that the circuitry is significantly simpler than
that of a traditional SEC code (see left part of Fig. 4). This will
be confirmed by the experimental results presented in the next
section.

The method can also be used to protect more than three
control bits. In a general case, let us consider that we need
to protect d data bits and c control bits using p parity check
bits. Then, p is divided in two groups pcd and pd. The first
group is shared between control and data bits, and the second is
used only for the data bits. The number of data bits that can
be protected with this scheme can be calculated as follows.
The number of combinations of the first group available to be
used to protect the data bits is 2Pcd − c. For each of those, up
to 2Pd values can be used, giving a total of (2Pcd − c) · 2Pd.
However, for the zero value, the combinations of the second
group with weight zero or one cannot be used, so pd + 1
should be subtracted. Similarly, for the pcd values with weight
one on the first group, the zero value on the second group
cannot be used as the resulting column would have weight
one. Therefore, pcd should also be subtracted, giving a total of
(2Pcd − c) · 2Pd − (pd + 1)− pcd. This is the number of data
bits that can be protected in addition to the control bits. As the
number of control bits increases, pcd must also be increased to
be able to protect the block of data bits with the same number
of parity check bits. This is illustrated in Table I for 128 and
256 data bits. Increasing pcd makes the decoding of control bits
more complex; therefore, the minimum value should be used.

TABLE II
ASIC CIRCUIT AREA (μM2) FOR 3 ADDITIONAL CONTROL BITS

TABLE III
ASIC CIRCUIT DELAY (NS) FOR 3 ADDITIONAL CONTROL BITS

As an example, the parity check matrix to protect 128 data
and 7 control bits is shown in Fig. 7. It can be observed that,
in this case, more bits are needed in the first group, making the
decoding of the control bits slightly more complex. However,
the control bits can still be decoded using only four syndrome
bits instead of the eight bits required in a traditional SEC code.
Finally, it should be noted that the proposed scheme increases
the miscorrection probability for control bits in case of double
errors. This is due to the use of only a subset of bits for the
decoding of the control bits.

IV. EVALUATION

To assess the benefits of the proposed scheme, it has been
implemented for 64, 128, and 256 data bits considering both
3 and 7 additional control bits. The codes implemented for the
case of 128 data bits correspond to the ones in Figs. 5 and 7.
The encoders and decoders are compared with minimum-
weight SEC codes that have balanced row weight (given in
Fig. 3 for the case of 128 data bits and 3 control bits). These
SEC codes should provide the minimum decoding delay for a
traditional SEC code.

To evaluate the proposed codes for an ASIC implementation,
all of the designs have been implemented in HDL and then
mapped using Synopsis DC to a 45-nm ASIC library [12].
For the decoders, the synthesis was configured to allocate the
majority of the effort to the minimization of delay on the

REVIRIEGO et al.: METHOD TO DESIGN SEC CODES WITH FAST DECODING FOR A SUBSET OF CRITICAL BITS 175

TABLE IV
ASIC CIRCUIT AREA (μM2) FOR 7 ADDITIONAL CONTROL BITS

TABLE V
ASIC CIRCUIT DELAY (NS) FOR 7 ADDITIONAL CONTROL BITS

control bits as that is the main design goal. For the encoders,
the tool was configured to minimize delay on all bits. In all
cases, identical synthesis constraints were applied to both the
proposed codes and the minimum-weight codes. The circuit
area and delay have been evaluated.

The results for the case of three additional control bits are
shown in Tables II and III. The tables also show the results
for the minimum-weight SEC codes. In this case, the reduction
of the decoding delay of the control bits is in the range of
12%–18%. This shows the potential of the proposed scheme
to reduce the critical path. The circuit area is similar to that of
the minimum-weight SEC codes, in some cases slightly lower
and in some slightly higher.

The proposed codes do have an impact on the decoding delay
for the data bits. For the decoders, the added delay on data bits
is significant for most word sizes. However, as discussed in the
introduction, the major design goal is to reduce the decoding
delay of the control bits as these typically determine the critical
timing path.

The results for the case of seven control bits are shown in
Tables IV and V. The proposed codes require a circuit area
for both the encoder and the decoder similar to that of the
minimum-weight codes. In terms of delay, decoding of the
data bits is slower. On the other hand, the proposed codes
are able to reduce the decoding delay of the control bits by
approximately 9%–11%. This reduction is smaller than that for
the three control bits case. This is expected as the number of
parity bits (pcd) used to decode the control bit increases (from
three to four) and so does the decoder complexity. Therefore,
the benefits of the proposed scheme decrease as the number of
control bits increases.

In summary, the proposed method can be used to reduce the
decoding delay of the control bits, especially when the number
of control bits is small.

V. CONCLUSION AND FUTURE WORK

In this brief, a method to construct SEC codes that can
protect a block of data and some additional control bits has
been presented. The derived codes are designed to enable fast
decoding of the control bits. The derived codes have the same
number of parity check bits as existing SEC codes and therefore
do not require additional cost in terms of memory or registers.
To evaluate the benefits of the proposed scheme, several codes
have been implemented and compared with minimum-weight
SEC codes.

The proposed codes are useful in applications, where a few
control bits are added to each data block and the control bits
have to be decoded with low delay. This is the case on some
networking circuits. The scheme can also be useful in other
applications where the critical delay affects some specific bits
such as in some finite-state machines. Another example is
arithmetic circuits where the critical path is commonly on the
least significant bits. Therefore, reducing the delay on those bits
can increase the overall circuit speed. The use of the proposed
scheme for those applications beyond networking is an interest-
ing topic for future work. It may be possible to apply the idea
of modifying the matrix of the code to enable fast decoding of
a few bits to more advanced ECCs that can correct multiple
bit errors. Finally, the scheme can also be extended to support
more control bits by using one or two additional parity check
bits. This would provide a solution to achieve fast decoding
without using two separate codes for data and control bits.

REFERENCES

[1] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. SIGCOMM,
2013, pp. 99–110.

[2] J. W. Lockwood et al., “NetFPGA—An open platform for gigabit-rate
network switching and routing,” in Proc. IEEE Int. Conf. Microelectron.
Syst. Educ., Jun. 2007, pp. 160–161.

[3] A. L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu,
“Design for soft error resiliency in Internet core routers,” IEEE Trans.
Nucl. Sci., vol. 56, no. 6, pp. 3551–3555, Dec. 2009.

[4] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Application. Hoboken, NJ, USA: Wiley, 2006.

[5] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124–134, Mar. 1984.

[6] V. Gherman, S. Evain, N. Seymour, and Y. Bonhomme, “Generalized
parity-check matrices for SEC-DED codes with fixed parity,” in Proc.
IEEE On-Line Test. Symp., 2011, pp. 198–20.

[7] Ten Gigabit Ethernet Medium Access Controller, OpenCores. [Online].
Available: http://opencores.org/project/ethmac

[8] P. Zabinski, B. Gilbert, and E. Daniel, “Coming challenges with terabit-
per-second data communication,” IEEE Circuits Syst. Mag., vol. 13,
no. 3, pp. 10–20, 3rd Quart. 2013.

[9] UltraScale Architecture Integrated Block for 100 G Ethernet v.14.
LigCOREIP Product Guide. PG165, Xilinx, San Jose, CA, USA.
Jan. 22, 2015.

[10] OpenSilicon Interlaken ASIC IP Core. [Online]. Available: www.open-
silicon.com/open-silicon-ips/interlaken-controller-ip/

[11] P. Reviriego, S. Pontarelli, J. A. Maestro, and M. Ottavi, “A method to
construct low delay single error correction (SEC) codes for protecting
data bits only,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 3, pp. 479–483, Mar. 2013.

[12] J. E. Stine et al. “FreePDK: An open-source variation-aware design
kit,” in Proc. IEEE Int. Conf. Microelectron. Syst. Educ., Jun. 2007,
pp. 173–174.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

