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Abstract— In this paper, an exportable application-specific
instruction-set elliptic curve cryptography processor based on
redundant signed digit representation is proposed. The processor
employs extensive pipelining techniques for Karatsuba–Ofman
method to achieve high throughput multiplication. Furthermore,
an efficient modular adder without comparison and a high-
throughput modular divider, which results in a short datapath for
maximized frequency, are implemented. The processor supports
the recommended NIST curve P256 and is based on an extended
NIST reduction scheme. The proposed processor performs single-
point multiplication employing points in affine coordinates
in 2.26 ms and runs at a maximum frequency of 160 MHz in
Xilinx Virtex 5 (XC5VLX110T) field-programmable gate array.

Index Terms— Application-specific instruction-set pro-
cessor (ASIP), elliptic curve cryptography (ECC), field-progra-
mmable gate array (FPGA), Karatsuba–Ofman multiplication,
redundant signed digit (RSD).

I. INTRODUCTION

ELLIPTIC curve cryptography (ECC) [1] is an asymmetric
cryptographic system that provides an equivalent security

to the well-known Rivest, Shamir and Adleman system with
much smaller key sizes [2]. The basic operation in ECC is
scalar point multiplication, where a point on the curve is mul-
tiplied by a scalar. A scalar point multiplication is performed
by calculating series of point additions and point doublings.
Using their geometrical properties, points are added or doubled
through series of additions, subtractions, multiplications, and
divisions of their respective coordinates. Point coordinates are
the elements of finite fields closed under a prime or an irre-
ducible polynomial. Various ECC processors have been pro-
posed in the literature that either target binary fields [3], [4],
prime fields [5]–[7], or dual field operations [8], [9].

In prime field ECC processors, carry free arithmetic
is necessary to avoid lengthy datapaths caused by carry
propagation. Redundant schemes, such as carry save arith-
metic (CSA) [10], [11], redundant signed digits (RSDs) [12],
or residue number systems (RNSs) [7], [13], have been
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utilized in various designs. Carry logic or embedded
digital signal processing (DSP) blocks within field-
programmable gate arrays (FPGAs) are also utilized in some
designs to address the carry propagation problem [14], [15].
It is necessary to build an efficient addition datapath since
it is a fundamental operation employed in other modular
arithmetic operations.

Modular multiplication is an essential operation in ECC.
Two main approaches may be employed. The first is known
as interleaved modular multiplication using Montgomery’s
method [16]. Montgomery multiplication is widely used in
implementations where arbitrary curves are desired [17], [18].
Another approach is known as multiply-then-reduce and is
used in elliptic curves built over finite fields of Merssene
primes [19]. Merssene primes are the special type of primes
which allow for efficient modular reduction through series
of additions and subtractions [5], [20]. In order to optimize
the multiplication process, some ECC processors use the
divide and conquer approach of Karatsuba–Ofman multipli-
cations [21], where others use embedded multipliers and DSP
blocks within FPGA fabrics [22]–[24].

Since modular division in affine coordinates is a costly
process, numerous coordinate representation systems have
been proposed to compensate this cost by means of
extra multiplications and additions (e.g., Jacobian coordi-
nates) [6], [24]. Conversion back to affine representation can
be mechanized using Fermat’s little theorem [11], [25]. Such
processors may implement a dedicated squarer to speed up the
inversion process [5]. On the other hand, binary GCD modular
division algorithm [26] is utilized in many ECC processors
where affine coordinate system is used. Binary GCD algorithm
is based on simple add and shift operations, while the same
operations are used by Montgomery multiplication. Hence,
many ECC processors with combined modular division and
multiplication blocks have been proposed [27], [28].
The complexity of modular division algorithms is
approximately O(2n), where n is the size of operands and the
running time is variable and depends directly on the inputs.

This paper proposes a new RSD-based prime field
ECC processor with high-speed operating frequency.
The processor is an application-specific instruction-set
processor (ASIP) type to provide programmability
and configurability. In this paper, we demonstrate the
performance of left-to-right scalar point multiplication
algorithm; however, the ASIP feature of the processor
allows different algorithms to be performed by the through
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read-only memory (ROM) programming. The overall proces-
sor architecture is of regular cross bar type with 256 digit
wide data buses. The design strategy and optimization
techniques are focused toward efficient individual modular
arithmetic modules rather than the overall architecture. Such
architecture allows for easy replacement of individual blocks
if different algorithms or modular arithmetic techniques are
desired. Different efficient architectures of individual modular
arithmetic blocks for various algorithms are proposed. The
novelty of our processor evolves around the following.

1) We introduce the first FPGA implementation of
RSD-based ECC processor.

2) Extensive pipelining and optimization strategies are
used to obtain a high-throughput iterative Karatsuba
multiplier which lead to a performance improvement of
almost 100% over the processor proposed in [29].

3) To the best of our knowledge, the proposed modular
division/inversion is the fastest to be performed on
FPGA device. This is done through a new efficient
binary GCD divider architecture based on simple logical
operations.

4) A modular addition and subtraction is proposed without
comparison.

5) Most importantly, exportable design is proposed with
specifically designed multipliers and carry free adders
that provided in competitive results against DSPs and
embedded multipliers-based designs.

The remaining of this paper is organized as follows.
Section II provides background information on ECC systems
as well as other algorithms and approaches for modular
arithmetic. Section III presents the overall architecture of
the proposed processor. The architecture of the modular
arithmetic unit (AU) is presented in Section IV. Control
unit and instruction set are provided in Section V, while
implementation and results analysis are presented in
Section VI. Finally, the conclusion is drawn in Section VII.

II. BACKGROUND

A. Elliptic Curve Cryptography

Elliptic curves [30] over a field K are defined by the reduced
Weierstrass equation in (1) when the characteristic of the field
is two or three. The set of solutions along with a point at
infinity O defines the algebraic structure as a group with point
addition as the basic operation

E : y2 = x3 + ax + b. (1)

The smoothness of the curve and distinct roots are guaranteed
by 4a3 + 27b2 �= 0. Points on the curve are defined by their
affine coordinates (x , y). Point coordinates are of type integers
for an elliptic curve defined by (1) and are the elements of an
underlying finite field with operations performed modulo a
prime number. Such elliptic curves are known as prime field
elliptic curves.

For prime field elliptic curves defined by (1), the coordi-
nates of the point addition result is calculated as follows,
assuming P = (x1, y1), Q = (x2, y2), and R = P + Q =

Algorithm 1 Left-to-Right Point Multiplication Binary
Method

(x3, y3):

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2 (2)

y3 =
(

y2 − y1

x2 − x1

)
(x1 − x3) − y1. (3)

Whereas the point doubling operation is calculated as follows:

x3 =
(

3x1
2 + a

2y1

)2

− 2x1 (4)

y3 =
(

3x1
2 + a

2y1

)
(x1 − x3) − y1. (5)

1) Point Scalar Multiplication: Point scalar multiplication is
the operation of multiplying a point P on the elliptic curve by
an integer scalar k within the underlying field. The operation
is performed as k-times addition of the point P to itself.
A discrete logarithm problem is formulated based on the scalar
point multiplication and several cryptographic protocols and
algorithms have been established accordingly [31].

Several algorithms have been proposed to perform the scalar
point multiplication that are either based on the direction of
the scalar scanning or on the representation of the scalar [30].
Algorithm 1 is based on the square-and-multiply method for
the exponentiation, where the exponent is scanned from left-
to-right and the operations of squaring and/or multiplication
are performed according to the binary value of the scanned
bit. Similarly, a right-to-left point multiplication algorithm
exists that differs in the direction of exponent scanning. The
operations of squaring and multiplication are replaced by point
doubling and point addition, respectively.

B. Redundant Signed Digits

The RSD representation, first introduced by Avizienis [32],
is a carry free arithmetic where integers are represented by the
difference of two other integers. An integer X is represented
by the difference of its x+ and x− components, where x+ is
the positive component and x− is the negative component.
The nature of the RSD representation has the advantage
of performing addition and subtraction without the need of
the two’s complement representation. On the other hand, an
overhead is introduced due to the redundancy in the integer
representation, since an integer in RSD representation requires
double wordlength compared with typical two’s complement
representation. In radix-2 balanced RSD represented integers,
digits of such integers are either 1, 0, or −1.
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C. Karatsuba–Ofman Multiplication

The complexity of the regular multiplication using the
schoolbook method is O(n2). Karatsuba and Ofman [33]
proposed a methodology to perform a multiplication with com-
plexity O(n1.58) by dividing the operands of the multiplication
into smaller and equal segments. Having two operands of
length n to be multiplied, the Karatsuba–Ofman methodology
suggests to split the two operands into high-(H ) and low-(L)
segments as follows [33]:

aH = (an−1, . . . , a�n/2�), aL = (a�n/2�−1, . . . , a0)

bH = (bn−1, . . . , b�n/2�), bL = (b�n/2�−1, . . . , b0).

Consider β as the base for the operands, where β is 2 in
case of integers and β is x in case of polynomials. Then,
the multiplication of both operands is performed as follows:
considering a = aL + aHβ�n/2� and b = bL + bHβ�n/2� then

C = AB = (aL + aHβ�n/2�)(bL + bHβ�n/2�)
= aLbL + (aLbH + aH bL)β�n/2� + aH bHβn. (6)

Hence, four half-sized multiplications are needed, where
Karatsuba methodology reformulate (6) to

C = AB = (aL + aHβ�n/2�)(bL + bHβ�n/2�)
= aLbL

+ ((aL + aH )(bL + bH ) − aH bH − aLbL)β�n/2�

+ aH bHβn. (7)

Therefore, only three half-sized multiplications are needed.
The original Karatsuba algorithm is performed recursively,
where the operands are segmented into smaller parts until a
reasonable size is reached, and then regular multiplications of
the smaller segments are performed recursively.

D. Binary GCD Modular Division

A modular division algorithm is proposed in [26] based
on the extended Euclidean algorithm. This algorithm is con-
sidered as the basis for several hardware implementations of
modular division [28], [34], [35]. Algorithm 2 computes the
modular division Z ≡ X/Y (mod M) based on the plus–
minus version of the original binary GCD algorithm. The
algorithm instantiates the four registers A, B, U , and V that
are initialized with Y, M, X , and 0, respectively. Then, it con-
stantly reduces the values of Y and M in order to calculate
the GCD(Y, M) which is equal to 1 in well formed elliptic
curves where the modulo is prime. The registers U and V
are used to calculate the quotient and the operations performed
on these registers are similar to the operations performed on
the A and B registers. The operations on the registers A and B
are performed by repetitively reducing the contents of both
registers by simple shift or add/subtract-shift operations based
on the conditions whether the intermediate contents are even
or not. In the case where both registers contents are odd, the
content of both registers are added if A+ B is divisible by 4 or
subtracted, (A− B), otherwise. Two variables ρ and δ are used
to control the iterations of the algorithm based on the bounds
of the registers contents, where δ = α − β, 2α and 2β are the
upper bounds of A and B , respectively, and ρ = min(α, β).

Algorithm 2 Radix-4 Binary GCD Modular Division
Algorithm

Fig. 1. Overall processor architecture.

III. OVERALL PROCESSOR ARCHITECTURE

The proposed P256 ECC processor consists of an AU of 256
RSD digits wide, an finite-state machine (FSM), memory,
and two data buses. The processor can be configured in
the presynthesis phase to support the P192 or P224 NIST
recommended prime curves [36]. Fig. 1 shows the overall
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Fig. 2. RSD adder.

Fig. 3. RSD adder/subtracter.

processor architecture. Two subcontrol units are attached to the
main control unit as add-on blocks. These two subcontrol units
work as FSMs for point addition and point doubling, respec-
tively. Different coordinate systems are easily supported by
adding corresponding subcontrol blocks that operate according
to the formulas of the coordinate system.

External data enter the processor through the external bus to
the 256 RSD digits input bus. Data are sent in binary format
and a binary to RSD converter stuffs zeros in between the
binary bits in order to create the RSD representation. Hence,
256-bits binary represented integers are converted to 512-bits
RSD represented integers. To convert RSD digits to binary
format, one needs to subtract the negative component from
the positive component of the RSD digit.

IV. ARITHMETIC UNIT

The AU is the core unit of the processor that includes
the following blocks: 1) modular addition/subtraction block;
2) modular multiplication block; and 3) modular division
block.

A. Modular Addition and Subtraction

Addition is used in the accumulation process during the
multiplication, as well as, in the binary GCD modular divider
algorithm.

In the proposed implementation, radix-2 RSD representation
system as carry free representation is used. In RSD with
radix-2, digits are represented by 0, 1, and −1, where digit 0
is coded with 00, digit 1 is coded with 10, and digit −1 is
coded with 01. In Fig. 2 [37], an RSD adder is presented
that is built from generalized full adders. The problem with
this adder is that it tends to expand the addition result even

TABLE I

ADDITION RULES FOR THE RSD ADDER [38]

if there is no overflow, since it restricts the least significant
digit (LSD) to be digit −1 only. This unnecessary overflow
affects the reduction process later and produces some control
complexities in the overall processor architecture. However,
the overflow is easily managed when the adder is instantiated
as a subblock within a multiplier or a divider as is the case in
the proposed implementation.

In order to overcome the problem of overflow introduced
in the adder proposed in [37], a new adder is proposed based
on the work proposed in [38]. The proposed adder consists of
two layers, where layer 1 generates the carry and the interim
sum, and layer 2 generates the sum, as shown in Fig. 3. Table I
shows the addition rules that are performed by layer 1 of the
RSD adder, where RSD digits 0, +1, and −1 are represented
by Z , P , and N , respectively. It works by assuring that layer 2
does not generate overflow through the use of previous digits
in layer 1. The proposed adder is used as the main block in the
modular addition component to take advantage of the reduced
overflow feature. However, overflow is not an issue in both
the multiplier and the divider when an RSD adder is used
as an internal block. Hence, the reduced area is taken as an
advantage in instantiating adders within the multiplier and the
divider.

The n-digits modular addition is performed by three levels
of RSD addition. Level 1 performs the basic addition of the
operands which produces n + 1 digits as a result. If the most
significant digit (MSD) of level 1 output has a value of 1/−1,
then level 2 adds/subtracts the modulo P256 from the level 1
output correspondingly. The result of level 2 RSD addition
has n + 2 digits; however, only the n + 1th digit may have a
value of 1/−1. This assertion is backed up by the fact that the
operation of level 2 is a reversed operation with the modulo
P256, and most importantly, the proposed adder assures that
no unnecessary overflow is produced. If the n + 1th digit of
level 2 result has a value 1 or −1, then level 3 is used to
reduce the output to the n-digit range. Algorithm 3 shows
the sequence of operations performed by the modular addition
block. Notice that one modular addition is performed within
one, two, or three clock cycles.

Fig. 4 shows the block diagram of the RSD modular addi-
tion block. The advantage of the proposed modular addition
scheme is that only the MSD digits of the intermediate results
are checked for the reduction process, as shown in Fig. 4. Our
modular adder/subtracter consists of one full word RSD adder,
two full word multiplexers, and one register with some control
signals. One modular addition/subtraction is performed within
one, two, or three clock cycles as per the value of the
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Algorithm 3 RSD Modular Addition/Subtraction

Fig. 4. Modular addition subtraction block diagram.

MSD that is retrieved after every addition. Whenever MSD
becomes zero, the modular addition/subtraction module stops
the operation and the valid out signal is activated. An n + 1
RSD digit does not necessarily yield a value larger than the
n-digit P256 modulo. Hence, the output of level 1 is in the
range −2 ∗ P256 < L1 < 2 ∗ P256. Level 2 reduces
the result to the range −P256 < L2 < P256. Level 3
assures that the output is represented by n-RSD digits in the
range −P256 < L3 < P256. Notice that the subtraction is
performed by negating operand B which is simply performed
by swapping the negative and positive components of the RSD
representation of the operand.

B. Modular Multiplication

Karatsuba’s multiplier recursive nature is considered
a major drawback when implemented in hardware [39].
Hardware complexity increases exponentially with the

TABLE II

MIDDLE PRODUCT FOR THE RECURSIVE KARATSUBA CONSTRUCTION

size of the operands to be multiplied. To overcome this
drawback, Karatsuba method is applied at two levels.
A recursive Karatsuba block that works depthwise, and an
iterative Karatsuba that works widthwise. The proposed
method consists of two phases: 1) in phase 1, a regular
recursive Karatsuba is built through recursive construction
down to 1-digit level and 2) the recursive Karatsuba block is
used to perform Karatsuba multiplications iteratively. Hence,
three recursive Karatsuba blocks are used to perform single
widthwise Karatsuba iteration.

1) Recursive Construction of Karatsuba Multiplier:
In general, the reduced complexity of Karatsuba multiplica-
tion comes from the fact that four half-word multiplications
are replaced by three half-word multiplications with some
additions and subtractions. However, the complexity impact
increases with the increase of the recursive depth of the
multiplier. Hence, it is not sufficient to divide the operands
into halves and apply the Karatsuba method at this level only.

Operands of size n-RSD digits are divided into two (low and
high) equal sized n/2-RSD digits branches. The low branches
are multiplied through an n/2 Karatsuba multiplier and the
high branches are multiplied through another n/2 Karatsuba
multiplier. Implementation difficulties arise with the middle
Karatsuba multiplier when multiplying the results of addition
of the low and high branches of each operand by itself. The
results of the addition are of size n/2 + 1-RSD digits so that an
unbalanced Karatsuba multiplier of size n/2 + 1 is required.
Hence, the carry generated by the middle addition operation
needs to be addressed to avoid implementation complexities
of the unbalanced Karatsuba multiplier.

In [40], a method to handle the carry produced by the
middle addition is proposed. This is adapted to RSD arith-
metic as follows. The n/2-digit Karatsuba block is used to
multiply the middle summations, excluding the carry. A 1-digit
RSD multiplier is used to multiply the carry digits. The cross
multiplication is simply performed by checking the carry in the
other middle summation. In general, the middle multiplication
is calculated as Table II indicates, where Sx and Sy represent
the summation without the carry digits and Cx and Cy are the
carry digits.

Algorithm 4 represents the recursive construction of the
Karatsuba multiplication method at the n-digits level. A recur-
sive call of the Karatsuba multiplication module is performed
three times for Klow, Khigh, and K1. These three multiplica-
tions are performed in parallel through three Karatsuba blocks.
Each Karatsuba block performs recursively the same
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Algorithm 4 Karatsuba (X, Y, n)

Fig. 5. Karatsuba recursive block.

operations for n/2, then for n/4, and so forth. The recursive
Karatsuba is constructed by recursive generation down to
4-digit of RSD schoolbook multiplier. The use of schoolbook
multiplier at the lower level of the multiplier is due to the
fact that Karatsuba method produces delays that cannot be
compensated at small operand sizes. Hence, the recursive
construction of the Karatsuba multiplier should stop at a level
where the critical path delay (CPD)-performance tradeoff is
advantageous.

The block diagram of the recursive Karatsuba multiplier is
shown in Fig. 5, where data dependences are clearly noticed.
As shown in Fig. 5, Karatsuba method requires performing

Algorithm 5 RSD Iterative–Recursive Karatsuba Multiplier

a subtraction at every level, which is an advantage of the
proposed implementation since subtraction is performed with
no added cost in RSD representation. The block diagram of
the recursive Karatsuba module is built from three half-sized
recursive Karatsuba blocks and some RSD adders/subtracters.
There is one 1-digit RSD multiplier that is used to multiply the
carry digits from the middle addition. The cross multiplication
of the middle addition is performed through multiplexers with
the carry digits as the select signals according to Table II.
According to Fig. 5, the critical datapath of the recursive
Karatsuba is divided into two paths. The first path goes through
the middle half-sized recursive Karatsuba block, and the other
goes through the cross product of the middle addition with
multiplexers and some adders. Any optimizations attempts
should focus at these two datapaths, which is discussed in
more details in Section IV-B3.

2) Iterative Karatsuba Multiplier: The recursive construc-
tion of the in-depth Karatsuba can be performed to 256 digits;
however, the hardware complexity would increase exponen-
tially. Hence, an iterative version is introduced to reduce the
complexity at the expense of extra clock cycles. A recursive
in-depth Karatsuba block is built of size k, where k = 2i .
The value of i is determined according to design tradeoff
of hardware versus clock cycles. The full-sized multiplicands
(size n) are handled as words of size k. At each iteration,
two words of each operands are multiplied using Karatsuba
method. The cost of multiplying two 2k-operands using mul-
tiplier of size k requires four full k-multiplications along
with the accumulation process, as shown in Algorithm 5.
Using Karatsuba at this level, the 4k-multiplications are
compensated for 3k-multiplications with some additions and
subtraction operations. Meanwhile, the k-multiplier by itself
is a Karatsuba-based multiplier.

3) Optimization and Pipelining Techniques: The CPD
of the processor is dominated by the Karatsuba multiplier
datapath. Our 32-digit Karatsuba multiplier datapath consists
of cascaded adders along with the recursive datapath of the
16-digit Karatsuba. The number of cascaded adders defines
the datapath of the multiplier. There are seven adders in
the multiplier datapath as shown in the following equations,
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Fig. 6. Karatsuba multiplier datapath optimization. (A) Unbalanced datapath.
(B) Balanced datapath.

where A and B are RSD digits of size k:
1) Asum = AH 2k/2 + AL

Bsum = BH 2k/2 + BL

C = Asum2k ∗ Bsum2k

K3A = Karatsuba16(Asum, Bsum)

K1 = Karatsuba16(AL , BL)

K2 = Karatsuba16(AH , BH )

2) K3B = A′
sum + B ′

sum

3) K3C = K3A + K3B2k/2

4) K3 = K3C + C2k

M1 = K1 + K2

5) M2 = K3 − M1

6) S′ = K1 + K222k

7) S = S′ + M22k .

Numbered equations represent the additions that contribute to
the multiplier’s datapath. To reduce path delays and increase
maximum operating frequency of the system, two approaches
have been followed. First, the number of additions within
the CPD is reduced. Second, a highly pipelined system
is introduced by careful placement of registers within the
datapath. By working around addition numbers 4, 6, and 7, the
number of RSD additions within the datapath could be reduced
to six additions only. The addition of the carry C in (4) is
delayed until the end of the process. Also, the addition in (6)
is only a cascade operation when the extra digit at position 2k
of operand K1 is removed. Hence, the carry C and the extra
digit of K1 from addition (6) are cascaded for a final addition
at once. Therefore, additions (4), (6), and (7) are replaced by
additions (5′) and (6′) as follows, where, operation number (5)
become operation number (4) and || represents concatenation

5′) S′ = (K1 − K1[2k]||K222k) + M22k

6′) S = S′ + (C22k ||K1[2k]2k).

Fig. 6 shows the datapath of the multiplier. Six adders
represent the datapath along with the recursive datapath for the
16-digit Karatsuba multiplier blocks. The 16-digit recursive
Karatsuba block is a three stages pipelined datapath and

Fig. 7. Occupied and idle clock cycle instants of the proposed multistage
Karatsuba multiplier.

it yields an unbalanced datapath, as shown in Fig. 6(A).
Hence, an almost balanced datapath with three main stages is
introduced, as shown in Fig. 6(B). Two stages consist of three
substages datapath as the recursive 16-digit Karatsuba block,
and the cascaded adders stage. One initial stage consists of
one substage of the middle addition.

An iterative Karatsuba multiplication can be easily adopted
to run with minimum idle stages starting from the initial
middle addition that runs for one clock cycle. Then, the
16-digit Karatsuba would run for three clock cycles. Finally,
the cascaded adders stage would run for another three clock
cycles. Fig. 7 shows the run time for the three main stages.
Note that idle stages appear only in the initial middle addition
stage, where, Karatsuba and cascaded adders stages are fully
occupied during the run time of our iterative Karatsuba
multiplier.

4) Extended NIST Reduction: Generalized Mersenne
primes [19] are the special type prime numbers that allow
fast modular reduction. Regular division is replaced by
few additions and subtractions. Such primes are represented
as p = f (t), where t is a power of 2. The modulus of the
P256 curve is Merssene prime p = 2256−2224+2192+296−1.

Due to the redundancy nature of the RSD representation, the
multiplication process may produce results that are represented
by more than 512 digits and these results are still in the range
−p2 < A < p2. These one or two extra digits are outside the
range of the NIST reduction process. Hence, we derived new
formulas to include these extra digits in the reduction process.
The new reduction process has one extra 256-digit term, D5,
along with some modification of the previously existed terms.
This term is added conditionally, whether the extra digit is set
or not. Thus, two additions are the total overhead required to
handle the extra digits caused using the RSD representation.
The modified reduction formula is B = T + 2S1 + 2S2 + S3 +
S4 − D1 − D2 − D3 − D4 − D5 mod p, where A16 represents
the extra digits produced by RSD Karatsuba multiplier

T = (A7‖A6‖A5‖A4‖A3‖A2‖A1‖A0)

S1 = (A15‖A14‖A13‖A12‖A11‖ 0 ‖ 0 ‖ 0 )

S2 = (2 ∗ A16‖A15‖A14‖A13‖A12‖ 0 ‖ 0 ‖A16)

S3 = (A15‖A14‖ 0 ‖ 0 ‖−2 ∗ A16‖A10‖A9‖A8)

S4 = (A8‖A13‖A15‖A14‖A13‖A11‖A10‖A9)

D1 = (A10‖A8‖ 0 ‖ 0 ‖2 ∗ A16‖A13‖A12‖A11)

D2 = (A11‖A9‖ 0 ‖A16‖A15‖A14‖A13‖A12)

D3 = (A12‖2 ∗ A16‖A10‖A9‖A8‖A15‖A14‖A13)

D4 = (A13‖ 0 ‖A11‖A10‖A9‖A16‖A15‖A14)

D5 = (−A16‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ − A16).
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Fig. 8. Mod P256 reduction block.

In order to accommodate the extra digit produced by the
RSD Karatsuba multiplier, NIST reduction is reformulated.
The resultant reduction scheme consists of three extra
additions. However, through reformulation and combining the
original terms with the additional terms, the reduction scheme
is optimized. Accordingly, the modular multiplier is built
with a Karatsuba multiplier, modular RSD adder, and some
registers to hold the 256-digit terms. Fig. 8 shows the block
diagram of the Mod P256 RSD multiplier. A controller is used
to control the flow of the terms to the modular adder and at
every turn, the result of the modular addition is accumulated
and fed back to the adder. The cross-bar in Fig. 8 shows
the wiring of the 32-digit words to their respective locations
within the extended NIST reduction registers.

C. High-Radix Modular Division

Binary GCD algorithm is an efficient way of performing
modular division since it is based on addition, subtraction, and
shifting operations. The complexity of the division operation
comes from the fact that the running time of the algorithm is
inconsistent and is input dependent. As seen in Algorithm 2,
three main states define the flow of the algorithm. In the first
state, the divider is checked whether it is even or odd. In the
second state, the content of the corresponding registers are
swapped according to the flag δ. In the last state, division by
4 modulo M is performed.

In order to efficiently implement Algorithm 2 in hardware,
the following list of operations should be adopted to be
executed efficiently in hardware. First, division by 2 or by 4 is
simply performed by shifting to right 1-digit/2-digits

Fig. 9. Modular divider block.

accordingly based on the guarantee that the LSDs are zeros
in line 3 and 12 of the algorithm. On the other hand, division
by 2 modulo M (division by 4 modulo M) is performed by
adding or subtracting the dividend to or from the modulus
according to whether the dividend is even or odd and the
value of M (mod 4). For both δ and ρ, a comparison with
0 is necessary. However, an efficient alternative is to initialize
a vector of size n with all zeros except the least significant
byte (LSB) for δ and the most significant byte (MSB) for ρ.
Hence, the counting down of ρ is performed by shifting 1 bit
to right and only the LSB is checked for the loop termination.
On the other hand, a flag is needed to control the shift
direction of δ, where the flag and the value of the LSB are
used to determine whether it is less than zero or not. The
implementation of the algorithm follows the implementation
proposed in [38]. The modular divider architecture is shown
in Fig. 9. Three RSD adders are used along with three 3 × 1
multiplexers and one 4 × 1 multiplexer with some control
logic.

V. CONTROL UNIT AND INSTRUCTION SET

The control unit consists of the main controller of the
processor that is an FSM. It also includes two processing units
that control the procedures for the point doubling and point
addition. In order to process the different coordinate systems,
the other processing units can be generated to support them as
an add-on feature. Hence, new instructions need to be added to
the instruction set to accommodate the new processing units.
Different scalar point multiplication algorithms are supported
at instruction level. Different projective coordinate systems
and point addition/doubling variations are configured at the
control level through add-on processing units. On the other
hand, elliptic curves with different finite fields are supported
as a presynthesis process.
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Fig. 10. Main controller FSM.

A. Main Controller

The primary task of the main controller is to fetch, read,
and execute instructions from memory. Based on the flow
of instructions, the two attached processing units for point
doubling and point addition are controlled accordingly. During
the running time of the point doubling and point addition,
control signals for the AU blocks and the memory are gener-
ated. In addition, the procedure flow of operations within the
processing units is controlled via flag signals coming from the
AU blocks. The main controller is a simple FSM, where
the states represent the instructions listed in the instruction
set of Fig. 10. Initially, the controller is in the INIT state
waiting for the START signal from the outside. When the
START signal is set, the controller starts reading and executing
instructions. Normally, the first instruction would be INI
which leads to coordinates-loading state. After that, the FSM
keeps bouncing between the reading instructions state and the
other three states: 1) Wait; 2) Jump; and 3) Compare. Finally,
the FSM reaches the Finish state where the output coordinates
are loaded to output and the processor goes back to its initial
state.

B. Point Addition/Doubling Controller

The point addition/doubling processing units are subroutines
that control the sequence of operations for affine coordinate
system. These subroutines are the part of the main controller
and are made as add-on blocks for customization purposes.
They mainly control the execution order of the AU blocks in
order to obtain the resultant coordinates of adding two points
or doubling a point. The coordinates of these two points reside
in the first half of the memory, where the second half is used
for storing the intermediate results from the AU. The flow
and sequence of operations controlled by the point addition
or point doubling controllers and the intermediate contents of
the memory registers are shown in Fig. 11. It is to be noted
that the dependence of operations in these two figures show
limitation of parallelism for affine coordinates.

Fig. 11. Point addition and doubling process flow.

C. ROM and Instruction Set

The instruction set defined for our processor is at point
multiplication level, where the main instructions represent
point doubling and point addition operations. The other
choice was to implement the instruction set at the arithmetic
level; however, complexity increases as a cost for increased
flexibility. Instructions are 16-bits wide, the MSB is used for
the operation, and the LSB is used for operands. Initially,
point doubling and point addition instructions are defined with
the possibility to expand the instruction set to include other
coordinate systems operations. In addition, the instruction
set can be extended to include simple power analysis (SPA)
countermeasures. For instance, other point addition and point
doubling (XPA and XPD) are added to the instruction set that
perform dummy operations to provide the balance needed
to counteract an SPA attacks. The regular point addition
requires 6 additions, 2 multiplications, and 1 division, where
point doubling requires 8 additions, 3 multiplications, and
1 division. Hence, 1 dummy multiplications and 2 additions
are added to XPA instruction to balance the point doubling
with the point addition operation. Table III presents the
instruction set with their operations and hexadecimal codes
along with the clock cycles and their timings.

A ROM is used to hold the assembly code that represents
a certain point multiplication algorithm. The code is loaded
into ROM as a presynthesis process. The size of the ROM
in our processor is 16 × 16 and can be expanded easily.
Table IV shows the assembly code for the left-to-right
point multiplication Algorithm 1. As a key feature of ASIP
implementations, and due to the fact that our instruction
set is built at curve level, i.e., point addition and point
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TABLE III

P256 ECC PROCESSOR INSTRUCTION SET

TABLE IV

ASSEMBLY CODE FOR LEFT-TO-RIGHT POINT MULTIPLICATION

TABLE V

IMPLEMENTATION RESULTS OF INDIVIDUAL BLOCKS IN VIRTEX 5

doubling level, the program size of the left-to-right point
multiplication algorithm is highly optimized. According to
Table IV, the program is coded by 8 instructions, which
yields a program size of 16 bytes. The left-to-right point
multiplication is performed within 361 700 clock cycles
using the WPA and WPD instructions, where it is performed
within 391 834 clock cycles if the XPA and XPD instructions.
There is a timing overhead of 8.33% for applying a SPA
countermeasure at the point multiplication level.

VI. IMPLEMENTATION RESULTS AND DISCUSSION

The proposed processor was implemented in Xilinx
Virtex 5-XC5VLX110T FPGA and a single point multipli-
cation for P256 is achieved within 2.26 ms. Detailed imple-
mentation results of individual blocks are listed in Table V.
Such detailed results are useful in understanding the main
block contributors to the overall hardware resources. It can be
noted that the modular multiplier is the largest block within
the design due to the three recursively built Karatsuba blocks,
which operate in parallel. With the extensive pipelining tech-
niques that are applied to the Karatsuba blocks, the CPD
is shortened down to 6.24 ns. Such CPD figure allows the

processor to operate at 160 MHz, which is the fastest achieved
in the literature in FPGA devices without embedded blocks.
Detailed timing performance of operations performed by the
processor that is operating at 160 MHz on Virtex 5 device are
listed in Table VI.

Table VII lists a comparison of our modular divider
implementation results against other FPGA-based designs.
Our modular divider performs the fastest timing of prime
field dividers and competitive to binary field GF2233

modular divider. The performance enhancement is due to
the usage of RSD, which leads to short datapath and high
operating frequency. Efficient architecture that is based on
implementing complex operations through simple shifting
single bit checking is another factor that gives our divider
such enhancement. Finally, the modular divider operates on
higher radix which results in improved throughput.

The exportability feature of the processor comes from
the fact that none of the macros or embedded blocks
within the FPGA fabric is utilized in the proposed proces-
sor. Such feature gives our processor the freedom to be
implemented in different FPGA devices from different ven-
dors and, eventually, as an application-specified integrated
circuit (ASIC). Hence, our processor is Look-Up Table
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TABLE VI

DETAILED TIMING PERFORMANCE OF OPERATIONS PERFORMED BY THE PROPOSED PROCESSOR

TABLE VII

COMPARISON OF MODULAR DIVISION/INVERSION IN FPGA DEVICES

TABLE VIII

COMPARISON OF PRIME FIELD ECC PROCESSORS

(LUT)-based which means that simple logical operations
can be mapped easily to both, LUT on FPGA and stan-
dard cells on ASIC technologies. We assessed the exporta-
bility feature while considering the fairness in compar-
ing our processor with other processors proposed in the
literature. Our processor is implemented in four different
FPGA devices from Xilinx and one device from Altera.
The selection of such devices was carefully taken care of to
provide implementation results comparable with their counter-
parts listed in Table VIII. Note that all implementation results
listed in Table VIII are specific to prime fields of 256 size,

except the processor proposed in [12] which operates in the
192-bit field. It is important to note that such results listed in
Table VIII are not specific to certain scalar point multiplica-
tion algorithm, scalar encoding, coordinate system, and target
platform. Hence, the performance of different processors will
vary according to the parameters listed above.

In order to correctly interpret the achieved results, it is
important to understand the structure of the logical elements
within different FPGA devices. Since our design is fully based
on basic logical operations, then we may classify different
devices based on the structure of the LUTs within such
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devices. We found that Xilinx Virtex E, Virtex 2 Pro, and
Virtex 4 devices share the same structure of 4 × 1 LUTs.
On the other hand, Virtex 5 has a LUT configuration of 6 × 2
which gives the advantage of incorporating larger logical net-
works compared with the 4 × 1 configuration. A disadvantage
of 6 × 2 LUTs is that there is a high probability of under
utilization of hardware resources since a simple 2 × 1 logical
operation may occupy the same hardware resources as a
fully 6 × 1 logical network. Altera’s adaptive LUT (ALUT)
in Cyclone and Stratix II devices tries to reduce the under
utilization problem of large LUTs. A single ALUT includes
two 3 × 1 and two 4 × 1 LUTs which are used to provide
many configuration options of up to 7 × 1. Our processor is
implemented in five different devices as listed in Table VIII.
The processor occupies ∼48 K of LUTs in devices with
4 × 1 LUTs, where it consumes 34 K in Virtex 5 and 29 K in
Cyclone FPGA. The maximum operating frequency changes
due to different factors, such as the processing technology of
the devices, the interconnect architectures, the structure of the
configurable blocks, the density of the device, and so on.

Different processors proposed in the literature are listed
in Table VIII with different architectures. The processor
in [22] is designed for arbitrary curves with projective
coordinates. Embedded multipliers within the FPGA fabric
are highly utilized for full word Montgomery multiplication
along with the carry chain of the chip. An ECC processor
that is specific for NIST primes is proposed in [23]. This
processor is highly based on embedded multipliers and carry
chain of the FPGA chip. An RNS are used with Montgomery
multiplication in [43] and based on Horner’s rule in [7]. The
DSPs of the targeted FPGAs are used to speed up the full word
multiplications. Hence, most of the FPGA implementations
of ECC processors make use of embedded multipliers
and DSP blocks that operate on projective coordinates.
Two ASIC-based processors are also listed [12], [44].

The processor proposed in [22] is a full word processor
similar to the work presented in this paper. The processor
in [22] implements the full word Montgomery multiplier
which is build from 256 18 × 18 embedded multipliers within
the Virtex 2 Pro device. Both our processor (Virtex 2 Pro
version) and the processor presented in [22] are approximately
of the same size if we add the 256 embedded multipliers
to the 32-K LUTs. Our processor operates at 95 MHz as
opposed to 40 MHz in their processor. Both processors per-
form a single point multiplication within almost the same time.
However, their work gets a major advantage through the use
of the embedded multipliers that allow them to perform partial
18 × 18 multiplication within one clock cycles. This
makes up the total number of clock cycles to 32 clock
cycles for a single full 256 modular multiplication. If the
processor in [22] employs our modular multiplier, then it
would perform a single point multiplication in ∼10.3 ms.
The approximation is calculated with the assumption of
a balanced hamming weight scalar and at an operating fre-
quency of 95 MHz.

Similar to our processor and the processor proposed
in [22], the processor proposed in [23] is also a full word
256 processor. Our processor occupies less resources within

Virtex 2 Pro as opposed to 42-K LUTs and 32 embedded
multipliers in [23]. Our processor runs at higher operating
frequency and outperforms the processor in [23] in terms of
scalar point multiplication by almost a double. On the other
hand, the point multiplication accelerator proposed in [15]
is a special category on its own. This accelerator employs
efficiently the DSP blocks and the their dedicated interconnects
to achieve a high frequency of 490 MHz. Note that the reported
frequency is achievable if only DSP blocks are used without
any control logic, since other FPGA components cannot run
at such frequency. Hence, the results reported in [15] do not
represent a full functional ECC processor.

Different processors that are built over a RNSs are also
included in Table VIII. The processor in [43] carefully chooses
base sizes that can be efficiently mapped to the DSP blocks
within Altera’s Startix II device. Our processor is implemented
in Altera’s Cyclone V device, which has the same ALUT
structure as in Stratix II device. Although the processor in [43]
is built on much smaller field sizes and greatly depends on the
DSP blocks, our processor could achieve a competitive operat-
ing frequency of 99 MHz. Not to mention the fact that Cyclone
devices are cost effective and lower end products as opposed to
Stratix II devices. It is to be noted that the processors proposed
in [6] and [43] are the fastest reported in Table VIII in terms of
scalar point multiplication. This high performance capability
is mainly inherited from the RNS system. In addition, the
processor proposed in [7] is RNS-based and could achieve
high performance in a slow device such as the Virtex E.

The design strategy of our processor is similar to many
CMOS-based ECC processors reported in the literature.
Two examples are added to Table VIII. Most CMOS-based
ECC processors adopt carry free arithmetic, such as CSA [44]
and RSD [12] to avoid lengthy datapaths. The processor
in [44] is a word-based processor of 64-bit size. It operates
on arbitrary field sizes using Montgomery multiplication.
With the interconnects overhead that exists in FPGA designs,
our processor could achieve shorter datapath and higher
frequency. A single scalar point multiplication is performed
by our processor in shorter time than the processor in [44].
However, the processor in [44] has the advantage of operating
on different field types and sizes as opposed to our processor,
which operates on dedicated NIST prime fields. Although the
processor in [12] is built over RSD arithmetic, our processor
could achieve higher throughput due to the extensive
pipelining techniques and the efficiency of the implemented
logical operations. Comparison in terms of hardware resources
between FPGA- and CMOS-based designs is unfeasible since
the exact gate equivalent of different LUT configuration is
difficult to calculate or estimate. In our design, for instance,
a 6 × 1 LUT in Virtex 5 may represents a logical network of
48 gates in one part of the design, and 12 gates in another
part of the design.

The achieved short critical path is due to the improved
pipelining strategies used in Karatsuba multiplier and the
efficient architecture of the divider. The use of RSD repre-
sentation is essential in reducing CPD of the processor. The
processor in [15] achieved the highest operating frequency by
careful utilization and routing of DSP blocks within the FPGA.
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In addition, the processor in [43] operates on a maximum
frequency of 157 MHz since the length of the datapath is
reduced by the RNS representation along with the use of
DSP blocks.

The target of achieving short datapath through the use of
RSD representation lead to a compromise in terms of hardware
resources used, as shown in Table VIII. However, if we
accounted for the embedded multipliers and DSP blocks that
are utilized by most FPGA designs in addition to the carry
logic within the FPGA, the hardware overhead due to RSD
can be justified. Also, the addition of such embedded blocks
to the number of LUTs consumed by different designs makes
our processor occupies competitive hardware resources figures,
if not outperforming them. It is important to note that there is
no fair metric to convert DSPs and embedded multipliers to
equivalent LUT in order to present fair comparison.

The power consumption is estimated for the proposed
processor using XPower Analyzer tool in the Xilinx ISE
10.1 suit. The power consumption of the proposed processor
running on Virtex 5 and operating at frequency 160 MHz is
estimated at 1.755 W with dynamic power at 0.693 W. These
power consumption estimations are calculated for default
operating parameters of the device, such as, temperature
at 25 °C, Vccint at 1 V, and VCCAUX and VCCO at 2.5 V.

VII. CONCLUSION

In this paper, a NIST 256 prime field ECC processor
implementation in FPGA has been presented. An RSD as a
carry free representation is utilized which resulted in short
datapaths and increased maximum frequency. We introduced
enhanced pipelining techniques within Karatsuba multiplier
to achieve high throughput performance by a fully LUT-based
FPGA implementation. An efficient binary GCD modular
divider with three adders and shifting operations is introduced
as well. Furthermore, an efficient modular addition/subtraction
is introduced based on checking the LSD of the operands
only. A control unit with add-on like architecture is proposed
as a reconfigurability feature to support different point
multiplication algorithms and coordinate systems.

The implementation results of the proposed processor
showed the shortest datapath with a maximum frequency
of 160 MHz, which is the fastest reported in the literature for
ECC processors with fully LUT-based design. A single point
multiplication is achieved by the processor within 2.26 ms,
which is comparable with ECC processors that are based on
embedded multipliers and DSP blocks within the FPGA. The
main advantages of our processor include the exportability
to other FPGA and ASIC technologies and expandability to
support different coordinate systems and point multiplication
algorithms.
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