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Abstract— This paper presents a mixed-decimation multipath
delay feedback (M2 DF) approach for the radix-2¥ fast Fourier
transform. We employ the principle of folding transformation
to derive the proposed architecture, which activates the idle
period of arithmetic modules in multipath delay feedback (MDF)
architectures by integrating the decimation-in-time operations
into the decimation-in-frequency-operated computing units.
Furthermore, we compare the proposed design with other
efficient schemes, namely, the MDF and the multipath delay com-
mutator (MDC) scheme theoretically and experimentally. Relying
on the obtained expressions and statistics, it can be concluded that
the M2DF design serves as an efficient alternative to the MDF
scheme, since it achieves improved efficiency in the utilization
of arithmetic resources without deteriorating the superiorities
of feedback structures. In addition, the recommended design
performs better in memory requirement and computing delay
compared with the MDC approach.

Index Terms— Decimation-in-frequency (DIF), decimation-in-
time (DIT), fast Fourier transform (FFT), multipath delay
feedback (MDF), pipelined-parallel architecture.

I. INTRODUCTION

EING an efficient algorithm for discrete Fourier trans-
form (DFT) computation, fast Fourier transform (FFT)
has seen broader usage in the field of digital signal processing.
It also plays an increasing important role in modern digital
communications, since orthogonal frequency division multi-
plexing technique has been adopted in leading communication
standards, including wireless LAN and long-term evolution.
Therefore, an efficient implementation of FFT has attracted
much attention and hardware designers have put forward
various schemes to achieve reasonable tradeoffs between area
and performance. By shortening the critical path in the signal
diagram, pipelined architectures have an inherent advantage
over other efficient hardware structures in providing high
throughputs. To cope with the gradual increase of real-time
business, plenty of published works have focused on designing

and optimizing the pipelined structures [1]-[21].
In the serial-input-serial-output (SISO) scenario, single-path
delay commutator (SDC) [1] structure is one of the most
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classical approaches to perform the pipelined FFT
computation. To reduce the memory banks in SDC pipelines,
single-path delay feedback (SDF) architecture is proposed
in [2], which is characterized by the feedback connections
in the circuits. These hardware schemes can be combined
with the radix-2 [2], [3], radix-4 [4], and especially radix-2*
algorithm [5]-[8] to execute the DFT operation. Compared
with the radix-4 approach, the radix-2* pipeline is equipped
with simpler butterfly units while making a better utilization
of complex multipliers than the typical radix-2 scheme. Thus,
radix-2% algorithm acts as an effective alternative to the
conventional computation methods from the perspective of
hardware design.

Admittedly, the extension of communication service has
stimulated a dramatic rise of throughput requirements. This
advance in real-time business has additionally rendered the
hardware schemes designed for SISO applications obsolete
to a certain extent. On this occasion, multipath delay
commutator (MDC) [9]-[13] and multipath delay
feedback (MDF) [14]-[21], which serve as the upgrade of SDC
and SDF, respectively, are proposed to calculate the FFT when
several samples of the same sequence are received in parallel.
In general, the MDF structure is composed of multiple
interconnected SDF paths, and each path is responsible
for managing one of the parallel input streams. This design
contributes to the inheritance of utilizing registers efficiently at
the expense of squandering the arithmetic components, partic-
ularly the butterfly units. By contrast, the MDC approach paves
the way for boosting the hardware efficiency of arithmetic
units (AUs), while additional memories have to be consumed
for either reordering the samples or folding the streams,
which additionally leads to an increase of computing delay.

Whether feed forward structures represented by the MDC
approach or feedback structures, such as the SDF and
the MDF design, they afford feasible solutions to strike
a balance between the consumption of hardware resources
and the reachable performance. As we move forward the
discussion, the hardware resources can be further divided into
two categories: 1) arithmetic resources associated with logical
or arithmetic operations and 2) memory resources referred to
as memory units, which are responsible for caching samples.
Due to the outstanding performance in the efficient use of
memory resources, the MDF scheme has been a tremendous
success in a variety of applications [17]-[21]. Underneath
the triumph, the underutilization of arithmetic resources is
still a stubborn problem for feedback design and has not
been resolved satisfactorily. The objective of this paper is to

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



68 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

make a breakthrough in this respect while maintaining the
advantages of feedback structures. To this end, the theory of
folding transformation described in [22] and first adopted to
derive the pipelined FFT architectures in [11] is employed
to derive the proposed scheme, namely, the mixed-decimation
MDF (M2DF) architecture. The kernel of M2DF design lies in
scheduling the decimation-in-time (DIT) operations onto the
decimation-in-frequency (DIF)-operated basic blocks. By this
means, we mobilize the idle period of arithmetic modules in
MDF architectures and thereby gain a considerable reduction
of arithmetic resources to make up for the deficiency of the
feedback FFT modules.

The rest of this paper is organized as follows. In Section II,
we introduce the top-level architecture of the pipelined-parallel
FFT processor based on the matrix factorization of
radix-2F algorithm. Section III expands on the MZDF
architectures using folding transformation. Theoretical and
experimental comparisons of the M?>DF scheme and existing
approaches are related in Section I'V. Finally, the conclusion
is drawn in Section V.

II. TopP-LEVEL DESIGN OF PIPELINED
PARALLEL DFT PROCESSOR

The matrix factorization of DFT unfolds the relations
between computing algorithms and hardware structures.
In terms of the extensively used radix-2F algorithm,
Cortes et al. [23] provide a comprehensive research on the
matricial notation and specific VLSI implementation in SISO
applications. In this section, we introduce the top-level design
of parallel radix-2¥ FFT processor by drawing on the research
findings of [23]. Consider an N-point DFT computation, the
input stream x = [xo,xl,...,xN_l]T and output stream
y = [yo, Y1, .- -, yN_l]T can be correlated through

y=Ty x (1)

where Ty is the N-point DFT transform matrix with elements
—j2xrmn
(TN)mpn=e™ W 2)
m,n € {0,1,...,N—1}. Based on the principle of
Cooley—Tukey algorithm, the relationship between x and y
can be described alternatively in the form [23]

y=Py [Is® Tp]-DY - [Ts @ Ip] -x 3)

where S = N/P and both of the parameters are assumed to
be a power of two in the following discussion. The Kronecker
product, denoted by ®, is an operation on two matrices of
an arbitrary size resulting in a block matrix. Given an m X n
matrix A and a p x ¢ matrix B, A ® B returns an mp x nq
block matrix

ao,0B ao,n—1B
AR®B =

am—l,OB am—l,n—lB

In addition, I, in (3) is the identity matrix of size r; Dg\‘f) is a
diagonal matrix given by [23]

Dg\f) = quasidiag{[Ip,dp, (dp)?, ..., (dp)5~'1) “)

with dp = diag{[1, e /27/N . ¢=i(P=D2t/Nyy pU)
referred to as the stride-by-r permutation matrix, whose
effect on a vector z = [z0, 21, ...,2n—1]7 can be expressed
as

P%)z = vecy,r,{[unvec,, (z)]T}. 3)

The function unvec,, y,,(z) in (5) is used for converting the
vectorial operand into an r x N/r matrix Z with entries
@Dympn = zZmgnr, m € {0,1,...,r—=1}, n € {0,1,...,
N/r—1}. Conversely, vecy/, (-) executes the relevant inverse
operations to regain a vector. Applying unvecp s(-) to (3),
it yields

Y=Tp -DOX Ty (6)
with
X = unvecp s(x) = [X0, X1, ..., xp_1]"
[ xo xp X(§-1)P
X1 XP+1 X(§—1)P+1
= . . , ) (7a)
Lxp—1 X2P—1 Xsp—1
-1
Y = unvecp s [(PI(VP)) Y] = [¥0, Y1, ..., yp—11"
Yo Vi ys—1
ys YS+1 y25-1
= ) ) i ) (7b)
LY(P-1)S Y(P-1)S+1 yps—1
and (D)p,, = e—j27rmn/N’ m € {0,1,...,P — 1},
ne{0,1,...,S — 1}. Moreover, the symbol © in (6) stands

for the Hadamard product. For two matrices A, B of the same
dimension, A ®B is a matrix of the identical dimension as the
operands, with elements given by

(A O] B)u,u = (A)u,u : (B)u,l)'

Actually, (6) offers a matricial illustration of the P-parallel
FFT, where x¢,X1,...,Xp_1 and yo,¥1,...,YP—1 Serve as
the P-branch input and output, respectively. For the sake
of perusing a hardware-friendly scheme to implement (6),
T requires to be represented using smaller radices. Assuming
that S = 27s = 2km+ then Ts can be decomposed as follows
from the derivations in [23]:

nig—1
Ts = Qs - H(l kny) [ | Hik, km) @®)
m=0

where H(u, v) represents the operation adopting radix-2* FFT
algorithm. To make the expression more explicit, let

-1
Br(o) =l @ [P0l (s @ T2) - (PFL) | ©)

be the radix-2 butterfly matrix. When Bp(v) operates on
a S-dimension vector Xg, the m - §/2° + nth and the
(m+1/2)-8/2° +nth ;m = 0,...,2° —1,n = 0,...,
§/2°+! — 1) entry of x are combined to execute the radix-2
butterfly transform T,. Moreover, denote S-square diagonal
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Fig. 1. Top-level design of proposed pipelined-parallel hardware structure.

matrix M(u,v) as coefficient-weighting matrix, which
multiplies the results of butterfly operations with proper
twiddle factors, then

v+u—1
Hu o) = | JT M@mBrm), ifuz0

As can be observed in (10), the radix-2" computing unit
H(u, v) is further resolved into u butterfly matrices alternating
with the same amount of coefficient-weighting matrices. When
dealing with a serial input data stream, as pointed out in [23],
the SDF elementary structure is a feasible choice to implement
Br(v) and M(u,v). Therefore, H(I, kny) sz;ol H(k, km)
in (8) can be realized using an SDF pipeline to compute
S-point DFT serially. For the remaining term Qg in (8),
it corresponds to the bit-reversed ordering

nsfl

S /om+1
QS = H I:Izm ®P§/ém ):I

m=0

(1)

It can be inferred from (11) that streams ordering is irrelevant
to k and [. This character equips the bit-reversed reordering
component with great generality among radix-2* pipelines.

The derivations in (6) and (8) allow us to map the DFT

transform to a pipelined-parallel hardware structure, where the
top-level design is illustrated in Fig. 1. As shown, the parallel
processing includes three phases.

1) Phase 1 (Horizontal DFT Processing): During this phase
the operator T acts on P-parallel data streams X, .. .,
xp_1 independently to obtain X - Ts. According to (8),
the R2¥SDF pipelined architecture in series with a
bit-reversed reordering unit is a feasible way to
implement Ty efficiently.

2) Phase 2 (Rotation): The uth (u =0,...,S — 1) output
of Phase 1 in the oth (v =0, ..., P — 1) stream is mul-
tiplied by the corresponding twiddle factor e /2740/N to
calculate D © X - Ty.

3) Phase 3 (Vertical DFT Processing): P samples within
each clock cycle are processed simultaneously through
a parallel-input-parallel-output implementation of Tp.
Parallel output streams yo,y1,...,yp—1 are generated
after the execution.

In addition to the pipelined implementation of Tg
in Phase 1, the three phases interpreted above also construct

a pipelined framework. Therefore, this proposed architecture
will give the system access to a high throughput.

III. DESIGN OF MIXED-DECIMATION MDF
ARCHITECTURE

In this section, we first apply the theory of folding transfor-
mation to derive the folding matrices associated with DIF- and
DIT-operated SDF processor. With the assist of this theoretical
basis, the operations in SDF pipeline are rescheduled to
reverse the underutilization of arithmetic modules, which is
accomplished by integrating DIT operations into DIF-operated
basic blocks. Finally, this optimization strategy is used to
implement the top-level design in Section II, generating the
proposed M?DF structure with improved hardware efficiency.

A. Analyzing the SDF Scheme Using Folding Transformation

The folding transformation provides a systematic technique
for designing control circuits for hardware where several
algorithm operations are time multiplexed on a single com-
puting device [22]. Consider an eight-point radix-2¥ DIF
computation, the algorithm can be presented using a data flow
graph shown in Fig. 2(a), where the nodes represent compu-
tations and the directed edges represent data paths. As shown,
the flow graph consists of three stages and four operations
are executed within each stage. When x;,i = 0,...,7
arrives in serial, multiple operations in each stage can be
time multiplexed to a single computing unit without any
collisions, and the control circuits are determined system-
atically by folding transformation. In this way, the FFT
flow graph in Fig. 2(a) can be transformed into a pipelined
form shown in Fig. 2(b), where operations Ao,..., A3,
By, ..., B3, and Cy, ..., C3 are performed in the computing
unit Uy, Up, and Uc, respectively.

The multiple operations included in a computing module
are arranged by folding sets. A folding set is an ordered set
of operations executed by the same computing unit. Apart
from the operations associated with the nodes in the data
flow graph, generally, there are also null operations in the
folding set. The number of operations folded into a folding
set is called the folding factor (denoted by R in subsequent
discussion). Correspondingly, the computing unit works in
cycles with a period taking up R time partitions, and the
operation in the rth (r =0, ..., R — 1) position is executed
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Fig. 2. (a) Data flow graph of an eight-point DIF DFT using
a radix-2K algorithm. (b) Data flow graph can be converted into a pipelined
version through folding transformation. (c¢) Optimized hardware scheme
to implement the pipelined flow graph. Moreover, the shift register unit
marked nR indicates n positions are available in the device to cache the
complex inputs.

during the rth time partition. For example, consider a folding
set F ={¢p Ao ¢ A1 ¢ Az ¢ Az} with R = 8, the computing
unit operates Ag, A1, Az, and A3z in the first, third, fifth,
and seventh time partitions, respectively, while keeping idle
in remaining intervals.

When folding transformation is utilized to derive the circuit
from a data flow graph, the accurate determination of fold-
ing sets serves as the cornerstone. In particular, the folding
factor depends on the periodicity of operations executed by
a computing unit, while the arrangement of elements within
a folding set is linked closely to specific hardware structures.
In terms of an N-point SDF processor using a radix-2¢ DIF
FFT algorithm, it constitutes of log, N computing modules.
The Ith (! = 0,1,...,logyN — 1) module alternates idle
condition and operating status with an interval, including
N/2'*1 time instances. Taking this priori knowledge into
account, the folding sets corresponding to Uy, Up, and Uc
in Fig. 2(b) can be written preliminarily as

Fa=1{p ¢ ¢ & Ao A1 Ay A3) (12a)
Fp=1{p ¢ Bo Bi ¢ ¢ B B3} (12b)
Fc=1{p Co ¢ C1 ¢ C2 ¢ C3) (12¢)

with the folding factor R = 8.

Equations (12a)—(12c) incorporate the features of SDF
computing units into the derivation of folding sets.
Nevertheless, they fail to consider the precedence of opera-
tions associated with different modules. As can be found in
Fig. 2(b), when the data stream flows serially to Uy, the newly
generated intermediate results would arrive at Up and U¢ with
a delay of four and six time partitions, respectively, after which
the modules are able to perform the operations formulated
by (12b) and (12c). In view of this causality constraint, the
mth(m =0, ..., R—1)element in FB ought to be aligned with
the [m + 4]rth entry of lV?‘A ([-]x returns the modulus of x).
Likewise, the nth (n =0, ..., R — 1) element in IV?‘C requires
to match the [n + 6] gth position of FA. This yields modified
folding sets

Fa={¢ ¢ ¢ ¢ Ao A1 Ax Az} (13a)
Fg={p ¢ B B3 ¢ ¢ Bo Bi} (13b)
Fc={p Ci ¢ C2 ¢ C3 ¢ Co} (13¢)

where F4 inherits FA directly. By contrast, Fp, Fc can be
obtained by cyclic right shifting the elements in Fg, Fc for
four and six positions, respectively. As folding sets reveal
limitations when analyzing the entire hardware structure, we
recommend an alternative analytical tool named folding matrix
to cover this shortage. Denote an n s x R matrix

o ¢ ¢ P Ay A1 Ay Az
For=|¢ ¢ B Bz ¢ ¢ By B
p C ¢ C ¢ C3 ¢ Co

as the folding matrix corresponding to (12a)-(12c), where
ny equals the amount of computing stages in the folded flow
graph, while the rows of Fpir corresponds to different folding
sets. Therefore, the entry (Fpir)m,, (m = 0,...,np — 1,
n =0,..., R—1)represents the operation executed by the mth
computing unit at the /R + nth (/ =1, 2, ...) time instance.

When obtaining the folding sets associated with
Ua, Up, and Uc, the supporting circuits used to fulfill
the time multiplexing of computing units can be obtained
through folding transformation. To boost the hardware
efficiency, the implementation scheme can be further
optimized by introducing the register minimization technique,
which eventually generates the SDF hardware structure
presented in Fig. 2(c). The shift register unit marked nR
in the graph indicates that n positions are available in the
component to cache the complex inputs.

Similar processes can be applied to analyze the DIT data
flow graph shown in Fig. 3(a), which is essentially a transpo-
sition of its DIF counterpart. Assuming that the input samples
arrive in bit-reversed order, the folding sets considering the
property of SDF computing are

(14)

Gi=1{¢ Ao ¢ A ¢ A2 ¢ A3} (I59)
Gz=1{¢ ¢ Bo Bi ¢ ¢ By B3} (15b)
Ge=1p ¢ ¢ ¢ Co C1 C2 C3} (150

with the folding factor R = 8. Note that the arrival of freshly
generated results at Uz and Ug involve additional delay of
one and three time partitions, thus by cyclic right shifting the
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Fig. 3. (a) Data flow graph of an eight-point DIT DFT using
a radix-2K algorithm. (b) Data flow graph can be converted into a pipelined
version through folding transformation. (c) Optimized hardware scheme to
implement the pipelined flow graph.

elements in G for one space and G for three spaces, we
obtain

Gi=1{p Ao ¢ A1 ¢ Ay ¢ A3) (16a)
Gz;=1{Bs ¢ ¢ Bo B ¢ ¢ By} (16b)
Ge=1{Ci G2 G5 ¢ ¢ ¢ ¢ Co).  (16c)

Accordingly, the ny x R folding matrix corresponding to the
DIT data flow graph is expressed as

¢ Ay ¢ %1 ¢ Ay ¢ %3
Gpir = By ¢ ¢ Bo B ¢ ¢ B (17
Gt G C3 ¢ ¢ ¢ ¢ G

The entry (Gprm)m,n (m=0,...,nf—1,n=0,...,R—1)
also represents the operation executed by the mth computing
module at the /R + nth (I = 1,2,...) time instance. With
the assist of folding transformation and register minimization
techniques, the hardware scheme can be derived, which is
shown in Fig. 3(c).

B. Rescheduling the Operations in SDF Pipelines

The folding matrix given in (14) and (17) conveys the fact
that whether designers adopt the DIF approach or DIT scheme

71

to construct the SDF circuit, the existence of null operations
in folding sets will always degrade the efficiency of arithmetic
components, leading to an approximate 50% utilization of
complex adders merely. To address this issue, we reschedule
the operations in SDF pipelines to activate the idle intervals of
computing units. As the folding matrix acts as the simplified
representation of circuit status, the rearrangement of operations
can be achieved equivalently by modifying the folding
matrices. To be specific, the modification is accomplished
through the following three steps.

1) Cyclic right shift the columns of Gprt for Sg = 1 space,

it generates

1‘33 ¢ Ay ¢ %1 ¢ Ay ¢
(Gpm)y = | B2 By ¢ ¢ Bo B ¢ ¢
Co Ct Co C3 ¢ o ¢ ¢

(18)

where the subscript outside the brackets denotes the
cyclic right shift operation. Note the transformation
introduces an additional Sg-unit delay to the folding
sets G i Gé, and Gé simultaneously, thus the entry
[(Gpm)ilmwn (m =0,...,np =1, n=0,...,R—1)
represents the operation executed by the mth computing
module at the IR+n —1th (I =1, 2, ...) time instance,
differing from the definitions of Gpyr. To fulfill the
operations formulated by (18), a latency unit providing
a Sg-clock-cycle delay for input samples should be
integrated into the circuit associated with Gpyr.
2) Flip (Gpir); vertically to obtain

Co G & G ¢ ¢ ¢ ¢
Gom)i=|B By ¢ ¢ By B ¢ ¢
Az ¢ Ao ¢ A1 ¢ Ay @

19)

where the added superscript stands for the vertical
flip. As the rows of folding matrix are connected with
specific computing units, the modification of current
step would redefine this mapping relation, i.e., the
mth (m =0,...,ny—1) row of (GDIT)f describes the
time-multiplexing scheme of the n f —m — 1th computing
unit, rather than the mth module as the original Gppr.
3) Overlay Fpip with (GDIT){:. Thus, we can obtain

F = Fpir + (Gpir)©
CN'() C~'1 C~'2 63 Ao A1 Ay Ajz
=|B, Bs B, Bi By B By B
Az C Ao C, A (3 /12 Co
(20)

Clearly, the superposition eliminates the preexisting null
operations, which suggests that the synthesis of DIT SDF
pipeline and DIF SDF pipeline is able to fully utilize the arith-
metic modules. With respect to the hardware implementation,
as shown in Fig. 4, the mth (m =0, ...,ny — 1) computing
unit in the DIF SDF pipeline should be integrated with the
n ¢ —m— 1th one in the DIT counterpart due to the vertical flip
operation in the second step. In addition, the DIT-processing
stream ought to experience a Sg-clock-cycle delay up front
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Fig. 4. Integration of the DIF and DIT pipelined processor to fully utilize
the computing units.

when considering the cyclic shift operation in the first step.
It is also worth noting that Sg takes nonunique value because
of the cyclic feature of folding sets. Apart from Sg = 1 in the
previous discussion, there are a set of candidates

Sgk=nR+1, neN 21
with R represents the folding factor, which is equal to the
FFT size in serial computing.

In terms of the underlying design of arithmetic mod-
ules, the conventional SDF elementary structure should be
upgraded to undertake both DIF processing and DIT process-
ing tasks. According to the utilization efficiency of complex
multipliers, two kinds of hardware structures referred to as
Type I and Type II are proposed in Fig. 5. For Type I
architecture in Fig. 5(a), adders are shared by two streams,
while multipliers (not exhibited) are provided individually.
Type II architecture is shown in Fig. 5(b), where both adders
and multipliers are reused to further improve the hardware
efficiency. Thus, Type II is suitable for the situation when data
streams occupy the complex multipliers with a 50% utilization
ratio or less. Moreover, the multiplexors and selectors in
the circuit can be divided into two categories (white for
Category I and gray for Category Il in Fig. 5). When arithmetic
modules are in service, the components within each category
share the identical logic signal. The control scheme, which is
synchronized with the DIF-computing stream, is summarized
as follows.

1) For the first M samples of the stream, the components
belonging to Category I are controlled by logic 1, while
others in Category II are controlled by logic O.

2) During the next M samples, the control signals should
be inverted.

DIF-processing
stream input

DIF-processing
stream output

o 2
XN

DIT-processing

| stream output

- E DIT-processing
stream input

yo -
X0

DIF-processing

stream input
MR =R
=1
; 2 DIF-processing
0 E 0 1[5 stream output
1 W
0 0
. Do
HE e i 1z DIT-processing
e stream output
£l o
MR E DIT-processing
stream input

(®)

Fig. 5. Underlying structures of AUs. (a) Type I structure, complex adders
are shared only. (b) Type II structure, both complex adders and complex
multipliers are shared.

The scheme above is suitable for both Type I and Type II
design and is 2M-clock-cycle periodic, where M is the length
of shift register sets in the arithmetic module.

C. Design of the M>*DF Hardware Structure

For the top-level design shown in Fig. 1, the rescheduling
strategy proposed in Section III-B is beneficial to opti-
mize the underlying scheme, which results in the proposed
MZ2DF structure. We begin with two-parallel architecture to
unfold the kernel. Taking a 32-point DFT computation, for
example, the corresponding M2DF design is shown in Fig. 6.
During the horizontal DFT processing, as shown, xo and X
execute DIF and DIT scheme, respectively, to calculate
xoTs and x1 Ts. By drawing on the discussion in Section III-B,
the pipelined circuit constructed by the modified AUs in Fig. 5
is able to fulfill this task, which promotes the arithmetic
resources to full utilization. In addition, as input samples
require to be rearranged as bit reversal before participating
in DIT computation, the latency unit in Fig. 4 is replaced
with a reordering module, which permutes the samples with
a delay of Sg = S + 1 clock cycles. After the rotation, the
parallel streams are connected to a simple radix-2 butterfly
unit to execute the vertical DFT processing.

As for the  four-parallel and  eight-parallel
applications, Fig. 7 shows the hardware structures using
a 64-point DFT. As shown, the circuit used to perform
the horizontal DFT is essentially a parallel extension of
the counterpart in the two-parallel structure. By contrast, the
hardware scheme for vertical DFT depends closely on the
parallelism. For four-parallel computing in Fig. 7(a),
four radix-2 butterfly units along with requisite rotation
devices operate coordinately to provide a throughput of
four samples per clock cycle. In the eight-parallel scenario,
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Fig. 6. Proposed two-parallel MZDF architectures for the computation of 32-point DFT. (a) Use radix-2 algorithm in the horizontal DFT processing phase.

(b) Use radix-22 algorithm in the horizontal DFT processing phase.

by means of rearranging the interconnections of the
eight-point radix-2 data flow graph, the multiple stages
included in the vertical DFT circuit can be implemented
using a fixed structure, which contributes to reduce the
hardware complexity. Furthermore, note each multiplier in the
vertical DFT unit is related to a single known coefficient, they
can be mapped to the low-complexity constant multipliers.

The M2DF structure can be readily applied to the P-parallel
radix-2¥ computation, where even P is emphasized here.
The exponent k will only affect the arrangement of complex
multipliers in the horizontal DFT circuit. On the other hand,
the parallelism P plays an important role in the realization
of vertical DFT unit, as this module is responsible for
a P-parallel P-point DFT. In terms of the rotation, P — 1
complex multipliers are sufficient to complete the relevant
task, which are irrelevant to the selection of radix-2%
algorithm.

IV. COMPARISON AND EVALUATION

In this section, we first evaluate the hardware expense of
M2DF structures. Afterward, we compare the M2DF scheme
with existing approaches theoretically and experimentally.

A. Evaluation of the Proposed M?DF Structure

In general, an FFT processor can be decomposed into three
parts: 1) the arithmetic component; 2) the control circuit;
and 3) the reordering module. The arithmetic component
is primarily composed of complex adders and multipliers
to execute the butterfly operations and twiddle factor
multiplications. Moreover, the multipliers can be further cat-
egorized into the general ones with varied twiddle factors
and constant ones using fixed coefficients. This fine-grained
partition takes account of the diverse hardware complex-
ity between general complex multipliers and constant ones.
In this way, the numbers of complex adders 4,, general com-
plex multipliers 15 and constant complex multipliers account

for the primary consumption of arithmetic resources in an
FFT module.

Memory expenditure comes from the realization of control
circuit and reordering module. The control -circuit is
responsible for the rearrangement of data streams to coordinate
with the arithmetic computations. In pipelined structures, shift
register sets are widely used to implement the control circuit.
On the other hand, the reordering module permutes the
samples to obtain the desired parallel output unvecp s(y).
To this end, Y in (7b) should be gained firstly, after which
the permutation network corresponding to the matrix P;f)
is applied to bridge the gap between Y and unvecp s(y).
It is worth noting that the hardware design of P;f) could be
identical for the FFT processors with the same parallelism,
while the circuit to obtain Y is linked closely to concrete
FFT schemes. Thus, in the following analysis, the memory
cost to complete the first-phase reordering is considered as
the metric to evaluate the hardware efficiency. Furthermore,
some FFT processors do not utilize unvecp s(x) directly, e.g.,
Garrido et al. [12] convert unvecp s(x) into [unvecs, P(X)]T to
launch the FFT. This additional memory requirement is also
considered here.

For the M?DF design, P/2 - log, N radix-2 butterfly units,
which consist of 4, = P-log, N complex adders are an integral
part of the P-parallel, N-point DFT computation. The general
complex multipliers are existed in the horizontal DFT and
rotation units, where the selection of radix-2% algorithm makes
a difference to the overall consumption

g _ g -log, (%) — 1, for radix-2
¢ P - logy ($)1 -1, for radix-2¢(k > 1).

It can be found from (22) that high radices are beneficial
to reduce the general complex multipliers at the expense
of increasing the number of constant complex multipliers.
Apart from the P [log,«(N/P)]| constant multipliers used to
implement the horizontal DFT unit, additional ones will be

(22)
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Fig. 7.

Proposed M2DF architectures for the computation of 64-point DFT. (a) Four-parallel computation, use radix- 24 algorithm in the horizontal

DFT processing phase. (b) Eight-parallel computation, use radix- 23 algorithm in the horizontal DFT processing phase.

consumed by vertical DFT unit when P > 8. In terms of the
memory consumption, N — P registers applied to implement
control circuit, together with the additional N + P ones
to perform the reordering operation are considered in the
following comparison.

Table I compares the proposed structures with other efficient
approaches in the two-parallel, four-parallel, and eight-parallel
scenario, respectively. In spite of the differences among under-
lying design, we suppose the input and output parallel streams
of different kinds of DFT processors follow the definitions

in (7a) and (7b). As shown in the table, one of the remarkable
features of the MZDF structures is embodied in the effective
use of complex adders. For conventional MDF schemes, the
utilization ratio of adders is ~50%, and the parallelization
cannot improve this ratio. By contrast, the proposed design
achieves a full utilization and reduces the number of adders
by half compared with the MDF counterparts.

On the other hand, the figures in Table I suggest that
the M?DF structures are more memory efficient than the
MDC counterpart. This is essentially a reflection of the
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TABLE I
COMPARISON OF THE PROPOSED ARCHITECTURES TO OTHER APPROACHES FOR THE COMPUTATION OF AN N-POINT FFT

Arithmetic components consumption (n = log, N) Memory consumption Performance
Hardware Scheme Complex Multipliers Complex Data Streams Latency Throughput
General ‘ Constant ‘ Overall T Adders Reordering Folding (Clk.) (Samp. / Clk.)
2-PARALLEL ARCHITECTURES
R2MDC, [11] n—2 0 n—2 2n 5N/8—3 | 3N/2—-2 | 11N/8 —4 2
R22MDC, [12] 2[n/2] —2 0 n—2 2n 2N N -2 3N/2 -1 2
R22MDF, [17] 2[(n—1)/2] -1 0 n—2 4n N N -2 N -1 2
R24MDF, [14] 2[n/4] -2 2 |n/4] n—2 4n N N -2 N -1 2
" R2MPDE proposed |  n-2 | o | n-2 | 2m | N+2 | N-2 | N |2
R22M?DF, proposed | 2[(n—1)/2] — 1 0 n—2 2n N +2 N -2 N 2
R23M?DF, proposed | 2[(n—1)/3] —1 [(n—1)/3] n—2 2n N +2 N-2 N 2
R24M?DF, proposed | 2[(n —1)/4] — 1 2| (n—1)/4] n—2 2n N +2 N -2 N 2
4-PARALLEL ARCHITECTURES
R22MDC, [12] 3[n/2] -3 0 3n/2-3 4n 2N N —4 3N/4—-1 4
R4MDC, [13] 3[n/2] -3 0 3n/2 -3 4n N 8N/3—-4 | TN/12—-1 4
R24MDF, [16] 4[n/4] —4 4|n/4] 2n — 4 8n N N -4 N/2-1 4
R2*MDF, [15] 4[n/4] — 4 4|n/4] 2n — 4 8n N N —4 N/2-1 4
" R2M?DE, proposed | m-5 | o | -5 | 4dn | . N+4 | N—4 | N2 | &
R22M2DF, proposed | 4[(n —2)/2] —1 0 2n—5 an N +4 N-—4 N/2 4
R23M?DF, proposed | 4[(n —2)/3] — 1 2 (n—2)/3] 2n —5 an N+4 N —4 N/2 4
R24M?DF, proposed | 4[(n —2)/4] — 1 4| (n—2)/4] 2n—5 4n N+4 N-—4 N/2 4
8-PARALLEL ARCHITECTURES
R24MDC, [12] 8[n/4] —8 6 [n/4] ™m/2—8 8n 2N N-38 3N/8 —1 8
R24MDF, [18] 8[n/4] — 8 8| n/4] 4n — 8 16n N N -8 N/4-1 8
R24MDF, [19] 8[(n—3)/4]—1 | 8[(n—3)/4] +2 4n — 11 16n N N -8 N/4—-1 8
R2°MDF, [21] 8[n/5] —8 16 |n/5] 24n/5 — 8 16n N N -8 N/4-1 8
* R2M2DF, proposed | - dn—13 | 2 | 4n—11 | 8 | | N+8 | | N-8 | N4 | 8
R22M?DF, proposed | 8[(n —3)/2] —1 2 4n — 11 8n N+8 N -8 N/4 8
R23M2DF, proposed | 8[(n—3)/3]—1 | 4|(n—3)/3]+2 | 4n—11 8n N+8 N -8 N/4 8
R24*M?DF, proposed | 8[(n—3)/4] —1 | 8[(n—3)/4]+2 | 4n—11 8n N+8 N-8 N/4 8

1 To simplify the expressions, |z] = x, [z] &~ z have been adopted in the determination of overall multipliers.

inherent advantage of feedback FFT architectures. The MDC
structures, as revealed from the design in [11]-[13], will spend
additional memories either on the reordering of samples or on
the construction of control circuit to fold the parallel streams.

Furthermore, owing to the optimized usage of multipliers in
the arithmetic components, the proposed M?DF structures are
ahead of the MDF design in terms of the efficient utilization of
multipliers. Nevertheless, since the improvement is premised
on the preservation of low memory requirement and short
computing delay, the MDC approach will surpass the proposed
method at this metric in certain applications. In this respect,
the M2DF design and the MDC scheme have their own merits.

B. Analysis of Experimental Results

The proposed M?DF processors have been implemented
in Xilinx Virtex-6 field-programmable gate array (FPGA),
XC6VLX240T-3FF784 using the programming software
ISE 12.4. Furthermore, the MDF approaches introduced
in [2] and [5], together with the MDC schemes proposed
in [11] and [12] are realized in the same platform to serve
as references. We test the proposed design and other
architectures in the two-parallel, four-parallel, and

eight-parallel scenario, respectively, and the radix-2, radix-22,
and radix-2® algorithm are considered in each case with a
word length of 16 bits. The experimental results are listed
in Table II, where the occupation of slices, DSP48E blocks
and block RAMs is evaluated after the place-and-route
operation, while the computing latency in clock cycles is
obtained from the simulations in ModelSim SE 6.5c. The
maximum reachable clock frequency, which is applied to
determine throughputs in the table, is mentioned in the ISE
implementation report with automatic timing constraints
generated by the software.

In the test, we utilize IP soft cores to implement both general
complex multipliers and constant ones, and each component
is constituted of three DSP48E units. In consequence, the
total amount of multipliers can be determined precisely via
scaling the occupied DSP48Es in Table II with 3, which agree
with the theoretical requirements presented in Table 1. Some
features on the consumption of multipliers are embodied in
the statistics. First, compared with the MDF scheme, the edge
of M?DF structure will become more distinct when k takes
odd values for radix-2¥ computing. In such cases, there are
considerable multipliers experiencing a 50% utilization ratio
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TABLE II
HARDWARE COST AND PERFORMANCE OF THE P-PARALLEL N-POINT FFT PROCESSORS FOR 16 bits

Consumption of Slices Consumption of RAMs (18kx 1) System Performance
Configurations Structures Slice LUTs | Slice registers | DSPASE Streams Data Overall Latency Throughput
folding reordering (clock cycles) | (Msamples/s)

M2DF 1683 1998 21 2 2 5 530 610

Radix-2, 2/512 | MDF, [2] | 2256 | 2164 | 39 | 2 | 2 [ s ] k26 | 630
MDC, [11] 1907 2085 21 3 2 718 624
M2DF 3968 4710 45 4 4 10 534 1220

Radix-2, 4/1024 | MDF [2] | 5226 | 5140 | 81 | VN 4 10 | 528 | 12m6
MDC, [11] 4450 4852 48 6 4 12 722 1248
M?DF 8844 9601 99 8 8 19 538 2440

Radix-2, 8/2048 | MDF [2] | 12035 | 10834 | 7 | s | 8 | 19 | 530 | 2520
MDC, [11] 9813 9972 108 12 8 23 726 2496
M2DF 1572 1843 21 2 2 5 526 610

Radix-22,2/512 [ MDF [5] | 2118 | 2026 | 21 | 2 | 2 [ s ] k20 | 638
MDC, [12] 1836 1985 21 2 4 776 624
M2DF 3671 4359 45 4 4 10 530 1220

Radix-22, 4/1024 | MDF, [5] | 4854 | 4785 | a5 | VN 4 10 | 522 | 126
MDC, [12] 4169 4412 39 4 8 14 780 1248
M?DF 8197 9008 99 8 8 19 534 2440

Radix-22, 8/2048 | MDF. [5] | mss | 9892 | 99 | 8 | T 19 | 524 [ 2352
MDC, [12] 9353 9586 84 8 16 27 784 2496
M2DF 1640 1888 21 2 2 5 534 584

Radix-2%,2/512 | MDF, [5] | 2270 | 2143 | 27 | 2 | 2 [ s | k26 | 590
MDC, [12] 1956 2079 21 2 4 780 580
M2DF 3796 4432 45 4 4 10 538 1168

Radix-23,4/1024 | MDF, [5] | 5151 | 5028 | 57 | VN 4 | 10 | s | 1180
MDC, [12] 4479 4683 48 4 8 14 784 1160
M2DF 8589 9243 99 8 8 19 542 2336

Radix-23, 8/2048 | MDF, [5] | 11705 | 10325 | 123 | s | s | 19 | 530 | 2360
MDC, [12] 9816 9980 87 8 16 27 788 2320

1 "Radix-2, 2/512" specifies the FFT processor adopt radix-2 algorithm to compte 512-point DFT with a parallelism of 2. This definition can be extended

to the other items in the first column.

in radix-2* stages with feedback-form implementation, which
pave a way for the multiplier multiplexing in M?DF structure.
Next, the MDC and M2DF scheme have their own superiorities
at this metric, and the winner is attached closely to the concrete
parallelism P and the factor of radix size k. On the occasion
of P > 2%, the MDC design will show a better performance
since this prerequisite equips the multipliers in the
MDC circuit with full utilization.

On the other hand, area expense is measured by the
occupation of block RAMs. Corresponding to the metrics in
Table I, the memories associated with streams folding and
data reordering are listed individually in Table II. As shown,
these records are in favor of the conclusion that either the
M?DF or MDF scheme has an advantage over its MDC
competitor in area consumption. In addition, it is worth noting
that actual memory costs presented in Table II exceed the
relevant theoretical values throughout the test, this is because
block memory cores do not achieve a full utilization, i.e., only
a part of cells in each memory bank participate in the
FFT computing.

Furthermore, since slice lookup tables (LUTs) serve as
the arithmetic resources in FPGA, the relevant test results

in Table II are further attached to concrete modules in the
FFT processor to support a fine-grained analysis, as presented
graphically in Fig. 8. These bar charts suggest that butterfly
units account for a substantial cost of slice LUTs in contrast
with other components. Thus, a decline in the number of
butterfly units, as has been accomplished by the proposed
MZ2DF scheme, is qualified to bring in a considerable reduction
of arithmetic resources. Another feature can be extracted
from the graphs is that the MDF design requires approx-
imate twofold as many LUT resources as other schemes
to construct butterfly units. Note that the butterfly unit is
composed primarily of complex adders, from this perspective
the aforementioned character evidences the theoretical adder
consumptions in Table I indirectly.

Finally, it can be found the experimental latencies differ
from the theoretical values shown in Table I, and the reason
consists of both sides: 1) the practical complex multipliers
need several clock cycles to obtain the correct results, which
leads to a rise of overall latencies and 2) some additional
registers are embedded in the circuit to shorten the critical
paths, thus the group delay of FFT processors involves a
further increase. With respect to the throughputs, both the
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8 parallel scenario

proposed schemes and the references have similar performance
throughout the various configurations. This feature suggests
that the critical path in M?DF is comparable with that
belonging to MDF or MDC circuits.

V. CONCLUSION

In spite of the low memory requirement and short comput-
ing delay, conventional MDF schemes suffer from the ineffi-
cient use of adders and multipliers in practical applications.
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This paper recommends an MZDF structure to grapple
with this obstacle, which eliminates the standby time of
arithmetic modules in feedback architectures by integrating
DIT operations into the DIF-operated computing units.
According to the theoretical analysis and experimental
results, the M?DF design inherits the strengths of feedback
structures while significantly curbing the overexploitation
of arithmetic resources. This outstanding feature enables
the M2DF structure to be an efficient alternative to the
MDF scheme. On the other hand, the M2DF and the
MDC scheme consume the same amount of adders, while
they have their own merits in multiplier overhead. However,
when the computing delay and memory resources are primary
concerns, the M2DF approach will be more hardware friendly
than the MDC scheme.
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