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Partially Parallel Encoder Architecture
for Long Polar Codes

Hoyoung Yoo, Student Member, IEEE, and In-Cheol Park, Senior Member, IEEE

Abstract—Due to the channel achieving property, the polar code
has become one of the most favorable error-correcting codes. As
the polar code achieves the property asymptotically, however, it
should be long enough to have a good error-correcting perfor-
mance. Although the previous fully parallel encoder is intuitive
and easy to implement, it is not suitable for long polar codes be-
cause of the huge hardware complexity required. In this brief, we
analyze the encoding process in the viewpoint of very-large-scale
integration implementation and propose a new efficient encoder
architecture that is adequate for long polar codes and effective
in alleviating the hardware complexity. As the proposed encoder
allows high-throughput encoding with small hardware complexity,
it can be systematically applied to the design of any polar code and
to any level of parallelism.

Index Terms—Polar codes, polar encoder, very-large-scale inte-
gration (VLSI) optimization.

I. INTRODUCTION

POLAR CODE is a new class of error-correcting codes that
provably achieves the capacity of the underlying channels.

In addition, concrete algorithms for constructing, encoding, and
decoding the code are all developed [1]–[5]. Due to the channel
capacity achieving property, the polar code is now considered
as a major breakthrough in coding theory, and the applicability
of the polar code is being investigated in many applications,
including data storage devices [6], [7].

Although the polar code achieves the underlying channel
capacity, the property is asymptotical since a good error-
correcting performance is obtained when the code length is
sufficiently long. To be close to the channel capacity, the code
length should be at least 220 bits, and many literature works [7]–
[9] introduced polar codes ranging from 210 to 215 to achieve
good error-correcting performances in practice. In addition, the
size of a message protected by an error-correcting code in
storage systems is normally 4096 bytes, i.e., 32 768 bits, and is
expected to be lengthened to 8192 bytes or 16 384 bytes in the
near future. Although the polar code has been regarded as being
associated with low complexity, such a long polar code suffers
from severe hardware complexity and long latency. Therefore,
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an architecture that can efficiently deal with long polar codes
is necessary to make the very-large-scale integration (VLSI)
implementation feasible.

Various theoretic aspects of the polar code, including code
construction and decoding algorithms, have been investigated
in previous works [1]–[5], and efficient decoding structures
have been studied. Successive cancelation (SC) decoding has
been traditionally used in [9]–[11], and advanced decoding
algorithms such as belief propagation decoding [12], list de-
coding [13], and simplified SC [7], [14] have been recently
employed. On the other hand, hardware architectures for polar
encoding have rarely been discussed. Among a few manuscripts
dealing with hardware implementation, [1] presented a straight-
forward encoding architecture that processes all the message
bits in a fully parallel manner. The fully parallel architecture
is intuitive and easy to implement, but it is not suitable for
long polar codes due to excessive hardware complexity. In
addition, the partial sum network (PSN) for an SC decoder [7],
[8], [11] is regarded as a polar encoder. Due to the nature of
successive decoding, however, the number of inputs is severely
restricted in the PSN, 1 or 2 bits at a time. Since a polar encoder
usually takes the inputs from a buffer or memory of which bit
width is much larger, the PSN is not appropriate for designing
a general polar encoding architecture. For the first time, this
brief analyzes the encoding process in the viewpoint of VLSI
implementation and proposes a partially parallel architecture.
The proposed encoder is highly attractive in implementing a
long polar encoder as it can achieve a high throughput with
small hardware complexity.

II. POLAR ENCODING

The polar code utilizes the channel polarization phenomenon
that each channel approaches either a perfectly reliable or a
completely noisy channel as the code length goes to infinity
over a combined channel constructed with a set of N identical
subchannels [1]. As the reliability of each subchannel is known
a priori, K most reliable subchannels are used to transmit infor-
mation, and the remaining subchannels are set to predetermined
values to construct a polar (N , K) code.

Since the polar code belongs to the class of linear block
codes, the encoding process can be characterized by the gen-
erator matrix. The generator matrix GN for code length N or
2n is obtained by applying the nth Kronecker power to the

kernel matrix F =

[
1 0
1 1

]
[1]. Given the generator matrix, the

codeword is computed by x = uGN , where u and x represent
information and codeword vectors, respectively. Throughout
this brief, we assume that information vector u is arranged in
a natural order, whereas codeword vector x is arranged in a
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Fig. 1. Fully parallel architecture for encoding a 16-bit polar code.

Fig. 2. DFG of 16-bit polar encoding.

bit-reversed order to simplify the explanation on the encoding
process. A straightforward fully parallel encoding architec-
ture was presented in [1], which has encoding complexity of
O(N logN) for a polar code of length N and takes n stages
when N = 2n. For example, a polar code with a length of 16
is implemented with 32 XOR gates and processed with four
stages, as depicted in Fig. 1. In the fully parallel encoder, the
whole encoding process is completed in a cycle.

The fully parallel encoder is intuitively designed based on the
generator matrix, but implementing such an encoder becomes a
significant burden when a long polar code is used to achieve
a good error-correcting performance. In practical implementa-
tions, the memory size and the number of XOR gates increase
as the code length increases. None of the previous works
has deeply studied how to encode the polar code efficiently,
although various tradeoffs are possible between the latency and
the hardware complexity.

III. PROPOSED POLAR ENCODER

In this section, we propose a partially parallel structure
to encode long polar codes efficiently. To clearly show the

Fig. 3. Original delay requirements D(wij) and recalculated delay require-
ments D′(wij).

Fig. 4. Linear lifetime chart for w2j and w3j .

proposed approach and how to transform the architecture, a
4-parallel encoding architecture for the 16-bit polar code is
exemplified in depth. The fully parallel encoding architecture
is first transformed to a folded form [15], [18], and then the
lifetime analysis [16] and register allocation [17] are applied to
the folded architecture. Lastly, the proposed parallel architec-
ture for long polar codes is described.

A. Folding Transformation

The folding transformation [15], [18] is widely used to save
hardware resources by time-multiplexing several operations on
a functional unit. A data flow graph (DFG) corresponding to the
fully parallel encoding process for 16-bit polar codes is shown
in Fig. 2, where a node represents the kernel matrix operation
F , and wij denotes the jth edge at the ith stage. Note that the
DFG of the fully parallel polar encoder is similar to that of the
fast Fourier transform [18], [19] except that the polar encoder
employs the kernel matrix instead of the butterfly operation.
Given the 16-bit DFG, the 4-parallel folded architecture that
processes 4 bits at a time can be realized with placing two
functional units in each stage since the functional unit computes
2 bits at a time. In the folding transformation, determining
a folding set, which represents the order of operations to be
executed in a functional unit, is the most important design factor
[15]. To construct efficient folding sets, all operations in the
fully parallel encoding are first classified as separate folding
sets. Since the input is in a natural order, it is reasonable to
alternatively distribute the operations in the consecutive order.
Thus, each stage consists of two folding sets, each of which
contains only odd or even operations to be performed by a
separate unit.

Considering the four-parallel input sequence in a natural
order, stage 1 has two folding sets of {A0, A2, A4, A6} and
{A1, A3, A5, A7}. Each folding set contains four elements, and
the position of an element represents the operational order in the
corresponding functional unit. Two functional units for stage 1
execute A0 and A1 simultaneously at the beginning and A2 and
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Fig. 5. Register allocation table for w2j and w3j .

Fig. 6. Proposed 4-parallel folded architecture for encoding the polar (16, K) codes.

A3 at the next cycle, and so forth. The folding sets of stage 2
have the same order as those of stage 1, i.e., {B0, B2, B4, B6}
and {B1, B3, B5, B7}, since the four-parallel input sequence
of stage 2 is equal to that of stage 1. Furthermore, to deter-
mine the folding sets of another stage s, the property that the
functional unit processes a pair of inputs whose indices differ
by 2s−1 is exploited. In the case of stage 3, two data whose
indices differ by 4 are processed together, which implies that
the operational distance of the corresponding data is two as the
kernel functional unit computes two data at a time. For instance,
w2,0 and w2,4 that come from B0 and B2 are used as the inputs
to C0. Since both inputs should be valid to be processed in
a functional unit, the operations in stage 3 are aligned to the
late input data. Cyclic shifting the folding sets right by one,
which can be realized by inserting a delay of one time unit, is
to enable full utilization of the functional units by overlapping
adjacent iterations. As a result, the folding sets of stage 3
are determined to {C6, C0, C2, C4} and {C7, C1, C3, C5},
where C6 in the current iteration is overlapped with A0 and
B0 in the next iteration. In the same manner, the property that
the functional unit processes a pair of inputs whose indices
differ by 8 is exploited in stage 4. The folding sets of stage 4
are {D2, D4, D6, D0} and {D3, D5, D7, D1}, which are ob-
tained by cyclic shifting the previous folding sets of stage 3
by two. Generally speaking, a stage whose index s is less than
or equal to log2 P , where P is the level of parallelism, has
the same folding sets determined by evenly interleaving the
operations in the consecutive order, and another stage whose
index s is larger than log2 P has the folding sets obtained by
cyclic shifting the previous folding sets of stage s− 1 right by
s− log2 P .

Now, let us consider the delay elements required in the
folded architecture more precisely. When an edge wij from

TABLE I
COMPARISON OF POLAR (N , K) ENCODERS

WITH VARIOUS PARALLELISM

functional unit S to functional unit T has a delay of d, the
delay requirements for wij in the F -folded architecture can be
calculated as

D(wij) = Fd+ t− s (1)

where t and s denote the position in the folding set correspond-
ing to T and S, respectively. Note that (1) is a simplified delay
equation [15] derived with assuming that the kernel functional
unit is not pipelined. The delay requirements of the 4-folded
architecture, i.e., D(wij) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15, are
summarized in Fig. 3. For instance, w2,0 from B0 to C0
demands one delay since d = 0, t = 1, and s = 0. Note that
some edges indicated by circles have negative delays. For the
folded architecture to be feasible, the delay requirements must
be larger than or equal to zero for all the edges. Pipelining or
retiming techniques can be applied to the fully parallel DFG in
order to ensure that its folded hardware has nonnegative delays.
Every edge with a negative delay should be compensated by
inserting at least one delay element to make the value of (1)
not negative. We have to make sure that the two inputs of
an operation pass through the same number of delay elements
from the starting points. If they are different, additional delay
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TABLE II
SYNTHESIS RESULTS OF POLAR (8192, K) ENCODERS

TABLE III
GATE COUNTS OF POLAR (N , K) ENCODERS

elements are inserted to make the paths have the same delay
elements. In Fig. 3, for example, four edges with zero delays
are specially marked with negative zeros since additional delays
are necessary due to the mismatch of the number of delay
elements. The DFG is pipelined by inserting delay elements, as
shown in Fig. 2, where the dashed line indicates the pipeline cut
set associated with 12 delay elements. The delay requirements
of the pipelined DFG D′(wij) are recalculated based on (1)
and shown at the bottom of Fig. 3. As a result, 8 functional
units and 48 delay elements in total are enough to implement
the 4-parallel 4-folded encoding architecture based on the
folding sets.

B. Lifetime Analysis and Register Allocation

Although a folded architecture for 16-bit polar encoding is
presented in the previous section, there is room for minimizing
the number of delay elements. The lifetime analysis [16] is
employed to find the minimum number of delay elements
required in implementing the folded architecture. The lifetime
of every variable is graphically represented in the linear lifetime
chart illustrated in Fig. 4. Since all the edges starting from stage
1 demand no delay elements, only w2j and w3j are presented in
Fig. 4. For instance, w3,0 is alive for two cycles as it is produced
at cycle 1 and consumed at cycle 3. The number of variables
alive in each cycle is presented at the right side of the chart.
Note that the number of live variables at the fourth or later clock
cycles takes into account the next iteration overlapped with the
current iteration. Consequently, the maximum number of live
variables is 12, which means that the folded architecture can be
implemented with 12 delay elements instead of 48.

Once the minimum number of delay elements has been
determined, each variable is allocated to a register. For the
above example, the register allocation is tabularized in Fig. 5. In
the register allocation table [17], all the 12 registers are shown
at the first row, and every row describes how the registers are

allocated at the corresponding cycle. With taking into account
the 4-parallel processing, variables are carefully allocated to
registers in a forward manner. In Fig. 5, an arrow dictates that
a variable stored in a register is migrated to another register,
and a circle indicates that the variable is consumed at the cycle.
For example, w2,0 and w2,4 are consumed in a functional unit
to execute operation C0 that generates w3,0 and w3,4. At the
same time, w2,1 and w2,5 are consumed in another functional
unit to execute operation C1 that produces w3,1 and w3,5. The
migration of the other variables can be traced by following the
register allocation table.

Finally, the resulting 4-parallel pipelined structure proposed
to encode the 16-bit polar code is illustrated in Fig. 6, which
consists of 8 functional units and 12 delay elements. A pair of
two functional units takes in charge of one stage, and the delay
elements are to store variables according to the register alloca-
tion table. The hardware structures for stages 1 and 2 can be
straightforwardly realized as no delay elements are necessary
in those stages, whereas for stages 3 and 4, several multiplex-
ers are placed in front of some functional units to configure
the inputs of the functional units. The proposed architecture
continuously processes four samples per cycle according to
the folding sets and the register allocation table. Note that the
proposed encoder takes a pair of inputs in a natural order and
generates a pair of outputs in a bit-reversed order, as shown
in Fig. 2. As the functional unit in the proposed architecture
processes a pair of 2 bits at a time, the proposed architecture
maintains the consecutive order at the input side and the bit-
reversed order at the output side if a pair of consecutive bits is
regarded as a single entity.

IV. ANALYSIS AND COMPARISON

In the proposed architecture, the number of functional units
required in the implementation depends on the code length
N and the level of parallelism P . Since a functional unit
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representing the kernel matrix F processes two bits at a time,
each stage necessitates �P/2� functional units and the whole
structure requires �P/2� log2 N functional units in total.

Moreover, the minimal number of delay elements required in
the proposed architecture is N − P , as explained below. The
stages whose indices s are larger than log2 P require P delay
blocks of length 2s−log2 P−1, whereas the other stages can be
implemented with no delay elements. In other words, the total
number of delay elements is

log2 N∑
s=log2 P+1

P (2s−log2 P−1) =P (1 + 2 + · · ·

+ 2log2 N−log2 P−1)

=P (2log2 N−log2 P − 1)

=N − P. (2)

Given the hardware resources, the proposed partially parallel
architecture can encode P bits per cycle. To sum up, Table I
shows how the hardware complexity and the throughput are
dependent on the level of parallelism.

Furthermore, Table II demonstrates the proposed (8192, K)
encoder architecture synthesized in a 130-nm CMOS technol-
ogy for various parallelism. As the level of parallelism in-
creases, the hardware complexity measured in terms of the gate
count is significantly deteriorated due to the complex logic part,
whereas the register part in all encoder architectures maintains
similar complexity if we take into account a P -bit input buffer
needed to hold the data to be read from the memory. On the
other hand, the higher parallel architecture has advantages of
small latency and high encoding throughput. Therefore, the
relationship shown in Table II can be applied to derive the
most efficient partially parallel encoder architecture for a given
requirement. The throughput per gate is proportional to the level
of parallelism as the complexity of the register part is almost
independent of the parallelism. Moreover, Table III shows
how much the partially parallel encoders save the hardware
complexity compared with the fully parallel architecture [1]
for various code lengths. For fair comparison, all the encoders
designed for the code lengths ranging from 210 to 214 are
constrained by a working frequency of 200 MHz to assure a
decoding performance over 6.4 Gb/s even for the 32-parallel ar-
chitecture. Note that the percentage in the parenthesis indicates
the ratio of the proposed encoder to the fully parallel encoder.
Compared with the fully parallel encoder, the proposed encoder
saves the hardware by up to 73%.

V. CONCLUSION

This brief has presented a new partially parallel encoder
architecture developed for long polar codes. Many optimization
techniques have been applied to derive the proposed architec-
ture. Experimental results show that the proposed architecture

can save the hardware by up to 73% compared with that of the
fully parallel architecture. Finally, the relationship between the
hardware complexity and the throughputs is analyzed to select
the most suitable architecture for a given application. There-
fore, the proposed architecture provides a practical solution for
encoding a long polar code.
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