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Probabilistic Tensor Canonical Polyadic
Decomposition With Orthogonal Factors
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Abstract—Tensor canonical polyadic decomposition (CPD),
which recovers the latent factor matrices from multidimensional
data, is an important tool in signal processing. In many applica-
tions, some of the factor matrices are known to have orthogonality
structure, and this information can be exploited to improve the
accuracy of latent factors recovery. However, existing methods for
CPD with orthogonal factors all require the knowledge of tensor
rank, which is dif�cult to acquire, and have no mechanism to han-
dle outliers in measurements. To overcome these disadvantages, in
this paper, a novel tensor CPD algorithm based on the probabilistic
inference framework is devised. In particular, the problem of ten-
sor CPD with orthogonal factors is interpreted using a probabilistic
model, based on which an inference algorithm is proposed that al-
ternatively estimates the factor matrices, recovers the tensor rank,
and mitigates the outliers. Simulation results using synthetic data
and real-world applications are presented to illustrate the excellent
performance of the proposed algorithm in terms of accuracy and
robustness.

Index Terms—Multidimensional signal processing, orthogo-
nal constraints, robust estimation, tensor canonical polyadic
decomposition.

I. INTRODUCTION

M ANY problems in signal processing, such as indepen-
dent component analysis (ICA) with matrix-based mod-

els [1]–[4], blind signal estimation in wireless communications
[5]–[9], localization in array signal processing [10], [11], and
linear image coding [12], [13], eventually reduce to the issue
of finding a set of factor matrices { A (n) � CIn × R } N

n=1 from a
complex-valued tensor X � CI1 × I2 × ...× IN that satisfy

X =
R∑

r=1

A (1)
:,r � A (2)

:,r � · · · � A (N )
:,r

� [[A (1) , A (2) , . . . , A (N ) ]] (1)

where A (n)
:,r � CIn × 1 is the rth column of the factor matrix

A (n) , and � denotes the vector outer product. This decomposi-
tion is called canonical polyadic decomposition (CPD), and the
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number of rank-1 component R is defined as the tensor rank
[14]. Under rather mild conditions, the CPD is unique up to a
trivial scalar and permutation ambiguity [14], and this fact has
underlain its importance in signal processing [1]–[13].

To find the factor matrices in CPD, a common approach is to
solve min{ A (n ) } N

n = 1
�X Š [[A (1) , A (2) , . . . , A (N ) ]]� 2

F . Unfortu-
nately, it can be seen from (1) that all the factor matrices are
nonlinearly coupled, and thus a closed-form solution does not
exist. Consequently, the most popular solution is the alternating
least squares (ALS) method, which iteratively optimizes one
factor matrix at a time while holding the other factor matri-
ces fixed [14], [15]. However, the ALS method does not take
into account the potential orthogonality structure in the factor
matrices, which can be found in a variety of applications. For
example, the zero-mean uncorrelated signals in wireless com-
munications [5]–[9], the prewhitening procedure in ICA [1], [4],
and the basis matrices in linear image coding [12], [13], all give
rise to orthogonal factors in the tensor model. Interestingly, the
uniqueness of tensor CPD incorporating orthogonal factors is
guaranteed under an even milder condition than the case without
orthogonal factors. Pioneering work [17] formally established
this fact, and extended the conventional methods to account for
the orthogonality structure, among which the orthogonality con-
strained ALS (OALS) algorithm1 shows remarkable efficiency
in terms of accuracy and complexity.

However, there are at least two major challenges the algo-
rithms in [17] (including the OALS) face in practical applica-
tions. Firstly, these algorithms are least-squares based, and thus
lack robustness to outliers in measurements, such as ubiquitous
impulsive noise in sensor arrays or networks [18], [19], and
salt-and-pepper noise in images [20]. Secondly, knowledge of
tensor rank is a prerequisite to implement these algorithms. Un-
fortunately, tensor rank acquisition from tensor data is known
to be NP-hard [14]. Even though for applications in wireless
communications, where the tensor rank can be assumed to be
known as it is related to the number of users or sensors, existing
decomposition algorithms are still susceptible to degradation
caused by network dynamics, e.g., users joining and leaving the
network, sudden sensor failures, etc.

In order to overcome the disadvantages presented in exist-
ing methods, we devise a novel algorithm for complex-valued
tensor CPD with orthogonal factors based on the probabilis-
tic inference framework. Probabilistic inference is well-known
for providing an alternative formulation to principal compo-
nent analysis (PCA)[22]. With the inception of probabilistic
PCA, not only is the conventional singular value decomposition
(SVD) linked to statistical inference over a probabilistic model,

1It was called the “first kind of ALS algorithm for tensor CPD with orthogonal
factors (ALS1-CPO)” in [17]. For brevity of discussion, we just call it the OALS
algorithm in this paper.
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advances in Bayesian statistics and machine learning can also be
incorporated to achieve automatic relevance determination [23]
and outlier removal [24]. Although the probabilistic approach
is well established in matrix decomposition, extension to the
tensor counterpart faces its unique challenges, since all the fac-
tor matrices are nonlinearly coupled via multiple Khatri-Rao
products [14].

In this paper, we propose a probabilistic CPD algorithm for
complex-valued tensors with some of the factors being orthog-
onal, under unknown tensor rank and in the presence of out-
liers in the observations. In particular, the tensor CPD problem
is reformulated as an inference problem over a probabilistic
model, wherein the uniform distribution over the Stiefel man-
ifold is leveraged to encode the orthogonality structure. Since
the complicatedly coupled factor matrices in the probabilis-
tic model lead to analytically intractable integrations in exact
Bayesian inference, variational inference is exploited to give
an alternative solution. This results in an efficient algorithm
that alternatively estimates the factor matrices, recovers the ten-
sor rank and mitigates the outliers. Interestingly, the OALS
in [17] can be interpreted as a special case of the proposed
algorithm.

The remainder of this paper is organized as follows. Section II
presents the motivating examples and the problem formulation.
In Section III, the CPD problem is interpreted using probability
density functions, and the corresponding probabilistic model
is established. In Section IV, based on a variational inference
framework, a robust algorithm for tensor CPD with orthogonal
factors is derived, and its relationship to the OALS algorithm is
revealed. Simulation results using synthetic data and real-world
applications are reported in Section V. Finally, conclusions are
drawn in Section VI.

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are writ-
ten as calligraphic letters. E[·] denotes the expectation of its
argument and j �

�
Š1. Superscripts T , � and H denote trans-

pose, conjugate and Hermitian respectively. δ(·) denotes the
Dirac delta function. The operator Tr (A ) denotes the trace
of a matrix A and �·� F represents the Frobenius norm of
the argument. The symbol � represents a linear scalar re-
lationship between two real-valued functions. CN(x|u, R )
stands for the probability density function of a circularly-
symmetric complex Gaussian vector x with mean u and
covariance matrix R . CMN (X |M , � r , � c) denotes the
complex-valued matrix normal probability density func-
tion p(X ) � exp{Š Tr(� Š1

c (X Š M )H � Š1
r (X Š M ))} , and

VMF (X |F) stands for the complex-valued von Mises-Fisher
matrix probability density function p(X ) � exp{Š Tr(FX H +
XF H )} . The N × N diagonal matrix with diagonal compo-
nents a1 through aN is represented as diag { a1 , a2 , . . . , aN } ,
while I M represents the M × M identity matrix. The (i, j)th

element and the jth column of a matrix A is represented by A i,j

and A :,j , respectively.

II. MOTIVATING EXAMPLES AND PROBLEM FORMULATION

Tensor CPD with orthogonal factors has been widely ex-
ploited in various signal processing applications [1]–[13]. In
this section, we briefly mention two motivating examples, and
then we give the general problem formulation.

A. Motivating Example 1: Blind Receiver Design for
DS-CDMA Systems

In a direct-sequence code division multiple access (DS-
CDMA) system, the transmitted signal sr (k) from the rth user
at the kth symbol period is multiplied by a spreading sequence
[c1r , c2r , · · · , cZ r ] where czr is the zth chip of the applied
spreading code. Assuming R users transmit their signals si-
multaneously to a base station (BS) equipped with M receive
antennas, the received data is given by

ymz (k) =
R∑

r=1

hmrczr sr (k) + wmz (k),

1 � m � M, 1 � z � Z, (2)

where hmr denotes the flat fading channel between the rth user
and the mth receive antenna at the base station, and wmz (k)
denotes white Gaussian noise. By introducing H � CM × R

with its (m, r)th element being hmr , and C � CZ × R with its
(z, r)th element being czr , the model (2) can be written in ma-
trix form as Y (k) =

∑R
r=1 H :,r � C :,r sr (k) + W (k), where

Y (k), W (k) � CM × Z are matrices with their (m, z)th ele-
ments being ymz (k) and wmz (k), respectively. After collecting
T samples along the time dimension and defining S � CT × R

with its (k, r)th element being sr (k), the system model can be
further written in tensor form as [5]

Y =
R∑

r=1

H :,r � C :,r � S:,r + W

= [[H , C , S]] + W (3)

where Y � CM × Z × T and W � CM × Z × T are third-order ten-
sors, which take ymz (k) and wmz (k) as their (m, z, k)th ele-
ments, respectively.

It is shown in [5] that under certain mild conditions, the CPD
of tensor Y , which solves minH ,C ,S �Y Š [[H , C , S]]� 2

F , can
blindly recover the transmitted signals S. Furthermore, since
the transmitted signals are usually uncorrelated and with zero
mean, the orthogonality structure2 of S can further be taken into
account to give better performance for blind signal recovery [9].
Similar models can also be found in blind data detection for
cooperative communication systems [6]–[7], and in topology
learning for wireless sensor networks (WSNs) [8].

B. Motivating Example 2: Linear Image Coding for a
Collection of Images

Given a collection of images representing a class of objects,
linear image coding extracts the commonalities of these images,
which is important in image compression and recognition [12],
[13]. The kth image of size M × Z naturally corresponds to a
matrix B (k) with its (m, z)th element being the image’s inten-
sity at that position. Linear image coding seeks the orthogonal
basis matrices U � CM × R and V � CZ × R that capture the di-
rections of the largest R variances in the image data, and this

2Strictly speaking, S is only approximately orthogonal. But the approxima-
tion gets better and better when the observation length T increases.
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problem can be written as [12], [13]

min
U ,V ,{ dr (k)} R

r = 1

K∑

k=1

�B (k)Š Udiag { d1(k), . . . , dR (k)} V T� 2
F

s.t. U H U = I R , V H V = I R . (4)

Obviously, if there is only one image (i.e., K = 1), problem
(4) is equivalent to the well-studied SVD problem. Notice that
the expression inside the Frobenius norm in (4) can be written as
B (k) Š

∑R
r=1 U :,r � V :,r dr (k). Further introducing the matrix

D with its (k, r)th element being dr (k), it is easy to see that
problem (4) can be rewritten in tensor form as

min
U ,V ,D

∥∥∥∥∥∥∥∥∥∥

B Š
R∑

r=1

U :,r � V :,r � D :,r

︸ ︷︷ ︸
=[[U ,V ,D ]]

∥∥∥∥∥∥∥∥∥∥

2

F

s.t. U H U = I R , V H V = I R , (5)

where B � CM × Z × K is a third-order tensor with B (k) as its kth
slice. Therefore, linear image coding for a collection of images
is equivalent to solving a tensor CPD with two orthonormal
factor matrices.

C. Problem Formulation

From the two motivating examples above, we take a step fur-
ther and consider a generalized problem in which the observed
data tensor Y � CI1 × I2 × ...× IN obeys the following model:

Y = [[A (1) , A (2) , . . . , A (N ) ]] + W + E (6)

where W represents an additive noise tensor with each ele-
ment wi1 ,i2 ,...,iN

	 CN
(
wi1 ,i2 ,...,iN

|0, βŠ1
)

and with correla-

tion E(w�
i1 ,i2 ,...,iN

wτ1 ,τ2 ,...,τN
) = βŠ1 ∏N

n=1 δ(τn Š in ); E de-
notes potential outliers in measurements with each element
ei1 ,i2 ,...,iN

taking an unknown value if an outlier emerges, and
otherwise taking the value zero. Since the number of orthogonal
factor matrices could be known a priori in specific application,
it is assumed that { A (n)} P

n=1 are known to be orthogonal where
P < N , while the remaining factor matrices are unconstrained.

Due to the orthogonality structure of the first P factor matrices
{ A (n)} P

n=1 , they can be written as A (n) = U (n) � (n) where
U (n) is an orthonormal matrix and � (n) is a diagonal matrix.
Putting A (n) = U (n) � (n) for 1 � n � P into the definition of
the tensor CPD in (1), it is easy to show that

[[A (1) , A (2) , . . . , A (N ) ]] = [[� (1) , � (2) , . . . , � (N ) ]] (7)

with � (n) = U (n) � for 1 � n � P , � (n) = A (n) � for
P + 1 � n � N Š 1, and � (N ) = A (N ) � (1) � (2) · · · � (P ) � ,
where � � CR× R is a permutation matrix. From (7), it can
be seen that up to the scaling and permutation indeterminacy,
the tensor CPD under orthogonal constraints is equivalent to
that under orthonormal constraints. In general, the scaling and
permutation ambiguity can be easily resolved using side in-
formation [5]. On the other hand, for those applications that
seek the subspaces spanned by the factor matrices, such as lin-
ear image coding described in Section II.B, the scaling and
permutation ambiguity can be ignored. Thus, without loss of

generality, our goal is to estimate an N -tuplet of factor matri-
ces (� (1) , � (2) , . . . , � (N )) with the first P (where P < N ) of
them being orthonormal, based on the observation Y and in the
absence of the knowledge of noise power βŠ1 , outlier statistics
and the tensor rank R. In particular, since we do not know the
exact value of R, it is assumed that there are L columns in each
factor matrix � (n) , where L is the maximum possible value of
the tensor rank R. Thus, the problem to be solved can be stated
as

min
{ � (n ) } N

n = 1 ,E
β�Y Š [[� (1) , � (2) , . . . , � (N ) ]] Š E� 2

F

+
L∑

l=1

γl

(
N∑

n=1

� (n)H
:,l � (n)

:,l

)

s.t. � (n)H � (n) = I L , n = 1, 2, . . . , P, (8)

where the regularization term
∑L

l=1 γl(
∑N

n=1 � (n)H
:,l � (n)

:,l ) is
added to control the complexity of the model and avoid over-
fitting of noise [21], since more columns (thus more degrees
of freedom) in � (n) than the true model are introduced, and
{ γl} L

l=1 are regularization parameters trading off the relative
importance of the square error term and the regularization term.

Existing algorithms [17] for tensor CPD with orthonormal
factors cannot be used to solve problem (8), since they have no
mechanism to handle outliers E. Furthermore, the choice of reg-
ularization parameters plays an important role, since setting γl

too large results in excessive residual squared error, while setting
γl too small risks overfitting of noise. In general, determining the
optimal regularization parameters (e.g., using cross-validation
[27], or the L-curve [28]) requires exhaustive search, and thus is
computationally demanding. To overcome these problems, we
propose a novel algorithm based on the framework of proba-
bilistic inference, which effectively mitigates the outliers E and
automatically learns the regularization parameters.

III. PROBABILISTIC MODEL FOR TENSOR CPD
WITH ORTHOGONAL FACTORS

Before solving problem (8), we interpret different terms in (8)
as probability density functions, based on which a probabilistic
model that encodes our knowledge of the observation and the
unknowns can be established.

Firstly, since the elements of the additive noise W is white,
zero-mean and circularly-symmetric complex Gaussian, the
squared error term in problem (8) can be interpreted as the
negative log of the likelihood given by [21]

p
(
Y | � (1) , � (2) , . . . , � (N ) , E, β

)

� exp
(

Š β�Y Š [[� (1) , � (2) , . . . , � (N ) ]] Š E� 2
F

)
. (9)

Secondly, the regularization term in problem (8) can be in-
terpreted as arising from a circularly-symmetric complex Gaus-
sian prior distribution over the columns of the factor matri-
ces, i.e.,

∏N
n=1

∏L
l=1 CN(� (n)

:,l | 0In × 1 , γ
Š1
l I L ) [21]. Note that

the columns of the factor matrices are independent of each
other, and the lth columns in all factor matrices { � (n)} N

n=1
share the same variance γŠ1

l . This has the physical interpre-
tation that if γl is large, the lth columns in all � (n)’s will
be effectively “switched off”. On the other hand, for the first
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P factor matrices { � (n)} P
n=1 , there are additional hard con-

straints in problem (8), which correspond to the Stiefel manifold
[33] VL (CIn ) = { A � CIn × L : A H A = I L } for 1 � n � P .
Since the orthonormal constraints result in � (n)H

:,l � :,l = 1, the
hard constraints would dominate the Gaussian distribution of the
columns in { � (n)} P

n=1 . Therefore, � (n) can be interpreted as
being uniformly distributed over the Stiefel manifold VL (CIn )
for 1 � n � P , and Gaussian distributed for P + 1 � n � N :

p(� (1) , � (2) , · · · , � (P )) �
P∏

n=1

IVL (CI n )(�
(n)),

p(� (P +1) , � (P +2) , · · · , � (N ))

=
N∏

n=P +1

L∏

l=1

CN
(
� (n)

:,l |0In × 1 , γ
Š1
l I L

)
, (10)

where IVL (CI n )(� (n)) is an indicator function with
IVL (CI n )(� (n)) = 1 when � (n) � VL (CIn ), and otherwise
IVL (CI n )(� (n)) = 0. For the parameters β and { γl} L

l=1 , which
correspond to the inverse noise power and the variances of
columns in the factor matrices, since we have no informa-
tion about their distributions, a non-informative Jeffrey’s prior
[27] is imposed on them, i.e., p(β) � βŠ1 and p(γl) � γŠ1

l for
l = 1, . . . , L.

Finally, although the generative model for outliers Ei1 ,...,iN

is unknown, the rare occurrence of outliers motivates us to em-
ploy Student’s t distribution as its prior [27], i.e., p(Ei1 ,...,iN

) =
T (Ei1 ,...,iN

|0, ci1 ,...,iN
, di1 ,...,iN

). To facilitate the Bayesian in-
ference procedure, Student’s t distribution can be equivalently
represented as a Gaussian scale mixture as follows [34]:

T (Ei1 ,...,iN
| 0, ci1 ,...,iN

, di1 ,...,iN
)

=
∫

CN
(
Ei1 ,...,iN

| 0, ζŠ1
i1 ,...,iN

)

× gamma (ζi1 ,...,iN
| ci1 ,...,iN

, di1 ,...,iN
) dζi1 ,...,iN

. (11)

This means that Student’s t distribution can be obtained by
mixing an infinite number of zero-mean circularly-symmetric
complex Gaussian distributions where the mixing distribution
on the precision ζi1 ,...,iN

is the gamma distribution with param-
eters ci1 ,...,iN

and di1 ,...,iN
. In addition, since the statistics of

outliers such as means and correlations are generally unavailable
in practice, we set the hyper-parameters ci1 ,...,iN

and di1 ,...,iN

as 10Š6 to produce a non-informative prior on Ei1 ,...,iN
, and

assume outliers are independent of each other:

p (E)=
I1∏

i1 =1

· · ·
IN∏

iN =1

T
(
Ei1 ,...,iN

|0, ci1 ,...,iN
=10Š6 , di1 ,...,iN

=10Š6).

(12)
The complete probabilistic model is shown in Fig. 1. Notice

that the proposed probabilistic model in this paper is different
from that of existing works on tensor decompositions [30]–
[32]. In particular, existing tensor probabilistic models do not
take orthogonality structure into account. Furthermore, existing
tenor decompositions [30]–[32], [43]–[45] are designed for real-
valued tensors only, and thus cannot process the complex-valued
data arising in applications such as wireless communications
[5]–[9] and functional magnetic resonance imaging [3].

Fig. 1. Probabilistic model for tensor CPD with orthogonal factors.

IV. VARIATIONAL INFERENCE FOR TENSOR FACTORIZATION

Let � be a set containing the factor matrices { � (n)} N
n=1 , and

other variables E, { γl} L
l=1 , { ζi1 ,...,iN

} I1 ,...,IN

i1 =1,...,iN =1 , β . From the
probabilistic model established above, the marginal probability
density functions of the unknown factor matrices { � } N

n=1 are
given by

p(� (n) |Y) =
∫

p(Y , � )
p(Y)

d� \ � (n) , n = 1, 2, . . . , N, (13)

where

p(Y , � ) �
P∏

n=1

IVL (CI n )

(
� (n)

)
exp

{(
N∏

n=1

In Š 1

)
lnβ

+

(
N∑

n=P +1

In + 1

)
L∑

l=1

ln γl Š Tr

(
�

N∑

n=P +1

� (n)H � (n)

)

+
I1∑

i1 =1

· · ·
IN∑

iN =1

[
(ci1 ,...,iN

Š 1) ln ζi1 ,...,iN
Š di1 ,...,iN

ζi1 ,...,iN

]

+
I1∑

i1 =1

· · ·
IN∑

iN =1

(
ln ζi1 ,...,iN

Š ζi1 ,...,iN
E�

i1 ,...,iN
Ei1 ,...,iN

)

Š β�Y Š [[� (1) , � (2) , . . . , � (N ) ]] Š E� 2
F

}
(14)

with � = diag { γ1 , · · · , γR } .
Since the factor matrices and other variables are nonlinearly

coupled in (14), the multiple integrations in (13) are analytically
intractable, which prohibits exact Bayesian inference. To han-
dle this problem, Monte Carlo statistical methods [25], [26], in
which a large number of random samples are generated from the
joint distributions and marginalization is approximated by op-
erations on samples, can be explored. These Monte Carlo based
approximations can approach the exact multiple integrations
when the number of samples approaches infinity, which how-
ever is computationally demanding [27]. More recently, varia-
tional inference, in which another distribution that is close to the
true posterior distribution in the Kullback-Leibler (KL) diver-
gence sense is sought, has been exploited to give deterministic
approximations to the intractable multiple integrations [29].
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More specifically, in variational inference, a variational distri-
bution with probability density function Q(� ) that is the closest
among a given set of distributions to the true posterior distribu-
tion p(� | Y) = p(� , Y)/p(Y) in the KL divergence sense is
sought [29]:

KL
(
Q (� ) � p (� | Y)

)
� ŠEQ(� )

{
ln

p (� | Y)
Q (� )

}
. (15)

The KL divergence vanishes when Q(� ) = p(� | Y) if no
constraint is imposed on Q(� ), which however leads us back
to the original intractable posterior distribution. A common ap-
proach is to apply the mean field approximation, which as-
sumes that the variational probability density takes a fully fac-
torized form Q(� ) =

∏
k Q(Θk ), Θk � � . Furthermore, to

facilitate the manipulation of hard constraints on the first P
factor matrices, their variational densities are assumed to take
a Dirac delta functional form Q(� (k)) = δ(� (k) Š �̂ (k)) for
k = 1, 2, . . . , P , where �̂ (k) is a parameter to be derived.

Under these approximations, the probability density functions
Q(Θk ) of the variational distribution can be obtained analyti-
cally via [29]

Q(� (k))=δ
(
� (k) Š arg max

� (k )
E∏

Θ j 
= � (k ) Q(Θ j )
[
ln p (Y , � )

]

︸ ︷︷ ︸
��̂ (k )

)
,

k = 1, 2, . . . , P, (16)

and

Q(Θk ) � exp
{
E∏

j 
= k Q(Θ j )
[
ln p (Y , � )

]}
,Θk� � \{ � (k)} P

k=1 .

(17)
Obviously, these variational distributions are coupled in the

sense that the computation of the variational distribution of one
parameter requires the knowledge of the variational distribu-
tions of other parameters. Therefore, these variational distribu-
tions should be updated iteratively. In the following, an explicit
expression for each Q (·) is derived.

A. Derivation for Q(� (k)), 1 � k � P

By substituting (14) into (16) and only keeping the terms
relevant to � (k) (1 � k � P ), we directly have

�̂ (k) = arg max
� (k ) � VL (CI k )

E∏
Θ j 
= � (k ) Q(Θ j )

[

Š β�Y Š [[� (1) , · · · , � (N ) ]] Š E� 2
F

]
. (18)

To expand the square of the Frobenius norm inside
the expectation in (18), we use the result that �A� 2

F =

Fig. 2. Unfolding operation for a third-order tensor.

� U(k) [A ]� 2
F =Tr(U(k) [A ](U(k) [A ])H ) [14], where the unfold-

ing operation { U(k) [A ]} k=1,2,...,N on an N th-order tensor
A � CI1 ×···× IN along its kth mode is specified as U(k) [A ]

=
∑I1

i1 =1 · · ·
∑IN

in =1 ai1 ,...,iN
eIk

ik
[

N
�

n=1,n 
=k
eIn

in
]T . In this ex-

pression, the elementary vector eIn
in

� RIn × 1 is all zeroes ex-
cept for a 1 at the ithn location, and the multiple Khatri-

Rao products
N
�

n=1,n 
=k
A (n) = A (N ) � · · · � A (k+1) � A (kŠ1) �

· · · � A (1) . For example, the unfolding operation for a third-
order tensor is illustrated in Fig. 2. After expanding the square
of the Frobenius norm and taking expectations, the parameter
�̂ (k) for each variational density in { Q(� (k))} P

k=1 can be ob-
tained from the problem (19) shown at the bottom of this page.

Using the fact that the feasible set for parameter � (k) is the
Stiefel manifold VL (CIk ), i.e., � (k)H � (k) = I L , the term G (k)

is irrelevant to the factor matrix of interest � (k) . Consequently,
problem (19) is equivalent to

�̂ (k) = arg max
� (k ) � VL (CI k )

Tr

(
F (k) � (k)H + � (k)F (k)H

)
, (20)

where F (k) was defined in the first line of (19). Problem (20) is a
non-convex optimization problem, as its feasible set VL (CIk ) is
non-convex [37]. While in general (20) can be solved by numer-
ical iterative algorithms based on a geometric approach or the
alternating direction method of multipliers [37], a closed-form
optimal solution can be obtained by noticing that the objective
function in (20) has the same functional form as the log of
the von Mises-Fisher matrix distribution with parameter matrix

�̂ (k) = arg max
� (k ) � VL (CI k )

Tr

(
EQ(β ) [β]U(k)[Y Š EQ(E) [E]

])( N
�

n=1,n 
=k
EQ(� (n ) ) [�

(n) ]
)�

︸ ︷︷ ︸
�F (k )

� (k)H + � (k)F (k)H

)

Š Tr

(
� (k)H � (k)

[
EQ(β ) [β]E∏N

n = 1 , n 
= k Q(� (n ) )

[(
N
�

n=1,n 
=k
� (n)

)T ( N
�

n=1,n 
=k
� (n)

)� ]
+ E∏L

l = 1 Q(γl )
[� ]

]

︸ ︷︷ ︸
�G (k )

)
(19)
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F (k) , and the feasible set in (20) also coincides with the support
of this von Mises-Fisher matrix distribution [35]. As a result,
we have

�̂ (k) = arg max
� (k )

ln VMF
(

� (k) | F (k)
)
. (21)

Then, the closed-form solution for problem (21) can be ac-
quired using Property 1 below, which has been proved in [33].

Property 1: Suppose the matrix A � Cκ1 × κ2 follows a von
Mises-Fisher matrix distribution with parameter matrix F �
Cκ1 × κ2 . If F = U�V H is the SVD of the matrix F , then the
unique mode of VMF (A | F) is UV H .

From Property 1, it is easy to conclude that �̂ (k) =
	 (k) � (k)H , where 	 (k) and � (k) are the left-orthonormal
matrix and right-orthonormal matrix from the SVD of F (k) ,
respectively.

B. Derivation for Q
(
� (k)

)
, P + 1 � k � N

Using (14) and (17), the variational density Q
(
� (k)

)
(P +

1 � k � N) is derived in Appendix A to be a circularly-
symmetric complex matrix normal distribution [35] as

Q
(
� (k)) = CMN (� (k) | M (k) , I Ik

, � (k)) (22)

where

� (k) =

(
EQ(β ) [β]E∏N

n = 1 , n 
= k Q(� (n ) )

[

(
N
�

n=1,n 
=k
� (n)

)T
(

N
�

n=1,n 
=k
� (n)

)� ]
+ E∏L

l = 1 Q(γl )
[� ]

)Š1

(23)

M (k) = EQ(β ) [β]U(k)[Y Š EQ(E) [E]
]

×
(

N
�

n=1,n 
=k
EQ(� (n ) ) [�

(n) ]
)�

� (k) . (24)

Due to the fact that Q(� (k)) is Gaussian, the parameter M (k)

is both the expectation and the mode of the variational density
Q
(
� (k)

)
.

To calculate M (k) , some expectation computations are re-
quired as shown in (23) and (24). For those with the form
EQ(Θk ) [Θk ] where Θk � � , the value can be easily ob-
tained if the corresponding Q(Θk ) is available. The remain-
ing challenge stems from the expectation E∏N

n = 1 , n 
= k Q(� (n ) )

[(
N
�

n=1,n 
=k
� (n))T (

N
�

n=1,n 
=k
� (n))� ] in (23). But its calculation

becomes straightforward after exploiting the orthonormal struc-
ture of { �̂ (k)} P

k=1 and the property of multiple Khatri-Rao prod-
ucts, as presented in the following property.

Property 2: Suppose the matrix A (n) � Cκn × ρ 	 δ(A (n) Š
Â (n)) for 1 � n � P , where Â (n) � Vρ(Cκn ) and P < N , and
the matrix A (n) � Cκn × ρ 	 CMN (A (n) | M (n) , I κn

, � (n))
for P + 1 � n � N . Then,

E∏N
n = 1 , n 
= k p(A (n ) )

[(
N
�

n=1,n 
=k
A (n)

)T ( N
�

n=1,n 
=k
A (n)

)� ]

= D

[ N
�

n=P +1,n 
=k

(
M (n)H M (n) + κn � (n))�

]
(25)

where D[A ] is a diagonal matrix taking the diagonal element

from A , and the multiple Hadamard products
N
�

n=1,n 
=k
A (n) =

A (N ) � · · · � A (k+1) � A (kŠ1) � · · · � A (1) .
Proof: See Appendix B. �

C. Derivation for Q (E)

The variational density Q (E) can be obtained by taking only
the terms relevant to E after substituting (14) into (17), and can
be expressed as

Q (E)�
I1∏

i1 =1

· · ·
IN∏

iN =1

exp

{
E∏

Θ j 
= E Q(Θ j )

[
Š ζi1 ,...,iN

∣∣∣Ei1 ,...,iN

∣∣∣
2

Š β
∣∣∣Yi1 ,...,in

Š
L∑

l=1

N∏

n=1

� (n)
in ,l Š Ei1 ,...,iN

∣∣∣
2
]}

. (26)

After taking expectations, the term inside the exponent of
(26) is

Š E�
i1 ,...,iN

(
EQ(β ) [β] + EQ(ζi 1 , . . . , i N

) [ζi1 ,...,iN
]

︸ ︷︷ ︸
�pi 1 , . . . , i N

)
Ei1 ,...,iN

+ 2Re

[
E�

i1 ,...,iN
pi1 ,...,iN

× EQ(β ) [β]pŠ1
i1 ,...,iN

(
Yi1 ,...,iN

Š
L∑

l=1

(
N∏

n=1

EQ(� (n ) )

[
� (n)

in ,l

]))

︸ ︷︷ ︸
�mi 1 , . . . , i N

]
.

(27)

Since (27) is a quadratic function with respect to Ei1 ,...,iN
, it

is easy to show that

Q (E) =
I1∏

i1 =1

· · ·
IN∏

iN =1

CN
(
Ei1 ,...,iN

| mi1 ,...,iN
, pŠ1

i1 ,...,iN

)
.

(28)
Notice that from (27), the computation of outlier mean

mi1 ,...,iN
can be rewritten as mi1 ,...,iN

= n1n2 , where

n1 =

(
EQ(ζi 1 , . . . , i N

) [ζi1 ,...,iN
]
)Š1

(
EQ(ζi 1 , . . . , i N

) [ζi1 ,...,iN
]
)Š1 +

(
EQ(β ) [β]

)Š1

and n2 = Yi1 ,...,iN
Š
∑L

l=1(
∏N

n=1 EQ(� (n ) ) [�
(n)
in ,l ]). From the

general data model in (6), it can be seen that n2 consists of
the estimated outliers plus noise. On the other hand, since(
EQ(ζi 1 , . . . , i N

) [ζi1 ,...,iN
]
)Š1

and (EQ(β ) [β])Š1 can be interpreted
as the estimated power of the outliers and the noise respectively,
n1 represents the strength of the outliers in the estimated out-
liers plus noise. Therefore, if the estimated power of the out-
liers (EQ(ζi 1 , . . . , i N

) [ζi1 ,...,iN
])Š1 goes to zero, the outlier mean

mi1 ,...,iN
becomes zero accordingly.
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D. Derivations for Q (γl) , Q (ζi1 ,...,iN
) , and Q (β)

Using (14) and (17) again, the variational density Q (γl) can
be expressed as

Q (γl) � exp

{(
N∑

n=P +1

In

︸ ︷︷ ︸
�ã l

Š1

)
ln γl

Š γl

[
N∑

n=P +1

EQ(� (n ) )

[
� (n)H

:,l � (n)
:,l

] ]

︸ ︷︷ ︸
�b̃ l

}
(29)

which has the same functional form as the probability density
function of the gamma distribution, i.e., Q(γl) = gamma(γl |
ãl , b̃l). Since EQ(γl ) [γl ] = ãl/b̃l is required for updating the
variational distributions of other variables in � , we need
to compute ãl and b̃l . While computation of ãl is straight-
forward, the computation of b̃l can be facilitated by us-
ing the correlation property of the matrix normal distribu-
tion EQ(� (n ) ) [�

(n)H
:,l � (n)

:,l ] = M (n)H
:,l M (n)

:,l + In � (n)
l,l [35] for

P + 1 � n � N .
Similarly, using (14) and (17), the variational densities

Q (ζi1 ,...,iN
) and Q (β) can be found to be gamma distributions

as

Q (ζi1 ,...,iN
) = gamma

(
ζi1 ,...,iN

| c̃i1 ,...,iN
, d̃i1 ,...,iN

)
(30)

Q (β) = gamma
(
β | ẽ, f̃

)
(31)

with parameters c̃i1 ,...,iN
= ci1 ,...,iN

+ 1, d̃i1 ,...,iN
= di1 ,...,iN

+ (mi1 ,...,iN
)� mi1 ,...,iN

+ pŠ1
i1 ,...,iN

, ẽ =
∏N

n=1 In , and f̃ =
E∏N

n = 1 Q(� (n ) )Q(E) [�YŠ [[� (1) ,· · ·, � (N ) ]]ŠE� 2
F ]. For c̃i1 ,...,iN

,

d̃i1 ,...,iN
and ẽ, the computations are straightforward. f̃ is de-

rived in Appendix C to be

f̃ = �Y Š M� 2
F +

I1∑

i1 =1

· · ·
IN∑

iN =1

pŠ1
i1 ,...,iN

+ Tr
(
D

[ N
�

n=P +1

(
M (n)H M (n) + In � (n)

)� ])

Š 2Re

(
Tr
(
U(1)

[
Y Š M

][(
N
�

n=P +1
M (n)

)

�
(

P
�

n=2
�̂ (n)

)]�
�̂ (1)H

))
(32)

where M is a tensor with its (i1 , . . . , iN )th element being
mi1 ,...,iN

, and Re(·) denotes the real part of its argument. Al-
though Eq. (32) for computing f̃ is complicated, its meaning is
clear when we refer to its definition below (31), from which it
can be seen that f̃ represents the estimate of the overall noise
power.

E. Summary of the Iterative Algorithm

From the expressions for Q(Θk ) evaluated above, it is seen
that the calculation of a particular Q (Θk ) relies on the statistics
of other variables in � . As a result, the variational distribu-

tion for each variable in � should be iteratively updated. The
iterative algorithm is summarized as follows.
Initializations:
Choose L > R and initial values { �̂ (n,0)} P

n=1 , { M (n,0) ,

� (n,0)} N
n=P +1 , b̃0

l , { c̃0
i1 ,...,iN

, d̃0
i1 ,...,iN

} and f̃ 0 for all l and
i1 , · · · , iN .
Let ãl =

∑N
n=P +1 In and ẽ =

∏N
n=1 In .

Iterations: For the tth iteration (t  1),
Update the statistics of outliers: { pi1 ,··· ,iN

,mi1 ,··· ,iN
} I1 ,...,IN

i1 =1,··· ,iN =1

pt
i1 ,··· ,iN

=
ẽ

f̃ tŠ1
+

c̃tŠ1
i1 ,··· ,iN

d̃tŠ1
i1 ,··· ,iN

(33)

mt
i1 ,··· ,iN

=
ẽ

f̃ tŠ1pt
i1 ,··· ,iN

(
Yi1 ,··· ,iN

Š
L∑

l=1

[(
P∏

n=1

�̂ (n,tŠ1)
in ,l

)(
N∏

n=P +1

M (n,tŠ1)
in ,l

)])

(34)

Update the statistics of factor matrices: { M (k) , � (k)} N
k=P +1

� (k,t) =
(

ẽ

f̃ tŠ1
D

[ N
�

n=P +1,n 
=k

(
M (n,tŠ1)H M (n,tŠ1) +In � (n,tŠ1)

)� ]

+ diag

{
ã1

b̃tŠ1
1

, . . . ,
ãL

b̃tŠ1
L

})Š1

(35)

M (k,t) =
ẽ

f̃ tŠ1

(
U(k) [Y Š M t

] )

×
[(

N
�

n=P +1,n 
=k
M (n,tŠ1)

)
�
(

P
�

n=1
�̂ (n,tŠ1)

)]�
� (k,t) (36)

Update the orthonormal factor matrices { �̂ (k)} P
k=1

[
	 (k,t) , � (k,t)] = SVD

[
ẽ

f̃ tŠ1
U(k)

[
Y Š M t

]

×
[(

N
�

n=P +1
M (n,t)

)
�
(

P
�

n=1,n 
=k
�̂ (n,tŠ1)

)]�
]

�̂ (k,t) = 	 (k,t) � (k,t)H (37)

Update { b̃l} L
l=1 , { d̃i1 ,...,iN

} I1 ,...,IN

i1 =1,...,iN =1 and f̃

b̃t
l =

N∑

n=P +1

M (n,t)H
:,l M (n,t)

:,l + In � (n,t)
l,l (38)

c̃t
i1 ,...,iN

= c̃0
i1 ,...,iN

+ 1 (39)
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d̃t
i1 ,...,iN

= d̃0
i1 ,...,iN

+
(
mt

i1 ,...,iN

)�
mt

i1 ,...,iN
+ 1/pt

i1 ,...,iN

(40)

f̃ t = �Y Š M t � 2
F +

I1∑

i1 =1

· · ·
IN∑

in =1

(pt
i1 ,...,iN

)Š1

+ Tr

(
D

[ N
�

n=P +1

(
M (n,t)H M (n,t) +In � (n,t)

)� ])

Š 2Re

(
Tr

(
U(1)

[
Y Š M t

][(
N
�

n=P +1
M (n,t)

)

�
(

P
�

n=2
�̂ (n,t)

)]�
�̂ (1,t)H

))
(41)

Until Convergence

F. Further Discussions

To gain further insight from the above proposed CPD algo-
rithm, discussions of its convergence property, automatic rank
determination, relationship to the OALS algorithm and compu-
tational complexity are presented in the following.

1) Convergence Property: Although the functional mini-
mization of the KL divergence in (15) is non-convex over the
mean-field family Q(� ) =

∏
k Q(Θk ), it is convex with re-

spect to a single variational density Q(Θk ) when the others
{ Q(Θj )|j 
= k} are fixed [29]. Therefore, the proposed algo-
rithm, which iteratively updates the optimal solution for each
Θk , is essentially a coordinate-descent algorithm in the func-
tional space of variational distributions with each update solving
a convex problem. This guarantees monotonic decrease of the
KL divergence in (15), and the proposed algorithm is guaranteed
to converge to at least a stationary point [39, Theorem 2.1].

2) Automatic Rank Determination: The automatic rank de-
termination for the tensor CPD uses an idea from the Bayesian
model selection (or Bayesian Occam’s razor) [27, pp. 157].
More specifically, the parameters { γl} L

l=1 control the model
complexity, and their optimal variational densities are obtained
together with those of other parameters by minimizing the KL
divergence. After convergence, if some E[γl ] are very large,
e.g., 106 , this indicates that their corresponding columns in
{ M (n)} N

n=P +1 can be “switched off”, as they play no role in
explaining the data. Furthermore, according to the definition of
the tensor CPD in (1), the corresponding columns in { �̂ (n)} P

n=1
should also be pruned accordingly. Finally, the learned tensor
rank R is the number of remaining columns in each estimated
factor matrix �̂ (n) .

3) Relationship to the OALS: If the tensor rank R is known,
the regularization term in (8) is not needed, and consequently
there are no parameters { ãl , b̃l} L

l=1 . Further restricting Q(� (k))
to be δ(� (k) Š M (k)) for P + 1 � k � N , it can be shown that
all the equations in the above algorithm still hold except that
the term In � (n,tŠ1) in (35) and the term In � (n,t) in (41) are
removed. Then, the proposed algorithm is a robust version of
OALS, even covering the case of P = N . If we further have
the knowledge that outliers do not exist, only (35)–(37) remain.
Interestingly, this resulting algorithm is exactly the OALS al-

TABLE I
THREE DIFFERENT OUTLIER MODELS

gorithm in [17]. In this regard, the proposed algorithm not only
provides a probabilistic interpretation of the OALS algorithm,
but also has the additional properties in automatic rank determi-
nation, outlier removal and learning of the noise power.

4) Computational Complexity: For each iteration, the com-
plexity is dominated by updating each factor matrix, costing
O(

∑N
n=1 InL2 + N

∏N
n=1 InL). Thus, the overall complex-

ity is about O(q(
∑N

n=1 InL2 + N
∏N

n=1 InL)) where q is the
number of iterations needed for convergence. On the other hand,
for the OALS algorithm with exact tensor rank R, its complexity
is O(m(

∑N
n=1 InR2 + N

∏N
n=1 InR)) where m is the number

of iterations needed for convergence. Therefore, for each itera-
tion, the complexity of the proposed algorithm is comparable to
that of the OALS algorithm.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical simulations are presented to as-
sess the performance of the proposed algorithm (labeled as
VB) using synthetic data and two applications, in compari-
son with various state-of-the-art tensor CPD algorithms. The
algorithms being compared include the ALS [15], the simulta-
neous diagonalization method for coupled tensor CPD (labeled
as SD) [40], the direct algorithm for CPD followed by enhanced
ALS (labeled as DIAG-A) [41], the Bayesian tensor CPD (la-
beled as BCPD) [32], the robust iteratively reweighed ALS
(labeled as IRALS) [42], and the OALS algorithm (labeled as
OALS) [17]. In all experiments, three outlier models are con-
sidered, and they are listed in Table I. For all the simulated
algorithms, the initial factor matrix �̂ (n,0) is set as the matrix
consisting of L leading left singular vectors of U(n) [Y ] where
L = max{ I1 , I2 , . . . , IN } for the proposed algorithm and the
BCPD, and L = R for other algorithms. The initial parameters
of the proposed algorithm { c̃0

i1 ,...,iN
, d̃0

i1 ,...,iN
} are set as 10Š6

for all i1 , . . . , iN , b̃0
l =

∑N
n=P +1 In for all l, f̃ 0 =

∏N
n=1 In ,

and { � (n,0)} N
n=P +1 are all set to be I L . All the algorithms ter-

minate at the tth iteration when � [[A (1,t) , A (2,t) , . . . , A (N,t) ]] Š
[[A (1,tŠ1) , A (2,tŠ1) , . . . , A (N,tŠ1) ]]� 2

F < 10Š6 or the iteration
number exceeds 2000.

A. Validation on Synthetic Data

Synthetic tensors are used in this subsection to assess
the performance of the proposed algorithm on convergence,
rank learning ability and factor matrix recovery under dif-
ferent outlier models. A complex-valued third-order tensor
[[A (1) , A (2) , A (3) ]] � C12× 12× 12 with rank R = 5 is consid-
ered, where the orthogonal factor matrix A (1) is constructed
from the R leading left singular vectors of a matrix drawn
from CMN (A |012× 5, , I 12× 12 , I 5× 5), and the factor matrices
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Fig. 3. Convergence of the proposed algorithm under different outlier models.

{ A (n)} 3
n=2 are drawn from CMN (A | 012× 5, , I 12× 12 , I 5× 5).

Parameters for outlier models are set as π = 0.05, σ2
e =

100, H = 10 arg maxi1 ,...,iN
|[[A (1) , A (2) , A (3) ]]i1 ,...,iN

|, μ =
3, λ = 1/50 and ν = 10. The signal-to-noise ratio (SNR) is
defined as 10 log10(� [[A (1) , A (2) , A (3) ]]� 2

F / �W� 2
F ) [5], [17].

Each result in this subsection is obtained by averaging 500
Monte-Carlo runs.

Fig. 3 presents the convergence performance of the
proposed algorithm under different outlier models, where
the mean-square-error (MSE) � [[�̂ (1) , �̂ (2) , �̂ (3) ]] Š [[A (1) ,
A (2) , A (3) ]]� 2

F is chosen as the assessment criterion. From
Fig. 3, it can be seen that the MSEs decrease significantly in
the first few iterations and converge to stable values quickly,
demonstrating the rapid convergence property. Furthermore, by
comparing the simulation results with outliers to that without
outliers, it is clear that the proposed algorithm is effective in
mitigating outliers.

For tensor rank learning, the simulation results of the pro-
posed algorithm are shown in Fig. 4(a), while those of the
Bayesian tensor CPD algorithm are shown in Fig 4(b). Each
vertical bar in the figures shows the mean and standard de-
viation of rank estimates, with the red horizontal dotted lines
indicating the true tensor rank. The percentages of correct es-
timates are also shown on top of the figures. From Fig. 4(a),
it is seen that the proposed method can recover the true ten-
sor rank with 100% accuracy when SNR  5 dB, both with or
without outliers. This shows the accuracy and robustness of the
proposed algorithm when the noise power is moderate. Even
though the performance at low SNRs is not as impressive as that
at high SNRs, it can be observed that the proposed algorithm
still gives estimates close to the true tensor rank with the true
rank lying mostly within one standard deviation from the mean
estimate. On the other hand, in Fig. 4(b), it is observed that
while the Bayesian tensor CPD algorithm performs nearly the
same as the proposed algorithm without outliers, it gives tensor
rank estimates very far away from the true value when outliers
are present.

Fig. 5 compares the proposed algorithm to other state-of-
the-art CPD algorithms in terms of recovery accuracy of the

Fig. 4. Rank determination using (a) the proposed method and (b) the
Bayesian tensor CPD [32].

orthogonal factor matrix A (1) under different outlier mod-
els. The criterion is set as the best congruence ratio defined
as min
P � A (1) Š �̂ (1)P
 � F /� A (1) � F , where the diagonal
matrix 
 and the permutation matrix P are found via the greedy
least-squares column matching algorithm [5]. From Fig. 5(a), it
is seen that both the proposed algorithm and OALS perform bet-
ter than other algorithms when outliers are absent. This shows
the importance of incorporating the orthogonality information
of the factor matrix. On the other hand, while OALS offers the
same performance as the proposed algorithm when there is no
outlier, its performance is significantly different in the presence
of outliers, as presented in Fig. 5(b)– (d). Furthermore, since all
the algorithms except VB and IRALS have not taken the out-
liers into account, their performances degrade significantly as
shown in Fig. 5(b)–(d). Even though the IRALS uses the robust
lp (0 < p � 1) norm optimization to alleviate the effects of out-
liers, it cannot learn the statistical information of the outliers,
leading to its worse performance in outliers mitigation than that
of the proposed algorithm.
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Fig. 5. Performance of factor matrix recovery versus SNR under different outlier models. (a) No outliers, (b) Bernoulli-Gaussian, (c) Bernoulli-Uniform, (d)
Bernoulli-Student’s t.

B. Blind Data Detection for DS-CDMA Systems

In this subsection, we consider an uplink DS-CDMA
system, in which R = 5 users communicate with the BS
equipped with M = 8 antennas over flat fading channels hmr 	
CN(hmr |0, 1). The transmitted data sr (k) are random binary
phase-shift keying (BPSK) symbols. The spreading code is of
length Z = 6, and with each code element czr 	 CN (czr |0, 1).
After observing the received tensor Y � C8× 6× 100 , the pro-
posed algorithm and other state-of-the-art tensor CPD algo-
rithms, combined with ambiguity removal and constellation
mapping [5], [9], are executed to blindly detect the transmit-
ted data. Their performance is measured in terms of bit error
rate (BER).

The BERs versus SNR under different outlier models are
presented in Fig. 6, which are averaged over 10000 indepen-
dent trials. The parameter settings for different outlier models
are the same as those in the last subsection. It is seen from
Fig. 6(a) that when there are no outliers, the proposed algorithm
and OALS behave the same, and both outperform other CPDs.
However, when outliers exist, it is seen from Fig. 6(b)–(d) that
the proposed algorithm performs significantly better than other
algorithms.

C. Linear Image Coding for Face Images

In this subsection, we conduct experiments on 165 face im-
ages from the Yale Face Database3 [38], representing different
facial expressions (also with or without sunglasses) of 15 people
(11 images for each person). In each classification experiment,
we randomly choose two people’s images. Among these 22 im-
ages, 12 (6 from each person) are used for training. In particular,
each image is of size 240 × 320, and the training data can be
naturally represented by a third-order tensor Y � R240× 320× 12 .
Various state-of-the-art tensor CPD algorithms and the proposed
algorithm are run to learn the two orthogonal basis matrices (see
(4)). Then, the feature vectors of these 12 training images, which
are obtained by projecting them onto the multilinear subspaces
spanned by the two orthogonal basis matrices, are used to train
a support vector machine (SVM) classifier. For the 10 testing
images, their feature vectors are fed into the SVM classifier
to determine which person is in each image. The parameters
of various outlier models are: π = 0.05, σ2

e = 100, H = 100,
μ = 1, λ = 1/1000 and ν = 20.

3http://vision.ucsd.edu/content/yale-face-database
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Fig. 6. BER versus SNR under different outlier models. (a) No outliers, (b) Bernoulli-Gaussian, (c) Bernoulli-Uniform, (d) Bernoulli-Student’s t.

TABLE II
CLASSIFICATION ERROR AND CPD COMPUTATION TIME IN FACE RECOGNITION

Since the tensor rank is not known in the image data, it should
be carefully chosen. For the algorithms (ALS, SD, IRALS,
DIAG-A and OALS) that cannot automatically determine the
rank, it can be obtained by first running the algorithms with
tensor rank ranges from 1 to 12, and then finding the knee point
of the reconstruction error decrement [27]. When there are no
outliers, it is able to find the appropriate tensor rank. However,
when outliers exist, the knee point cannot be found and we set
the rank as the upper bound 12. For the BCPD, although it learns
the appropriate rank when there are no outliers, it learns the rank

as 12 when outliers exist. On the other hand, no matter whether
there are outliers or not, the proposed algorithm automatically
learns the appropriate tensor rank without exhaustive search,
and thus saves considerable computational complexity.

The average classification errors of 10 independent experi-
ments and the corresponding average CPD computation times
(benchmarked in Matlab on a personal computer with an i7
CPU) are shown in Table II, and it can be seen that the pro-
posed algorithm provides the smallest classification error under
all considered scenarios.
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