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Recursive Approach to the Design of a Parallel Self-Timed Adder
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Abstract— This brief presents a parallel single-rail self-timed adder.
It is based on a recursive formulation for performing multibit binary
addition. The operation is parallel for those bits that do not need
any carry chain propagation. Thus, the design attains logarithmic
performance over random operand conditions without any special
speedup circuitry or look-ahead schema. A practical implementation is
provided along with a completion detection unit. The implementation is
regular and does not have any practical limitations of high fanouts.
A high fan-in gate is required though but this is unavoidable for
asynchronous logic and is managed by connecting the transistors in
parallel. Simulations have been performed using an industry standard
toolkit that verify the practicality and superiority of the proposed
approach over existing asynchronous adders.

Index Terms— Asynchronous circuits, binary adders, CMOS
design, digital arithmetic.

I. INTRODUCTION

Binary addition is the single most important operation that a
processor performs. Most of the adders have been designed for syn-
chronous circuits even though there is a strong interest in clockless/
asynchronous processors/circuits [1]. Asynchronous circuits do not
assume any quantization of time. Therefore, they hold great potential
for logic design as they are free from several problems of clocked
(synchronous) circuits. In principle, logic flow in asynchronous
circuits is controlled by a request-acknowledgment handshaking
protocol to establish a pipeline in the absence of clocks. Explicit
handshaking blocks for small elements, such as bit adders, are
expensive. Therefore, it is implicitly and efficiently managed using
dual-rail carry propagation in adders. A valid dual-rail carry output
also provides acknowledgment from a single-bit adder block. Thus,
asynchronous adders are either based on full dual-rail encoding of
all signals (more formally using null convention logic [2] that uses
symbolically correct logic instead of Boolean logic) or pipelined
operation using single-rail data encoding and dual-rail carry represen-
tation for acknowledgments. While these constructs add robustness
to circuit designs, they also introduce significant overhead to the
average case performance benefits of asynchronous adders. Therefore,
a more efficient alternative approach is worthy of consideration that
can address these problems.

This brief presents an asynchronous parallel self-timed adder
(PASTA) using the algorithm originally proposed in [3]. The design
of PASTA is regular and uses half-adders (HAs) along with multi-
plexers requiring minimal interconnections. Thus, it is suitable for
VLSI implementation. The design works in a parallel manner for
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independent carry chain blocks. The implementation in this brief is
unique as it employs feedback through XOR logic gates to constitute
a single-rail cyclic asynchronous sequential adder [4]. Cyclic circuits
can be more resource efficient than their acyclic counterparts [5], [6].
On the other hand, wave pipelining (or maximal rate pipelining) is
a technique that can apply pipelined inputs before the outputs are
stabilized [7]. The proposed circuit manages automatic single-rail
pipelining of the carry inputs separated by propagation and inertial
delays of the gates in the circuit path. Thus, it is effectively a single-
rail wave-pipelined approach and quite different from conventional
pipelined adders using dual-rail encoding to implicitly represent the
pipelining of carry signals.

The remainder of this brief is organized as follows. Section II
provides a review of self-timed adders. Section III presents the
architecture and theory behind the proposed adder. Sections IV
and V provide CMOS implementation and simulation results for the
proposed adder. Section VI draws the conclusion.

II. BACKGROUND

There are a myriad designs of binary adders and we focus here
on asynchronous self-timed adders. Self-timed refers to logic circuits
that depend on and/or engineer timing assumptions for the correct
operation. Self-timed adders have the potential to run faster averaged
for dynamic data, as early completion sensing can avoid the need
for the worst case bundled delay mechanism of synchronous circuits.
They can be further classified as follows.

A. Pipelined Adders Using Single-Rail Data Encoding

The asynchronous Req/Ack handshake can be used to enable the
adder block as well as to establish the flow of carry signals. In most
of the cases, a dual-rail carry convention is used for internal bitwise
flow of carry outputs. These dual-rail signals can represent more than
two logic values (invalid, 0, 1), and therefore can be used to generate
bit-level acknowledgment when a bit operation is completed. Final
completion is sensed when all bit Ack signals are received (high).

The carry-completion sensing adder is an example of a pipelined
adder [8], which uses full adder (FA) functional blocks adapted for
dual-rail carry. On the other hand, a speculative completion adder is
proposed in [9]. It uses so-called abort logic and early completion to
select the proper completion response from a number of fixed delay
lines. However, the abort logic implementation is expensive due to
high fan-in requirements.

B. Delay Insensitive Adders Using Dual-Rail Encoding

Delay insensitive (DI) adders are asynchronous adders that assert
bundling constraints or DI operations. Therefore, they can correctly
operate in presence of bounded but unknown gate and wire delays [2].

There are many variants of DI adders, such as DI ripple carry
adder (DIRCA) and DI carry look-ahead adder (DICLA). DI adders
use dual-rail encoding and are assumed to increase complexity.

Though dual-rail encoding doubles the wire complexity, they can
still be used to produce circuits nearly as efficient as that of the
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Fig. 1. General block diagram of PASTA.

Fig. 2. State diagrams for PASTA. (a) Initial phase. (b) Iterative phase.

single-rail variants using dynamic logic or nMOS only designs. An
example 40 transistors per bit DIRCA adder is presented in [8] while
the conventional CMOS RCA uses 28 transistors.

Similar to CLA, the DICLA defines carry propagate, generate, and
kill equations in terms of dual-rail encoding [8]. They do not connect
the carry signals in a chain but rather organize them in a hierarchical
tree. Thus, they can potentially operate faster when there is long carry
chain.

A further optimization is provided from the observation that dual-
rail encoding logic can benefit from settling of either the 0 or 1 path.
Dual-rail logic need not wait for both paths to be evaluated. Thus,
it is possible to further speed up the carry look-ahead circuitry to
send carry-generate/carry-kill signals to any level in the tree. This
is elaborated in [8] and referred as DICLA with speedup circuitry
(DICLASP).

III. DESIGN OF PASTA

In this section, the architecture and theory behind PASTA is
presented. The adder first accepts two input operands to perform half-
additions for each bit. Subsequently, it iterates using earlier generated
carry and sums to perform half-additions repeatedly until all carry bits
are consumed and settled at zero level.

A. Architecture of PASTA

The general architecture of the adder is shown in Fig. 1. The
selection input for two-input multiplexers corresponds to the Req
handshake signal and will be a single 0 to 1 transition denoted by
SEL. It will initially select the actual operands during SEL = 0 and
will switch to feedback/carry paths for subsequent iterations using
SEL = 1. The feedback path from the HAs enables the multiple
iterations to continue until the completion when all carry signals will
assume zero values.

B. State Diagrams

In Fig. 2, two state diagrams are drawn for the initial phase and the
iterative phase of the proposed architecture. Each state is represented
by (Ci+1 Si ) pair where Ci+1, Si represent carry out and sum values,
respectively, from the i th bit adder block. During the initial phase, the
circuit merely works as a combinational HA operating in fundamental
mode. It is apparent that due to the use of HAs instead of FAs,
state (11) cannot appear.

During the iterative phase (SEL = 1), the feedback path through
multiplexer block is activated. The carry transitions (Ci ) are allowed
as many times as needed to complete the recursion.

From the definition of fundamental mode circuits, the present
design cannot be considered as a fundamental mode circuit as the
input–outputs will go through several transitions before producing the
final output. It is not a Muller circuit working outside the fundamental
mode either as internally, several transitions will take place, as shown
in the state diagram. This is analogous to cyclic sequential circuits
where gate delays are utilized to separate individual states [4].

C. Recursive Formula for Binary Addition

Let S j
i and C j

i+1 denote the sum and carry, respectively, for i th
bit at the j th iteration. The initial condition ( j = 0) for addition is
formulated as follows:

S0
i = ai ⊕ bi

C0
i+1 = ai bi . (1)

The j th iteration for the recursive addition is formulated by

S j
i = S j−1

i ⊕ C j−1
i , 0 ≤ i < n (2)

C j
i+1 = S j−1

i C j−1
i , 0 ≤ i ≤ n. (3)

The recursion is terminated at kth iteration when the following
condition is met:

Ck
n + Ck

n−1 + · · · + Ck
1 = 0, 0 ≤ k ≤ n. (4)

Now, the correctness of the recursive formulation is inductively
proved as follows.

Theorem 1: The recursive formulation of (1)–(4) will produce
correct sum for any number of bits and will terminate within a finite
time.

Proof: We prove the correctness of the algorithm by induction on
the required number of iterations for completing the addition (meeting
the terminating condition).

Basis: Consider the operand choices for which no carry propaga-
tion is required, i.e., C0

i = 0 for ∀i, i ∈ [0..n]. The proposed for-
mulation will produce the correct result by a single-bit computation
time and terminate instantly as (4) is met.

Induction: Assume that Ck
i+1 �= 0 for some i th bit at kth iteration.

Let l be such a bit for which Ck
l+1 = 1. We show that it will be

successfully transmitted to next higher bit in the (k + 1)th iteration.
As shown in the state diagram, the kth iteration of lth bit state

(Ck
l+1, Sk

l ) and (l + 1)th bit state (Ck
l+2, Sk

l+1) could be in any

of (0, 0), (0, 1), or (1, 0) states. As Ck
l+1 = 1, it implies that

Sk
l = 0. Hence, from (3), Ck+1

l+1 = 0 for any input condition between
0 to l bits.

We now consider the (l + 1)th bit state (Ck
l+2, Sk

l+1) for kth
iteration. It could also be in any of (0, 0), (0, 1), or (1, 0) states.
In (k+1)th iteration, the (0, 0) and (1, 0) states from the kth iteration
will correctly produce output of (0, 1) following (2) and (3). For
(0, 1) state, the carry successfully propagates through this bit level
following (3).

Thus, all the single-bit adders will successfully kill or propa-
gate the carries until all carries are zero fulfilling the terminating
condition.

The mathematical form presented above is valid under the condi-
tion that the iterations progress synchronously for all bit levels and
the required input and outputs for a specific iteration will also be
in synchrony with the progress of one iteration. In the next section,
we present an implementation of the proposed architecture which is
subsequently verified using simulations.
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Fig. 3. CMOS implementation of PASTA. (a) Single-bit sum module. (b) 2 × 1 MUX for the 1 bit adder. (c) Single-bit carry module. (d) Completion signal
detection circuit.

IV. IMPLEMENTATION

A CMOS implementation for the recursive circuit is shown in
Fig. 3. For multiplexers and AND gates we have used TSMC library
implementations while for the XOR gate we have used the faster ten
transistor implementation based on transmission gate XOR to match
the delay with AND gates [4]. The completion detection following (4)
is negated to obtain an active high completion signal (TERM). This
requires a large fan-in n-input NOR gate. Therefore, an alternative
more practical pseudo-nMOS ratio-ed design is used. The resulting
design is shown in Fig. 3(d). Using the pseudo-nMOS design, the
completion unit avoids the high fan-in problem as all the connections
are parallel. The pMOS transistor connected to VDD of this ratio-ed
design acts as a load register, resulting in static current drain when
some of the nMOS transistors are on simultaneously. In addition
to the Ci s, the negative of SEL signal is also included for the
TERM signal to ensure that the completion cannot be accidentally
turned on during the initial selection phase of the actual inputs.
It also prevents the pMOS pull up transistor from being always on.
Hence, static current will only be flowing for the duration of the
actual computation.

VLSI layout has also been performed [Fig. 3(e)] for a standard
cell environment using two metal layers. The layout occupies
270 λ × 130 λ for 1-bit resulting in 1.123 Mλ2 area for 32-bit. The
pull down transistors of the completion detection logic are included
in the single-bit layout (the T terminal) while the pull-up transistor
is additionally placed for the full 32-bit adder. It is nearly double
the area required for RCA and is a little less than the most of the
area efficient prefix tree adder, i.e., Brent–Kung adder (BKA).

V. SIMULATION RESULTS

In this section, we present simulation results for different adders
using Mentor Graphics Eldo SPICE version 7.4_1.1, running on

64-bit Linux platform. For implementation of other adders, we have
used standard library implementations of the basic gates. The custom
adders such as DIRCA/DICLASP are implemented based on their
most efficient designs from [8].

Initially, we show how the present design of PASTA can effec-
tively perform binary addition for different temperatures and process
corners to validate the robustness under manufacturing and opera-
tional variations. In Fig. 4, the timing diagrams for worst and average
cases corresponding to maximum and average length carry chain
propagation over random input values are highlighted. The carry
propagates through successive bit adders like a pulse as evident from
Fig. 4(a). The best-case corresponding to minimum length carry chain
(not shown here) does not involve any carry propagation, and hence
incurs only a single-bit adder delay before producing the TERM
signal. The worst-case involves maximum carry propagation cascaded
delay due to the carry chain length of full 32 bit. The independence
of carry chains is evident from the average case [Fig. 4(b)] where C8
and C26 are shown to trigger at nearly the same time. This circuit
works correctly for all process corners. For SF corner cases, one
Cout rising edge in Fig. 4(a) shows a short dynamic hazard. This has
no follow on effects in the circuit nor are errors induced by the SF
extreme corner case.

The delay performances of different adders are shown in Fig. 5.
We have used 1000 uniformly distributed random operands to rep-
resent the average case while best case, worst case correspond to
specific test-cases representing zero, 32-bit carry propagation chains
respectively. The delay for combinational adders is measured at 70%
transition point for the result bit that experiences the maximum delay.
For self-timed adders, it is measured by the delay between SEL and
TERM signals, as depicted in Fig. 4(a).

The 32-bit full CLA is not practical due to the requirement of high
fan-in, and therefore a hierarchical block CLA (B-CLA), as shown
in [8], is implemented for comparison. The combinational adders,
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Fig. 4. SPICE timing diagram for PASTA implementation using TSMC
0.35 μm process. The Cout and C12 for worst case and average case,
respectively, are shown for different conditions where TT, SF, and FS
represents typical–typical, slow-fast, and fast–slow nMOS–pMOS conditions
in these figures. (a) Worst-case carry propagation while adding operands
(FFFF FFFF)16 and (0000 0001)16. (b) Average-case carry propagation while
adding random operands of (3F05 0FC0)16 and (0130 0041)16.

such as RCA/B-CLA/BKA/ Kogge–Stone adder (KSA)/Sklansky’s
conditional sum adder (SCSA) can only work for the worst-case delay
as they do not have any completion sensing mechanism. Therefore,
these results give an empirical upper bound of the performance
enhancement that can be achieved using these adders as the basic
unit and employing some kind of completion sensing technique.
In the worst case, KSA performs best as they (alongwith SCSA)
have the minimal tree-depth [10]. On the other hand, PASTA performs
best among the self-timed adders. PASTA performance is comparable
with the best case performances of conventional adders. Effectively,
it varies between one and four times that of the best adder perfor-
mances. It is even shown to be the fastest for TSMC 0.35 μm process.
For average cases, PASTA performance remains within two times
to that of the best average case performances while for the worst
case, it behaves similar to the RCA. Note that, PASTA completes
the first iteration of the recursive formulation when “SEL = 0.”
Therefore, the best case delay represents the delay required to
generate the TERM signal only and of the order of picoseconds.
Similar overhead is also present in dual-rail logic circuits where they
have to be reset to the invalid state prior to any computation. The
dynamic/nMOS only designs require a precharge phase to be com-
pleted during this interval. These overheads are not included in this
comparison.

Fig. 5. (a) SPICE timing report for different 32-bit adders. (b) Comparison
of average power consumptions by different 32-bit adders. RCA: Ripple
carry adder. KSA: Kogge–Stone adder. B-CLA: block carry look-ahead adder.
PASTA: parallel self-timed adder. BKA: Brent–Kung adder. DIRCA: delay
insensitive RCA. SCSA: Sklansky’s conditional sum adder. DICLASP: delay
insensitive carry look-ahead adder with special circuitry.

The best case and worst case carry performances of DIRCA for
the chosen operands are nearly the same, as one rail needs to be
set from start to end. In contrast, the average cases can have carry
generation and killing in any bit and thus providing a better case for
DIRCA. However, even the average case results for dual-rail adders
cannot beat the worst-case performance by RCA. This is in contrast
to the results presented in [8], and we identify a few reasons for this
anomaly as follows.

1) The original CMOS implementation by [8] uses MOSIS 2 μm,
level two CMOS parameters while our implementation uses
submicrometer and deep submicrometer SPICE level 3, Eldo
SPICE level 53 CMOS (corresponding to Berkeley BSIM V3.3)

parameters.
2) All DI designs under evaluation are based on data driven

dynamic logic circuits. The performance of these dynamic
circuits can be optimized using larger nMOS transistors in
the pull-down network. However, it will considerably increase
precharge delay as the load capacitance will also increase for
pMOS transistors. Therefore, we have kept the standard sizing
of nMOS and pMOS transistors that will result in equal rise/fall
time in this circuit.

3) The original results were obtained without consideration of
factors such as layout, wiring delays, stray capacitance, and
noise [8].
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4) Dynamic logic circuits are not considered to be a good design
choice for deep submicrometer technologies and beyond [11].
They can be slow or malfunction for some particular operands
or conditions due to charge sharing problems or the presence
of noise [8].

5) The data driven dynamic logic cannot attain the same per-
formance as the pure dynamic logic circuits since they often
include more than one pull-up pMOS transistor which increases
the switching delay.

Another interesting observation is that the performances of the
combinational adders and PASTA improve with the decreasing
process width and VDD values while the performance of dual-rail
adders decreases with scaling down of the technology. This results
from the fact that dynamic logic requires technology specific energy-
delay optimization as performed in [12]. We also note that the
dynamic logic switching speed advantage can be attributed to the
nMOS threshold voltage being lower than a static CMOS threshold
voltage (VDD/2), which diminishes with decreasing process width.

The PASTA layout complies with all design rules for the TSMC
0.35 μm process and this was found to increase the delay by two
to three times after taking into consideration layout specific parasitic
capacitances. Similar performance degradation is expected for other
adders when layout effects are considered.

The average power consumption of different adders for different
operand choices (best, worst, and average carry chain lengths)
are shown in Fig. 5. We measure average power consumed by
combinational and self-timed adders for the duration of input pattern
placement and completion of the addition. Combinational static
CMOS circuits show significantly lower power consumption than
self-timed DI adders. PASTA consumes a little more average power
than combinational adders as it uses a transmission gate based XOR

implementation which consumes more average power. RCA is the
most efficient adder as it consumes the least amount of average power.
Among DI adders DIRCA is the best and consumes nearly 3.6, 6.2,
and 11.38 times the average power of PASTA for TSMC 0.35, 0.25,
and 0.18 μm processes, respectively. All adders show decreasing
average power consumption as the process length is decreased and
PASTA consumes least power among the self-timed adders.

VI. CONCLUSION

This brief presents an efficient implementation of a PASTA.
Initially, the theoretical foundation for a single-rail wave-pipelined

adder is established. Subsequently, the architectural design and
CMOS implementations are presented. The design achieves a very
simple n-bit adder that is area and interconnection-wise equivalent
to the simplest adder namely the RCA. Moreover, the circuit works
in a parallel manner for independent carry chains, and thus achieves
logarithmic average time performance over random input values. The
completion detection unit for the proposed adder is also practical and
efficient. Simulation results are used to verify the advantages of the
proposed approach.
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