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For scientific computing and high-resolution imaging applications, this paper presents a pipelined
reconfigurable processor to implement variable-length single-precision floating-point FFT/IFFT and DCT/
IDCT computations compatible with the IEEE 754 standard. In order to minimize the total hardware
overhead and power consumption, a reconfigurable radix-4 butterfly (RR4BF) is proposed to reduce 75%
adders in comparison to the conventional parallel radix-4 butterfly, and the partially shared Ping-Pong
structured register bank (PSPPRB) provides an efficient and specific intermediate data caching
mechanism to realize the maximized adder resource utilization ratio in RR4BF and to guarantee the high
throughput for the pipelined design. Moreover, fused floating-point 4-input adder and fused floating-
point 2-term dot product unit are proposed, which can not only improve about 3 dB signal-to-
quantization-noise ratio (SQNR), but also save 28% and 19% hardware overhead compared with dis-
crete implementations and previous state-of-the-art design, respectively. Simulation results show that
the latency for FFT computations is about 25% of the R4SDF design without any throughput loss, and over
139 dB SQNR is achieved. Logic synthesis results in a 65 nm CMOS technology show that the power
consumption ranges from 43.5 mW to 372.3 mW for 16- to 1024-point FFTs at 500 MHz, and the total
hardware overhead is equivalent to 543k NAND2 gates.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Floating-point fast Fourier transform (FFT) and discrete cosine
transform (DCT) computations have attractive advantages on wide
dynamic range, high processing precision and complete overflow/
underflow concerns in the fields of scientific computing and high-
resolution imaging applications. For example, floating-point FFT
kernels were employed to accelerate the applications for scientific
computing [1]. Also, floating-point FFT/IFFT modules were imple-
mented for pulse compression computations in ultra-high per-
formance radar systems [2], and floating-point DCT was required
for image compressing in high dynamic range sensors [3].

Most of the existing floating-point FFT/IFFT or DCT/IDCT com-
putations were implemented by digital signal processors (DSPs)
and field programmable gate arrays (FPGAs) [4,5], but they had
significant drawbacks on power consumption and processing
speed compared with application specific integrated circuit (ASIC)
designs [6,7]. However, ASICs lack algorithm flexibility. Hence,
coarse-grained reconfigurable processors are increasingly
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demanded to achieve a tradeoff between these advantages of
ASICs and DSPs/FPGAs. Varieties of reconfigurable designs have
been presented in [8-12|. For instance, a multi-delay feedback
(MDF) based reconfigurable processor was proposed to implement
128- to 2048-point FFT computations [8], and a ring-structured
reconfigurable architecture was proposed to implement 8- to
4096-point FFT/IFFT computations [12]. Unfortunately, all of them
were implemented in fixed-point based methods. Although the
fixed-point based designs have been successfully applied to pro-
cess the baseband data in wireless communication systems, such
as 3GPP-LTE and IEEE 802.16e [8,9], the SQNR and dynamic range
of those fixed-point designs cannot satisfy the ever-increasing
requirements of scientific computing and high-resolution imaging
applications. For example, floating-point processor was required to
process the data with large dynamic range for digital signal pro-
cessing and scientific computing [13].

Compared with floating-point designs, the SQNR of fixed-point
FFTs/DCTs is limited by the dynamic range because overflow
occurs easily with the increasing of the input magnitudes [14-17].
Therefore, in order to achieve both the wide dynamic range and
high SQNR for scientific computing and high-resolution imaging
applications, floating-point FFT/DCT processors are more attractive
than fixed-point designs. However, few literatures mentioned
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reconfigurable processors to implement complete floating-point
FFT/IFFT or DCT/IDCT computations. The authors in [18-20] only
mentioned floating-point butterflies. Although floating-point units
suffer from higher hardware overhead and power consumption
than fixed-point implementations, reasonable total hardware
overhead and power consumption can be achieved by optimizing
the required storage and computational resources.

In this paper, a pipelined area-efficient and high-speed recon-
figurable processor is presented for variable-length single-preci-
sion floating-point FFT/IFFT and DCT/IDCT computations compa-
tible with the IEEE 754 standard [21]. By modifying the data flow
of conventional parallel radix-4 butterflies, a novel reconfigurable
radix-4 butterfly (RR4BF) is proposed to save 75% adders com-
pared with the parallel radix-4 butterflies that are employed in
traditional R4SDF designs [22], and the partially shared Ping-Pong
structured register bank (PSPPRB) provides an efficient and spe-
cific intermediate data caching mechanism to realize the max-
imized adder resource utilization ratio in RR4BF and to guarantee
the high throughput for the pipelined design. Moreover, fused
floating-point 4-input adder and fused floating-point 2-term dot
product unit are also proposed, which can not only improve about
3 dB SQNR, but also save 28% and 19% hardware overhead com-
pared with discrete implementations and previous state-of-the-art
design [18], respectively. Experimental results demonstrate the
area-efficiency, the high processing speed and the high SQNR of
the proposed processor.

The rest of this paper is organized as follows. Section 2 reviews
the radix-4 FFT algorithm and presents a derivation of DCT com-
putations based on FFT. Section 3 introduces the proposed
reconfigurable processor. Section 4 describes the fused 4-input
adder and the fused 2-term dot product unit. Section 5 gives the
results and comparisons on SQNR, hardware utilization and per-
formance. Finally, Section 6 concludes this work.

2. Preliminaries
2.1. Radix-4 FFT algorithm

The N-point discrete Fourier transform (DFT) is defined as
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Then, the N-point DFT can be decomposed as follows [11]:

N 3 N/4-1
X[k]:X[Zkl+k0} = Z Z X(4n]+n0)W§;lm+nn)((N/4)k1+ku)

n=0n=0

3 N/4-1
Z Z X(4n1+nO)W;\l]\ln1k1+4n]ko+(N/4)n0k1+n0kg)

np=0n; =0

3 N/4-1

3 > xny +ng)Wy

ng=0 n =0

whok 3)

nok,
WNO 0
N——

twiddle factor

N/4—point DFT

radix—4 butterfly

If we define a new N/4-point DFT as
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Then, the N-point DFT in Eq. (1) can be rewritten as follows:
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Substituting ng, k; into Eq. (5), the radix-4 butterfly computation
can be expressed as Eq. (6), where multiplying +j are imple-
mented by real-imaginary swappings easily. The data flow graph
of the radix-4 butterfly is given in Fig. 1. One of the four output
data corresponding to the left side in Eq. (6) is named as an output
branch of the butterfly.
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Therefore, the N-point DFT has been decomposed into four N/4-
point DFTs by using the radix-4 butterfly computations. In order to
compute the remaining N/4-point DFTs, each of them can be further
decomposed into four (N/4)/4-point DFTs in a similar way as Eqgs.
(3)- (6). Particularly, if N is a power of 4, such as 4™, the N-point DFT
can be decomposed into m stages and each stage contains N/4
radix-4 butterfly computations. As an example, the data flow graph
of a 16-point radix-4 FFT is shown in Fig. 2. The corresponding
equations are given in Eq. (7). This decomposition thus corresponds
to a decimation-in-frequency (DIF) FFT computation [23], which has
been widely implemented by some basic FFT architectures, such as
R4SDF [22], R4SDC [24] and R4MDC [8]. The detailed comparisons
with the prior architectures and the advantages of the proposed

Gi(ky) X[k,

G(k) X[k, +N /4]
G (k) X[k, +N /2]
Gi(k) X[k, +3N /4]

— — — - One of the output branches.

Fig. 1. Data flow graph of the radix-4 butterfly.

radix-4 butterfly

Stage 1

Stage 2
Fig. 2. Data flow graph of the 16-point radix-4 FFT.
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Fig. 3. Block diagram of the proposed pipelined reconfigurable processor.

processor will be presented in Section 5.
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2.2. DCT computations using FFTs

The definition of N-point DCT-II is given as
X[k] = ak\/7 Z x(1) cos (2n+ Dkﬂ, k=0,1,..,N—1

{1/&, k=0
dp =

1, k=1,2,..,N—1 ®)

In order to realize DCT computations with simple modifications
based on the existing FFT algorithm, a 2N-point sequence y(n) is
defined as follows [25]:

n=0,1,...,.N-1

x(n),
YM=\x@N-n-1), n=N,N+1,...2N—1 ®

And the 2N-point DFT of y(n) is expressed as
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Then, combining Egs. (8) and (11), an N/2-point complex DCT
can be easily realized by reordering the input data of an N-point
FFT and attaching a complex multiplier after the FFT arithmetic
unit. Since the difference between DCT and IDCT is the scaling
constant a and IFFT is computed by conjugating the twiddle
factors of FFT, only the detailed implementations of variable-
length FFTs and DCTs are discussed in this paper.

Table 1
Configurations for variable-length FFTs and DCTs.

FFT/IFFT DCT/ Enabled stages Reordering The last
IDCT _— multiplier
1 2 3 4 5

8-point  V
16-point Voo Ve B
32-point v VoV v
64-point v Y
128- v - v v Y v v
point
256-point Voo VoV
512- VARV, v vV v
point )
1024-point VoyoveovY

2 Symbol 1/ indicates that the corresponding unit is enabled.
b Symbol — indicates that the corresponding unit is bypassed and clock gated.

3. Design of the reconfigurable processor
3.1. Overview

Based on the decompositions in Section 2, in order to realize
16- to 1024-point FFT/IFFT and 8- to 512-point DCT/IDCT compu-
tations, a total of five cascaded stages are required in the proposed
processor shown in Fig. 3. Each stage consists of two key compo-
nents. One of the key components is RR4BF, which performs radix-
4 butterfly computations serially by mapping the modified but-
terfly data flow. Another key component is PSPPRB, which stores
the intermediate data in a partially shared Ping-Pong mechanism
and feeds the input data to RR4BF continuously to guarantee the
high throughput. Besides, the inter-stage multiplexers are used to
realize variable-length FFT or DCT computations. By correctly
configuring these multiplexers and employing an efficient clock
gating strategy for small-size FFT or DCT computations, the
reconfigurability and power-scalability of the proposed processor
are achieved easily. The detailed configuration information and the
clock gating strategy are shown in Table 1. The inter-stage multi-
pliers are designed to complete the twiddle factor multiplications,
which are implemented by fused 2-term dot product units, and all
the required floating-point complex twiddle factors are stored in
the coefficient ROM as a lookup table to achieve high processing
speed and computational accuracy. In particular, the multiplier of
the last stage is designed to realize the attached twiddle factor
multiplications for DCT/IDCT computations. The external data RAM
reading address generating logic are embedded in the first stage,
which provides a 4-way parallel input data path to reduce the
latency and realizes the reading address reordering for DCT/IDCT
computations efficiently.
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Fig. 4. Addition operator scheduling of the radix-4 butterfly.
Re[ - ] represents the real part of the complex data.
Im[ - ] represents the imaginary part of the complex data.

3.2. Reconfigurable radix-4 butterfly

As floating-point implementations, the hardware overhead and
power consumption of the computational resources become ser-
ious. In order to address this problem, we optimize the compu-
tational resources by reusing the adders in a single butterfly unit
as much as possible in this paper. Based on the observations that
the resource utilization ratio of the adders in R4SDF-based pro-
cessors is only 25%, we modify the conventional parallel radix-4
butterfly to be performed in four serial steps. Each step of the
modified butterfly corresponds to one of the four output branches
of the parallel radix-4 butterfly as shown in Fig. 1. To explain the
reasons of saving adders, Fig. 4 gives an addition operator sche-
duling scheme, which is obtained by merging the addition
operators that are not performed in the same step. Addition
operators M~ ® represents 8 real adders with four input ports
used in the conventional parallel radix-4 butterfly. By using the
proposed operator scheduling scheme, 8 adders in the conven-
tional design are compressed to 2 adders and 75% adders are
saved. To further present the mechanism of adders reusing, Fig. 5
shows the detailed hardware implementation of RR4BF. Four 1-bit
opcodes (Op00,0p01,0p10 and Op11) are used to control the input
multiplexers to implement real-imaginary swappings while mul-
tiplying the imaginary factor +j are performed for the computa-
tions of the second or fourth branches according to Eq. (6), and
two 3-bit opcodes (Op0 and Op1) are used to make the addition—
subtraction selections for Adder1 and Adder2 which are designed
to implement the computation of (A + B) + (C + D).

Fig. 6 shows the modified data flow graph of a 16-point FFT
based on the modified radix-4 butterfly, which is taken as an
example to illustrate the process of completing radix-4 FFT com-
putations by using RR4BF. First, during the period of step 1 in stage
1, RR4BF performs the computations for the first branches of all
the four different butterflies with the input data sets from x(0), x(
4),x(8),x(12) to x(3),x(7),x(11),x(15) serially. Second, during the
period of step 2 in stage 1, RR4BF performs the computations for
the second branches of all the four different butterflies with the
same input data sets from x(0), x(4), x(8), x(12) to x(3),x(7),x(11),x
(15) serially. Similarly, during the period of step 3 and step 4, the
computations for the remaining two branches of these four but-
terflies are completed with the same input data sets as the prior
two steps. During the period of the same steps, the configurations
of RR4BF are kept unchanged because the arithmetic expressions
for the same branches are identical according to Eq. (6). Otherwise,
the configurations of RR4BF will be changed by setting the
opcodes if it performs the computations for different branches.
Consequently, RR4BF computes the four branches serially to
achieve a 100% adder resource utilization ratio, and produces the

j

j
j
j
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Fig. 5. Hardware implementation of RR4BF.

16 outputs consecutively over 16 cycles in contrast to the parallel
radix-4 butterfly in R4SDF-based designs which must produce the
16 outputs within 4 cycles leaving 12 cycles unused. Thus, no any
throughput loss is introduced in the proposed RR4BF while the
number of adders is reduced greatly.

3.3. Intermediate data caching mechanism

As described above, in order to realize the maximized adder
resource utilization ratio in RR4BF and to guarantee the high
throughput for the pipelined design, the timing diagram of the
input data for RR4BF should be accordingly modified compared
with the conventional parallel radix-4 butterfly. Thus, an efficient
and specific intermediate data caching mechanism is urgently
demanded in the proposed processor. Fig. 7 shows the detailed
structure of PSPPRB to achieve this goal, which is used to store the
input data in a partially shared Ping-Pong mechanism and to feed
the input data for RR4BF continuously. PSPPRB consists of seven
FIFO-based register banks (RBs) and each RB can be configured to
two types (normal and feedback). The normal type RB works as a
general FIFO (cascaded D flip-flops), and the feedback type RB
means that the output data of the last flip-flop are exactly loop-
backed to the input data of the first flip-flop in this RB, denoted by
the dashed lines in Fig. 7. In order to correctly store the output
data of the previous stage and feed the input data to RR4BF of the
current stage for continuous radix-4 butterfly computations,
PSPPRB is controlled by a finite state machine (FSM) with six states
(IDLE, PREPARE, CALCO, CALC1, CALC2, CALC3) as shown in Fig. 8,
in which state transitions are controlled by an internal clock
counter. The state IDLE means that the system is idle after system
reset or all the computations are finished. The state PREPARE is
entered once the input data is valid. To explain the details of the
data caching mechanism, the computation process for stage 1 of
two continuous 16-point DFTs, which is the first stage decom-
position of a 64-point radix-4 FFT, is taken as an example here.
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Fig. 6. Modified data flow graph of the 16-point radix-4 FFT.
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Fig. 7. Detailed structure of PSPPRB and a timing diagram example.
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Fig. 8. Finite state machine (FSM) of PSPPRB (for 16-point DFTs).

In the state PREPARE from cycle 1 to cycle 12, RBO-RB2 are
configured to the normal type and work as 12 cascaded D flip-
flops (DFFs) to store the input data of x(0),x(1),...,x(11) sequen-
tially. In the state CALCO from cycle 13 to cycle 16, the input data
sets for step 1 in stage 1 of the first 16-point DFT are ready to be
fed to RR4BF by RBO-RB2 and the input port, such as x(0), x(4), x(
8),x(12) illustrated as the black box. During this period, RBO—-RB2
are configured to the feedback type and RB3 is configured to the
normal type to store the last four input data of x(12)-x(15) for the
first 16-point DFT computations. Then, in the state CALC1 from
cycle 17 to cycle 28, the types of RBO-RB2 are kept unchanged and
RB3 is changed to the feedback type for 12 clock cycles. The input
data sets of x(0),x(4), x(8),x(12) to x(3),x(7),x(11),x(15) are fed to
RR4BF repetitively and periodically by these four feedback type
RBs to complete the computations from step 2 to step 4 in stage
1 of the first 16-point DFT. At the same time, RB4-RB6 are

configured to the normal type to store the input data of x(16), x(
17),...,x(31) for the second 16-point DFT computations sequen-
tially. Once the computations from step 1 to step 4 of the first 16-
point DFT are finished, the input data sets for step 1 in stage 1 of
the second 16-point DFT are ready to be fed to RR4BF, such as x(
16), x(20), x(24), x(28) illustrated as the black box in the state
CALC2. Similarly, RB4-RB6 in the state CALC2 and CALC3 work in
the same way as RBO-RB2 in the state CALCO and CALC1 to store
and feed the input data to RR4BF for the second 16-point DFT
computations.

Consequently, by sharing one of the register banks (RB3) and
the input port, RBO-RB2 and RB4-RB6 work in a Ping-Pong
mechanism to guarantee that multiple DFTs of the same size can
be computed continuously by RR4BF with a 100% adder resource
utilization ratio and no any throughput loss. In addition, to provide
convincible basis to ignore the extra hardware complexity intro-
duced by the control logic (FSM) and interconnection (MUX, etc.)
of PSPPRB, Fig. 9 gives the VLSI implementation results of variable-
length PSPPRBs (the length represents the number of DFFs in a
single RB). It is obvious that the extra FSM and MUX hold a very
low hardware ratio (1-5%) if the length becomes more than 16.
Therefore, nearly 1/8 of the storage resources are saved compared
with the symmetrical Ping-Pong structured implementations.

3.4. Reading address generating and input data reordering

The proposed pipelined processor not only holds a high
throughput, but also reduces the latency significantly due to the 4-
way parallel input data path. And no swapping buffers are
required to realize the input data reordering for DCT computations
by employing the efficient reading address generating scheme.
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Fig. 10 shows the detailed 4-way parallel RAM reading address
generating logic for both FFTs and DCTs of variable length, which
consists of an 8-bit counter, two 10-bit integer subtractors and a
controller. By merging the low log, N—2 bits of the counter with
the [10—(log, N —2)]—bit decimal number 0, 1, 2 or 3 provided by
the controller, the address generating logic can easily generate
four 10-bit reading addresses for FFT or DCT computations. Fur-
thermore, based on Eq. (9), it is obvious that only the second half
of the input data should be reordered to implement DCT compu-
tations. Thus, two 10-bit integer subtractors are inserted in the last
two address generating paths corresponding to Addr2 and Addr3.
The two subtractors are used to subtract the address values that
are generated for FFT computations with the decimal number
1023, 255, 63 or 15 accordingly. For example, the four addresses
for 256-point FFT computations are generated by merging the 4-
bit decimal number 0, 1, 2 or 3 with the low 6 bits of the counter
illustrated by the timing diagram example in Fig. 10. Then, by
subtracting the values of Addr2 and Addr3 for the previous 256-
point FFT with the decimal number 255, the reading addresses for
128-point DCT computations are obtained and the timing diagram
is also shown in Fig. 10. This method is very suitable for large-size
DCT computations, and only small modifications are needed to
support different reordering for other FFT-based orthogonal
transforms.

4. Design of the fused floating-point operators

4.1. Fused floating-point 4-input adder

As mentioned in Section 3.2, fused floating-point 4-input
adders are the main components of RR4BF. However, few litera-
tures mentioned related work. In order to efficiently implement
the proposed RR4BF, a novel fused floating-point 4-input adder is
proposed in this paper. The 4-input adder is designed to imple-
ment the computation of (A + B) + (C + D) compatible with the
IEEE 754 single-precision floating point standard [21]. Compared
with the equivalent discrete 2-input implementations, the pro-
posed adder optimizes one of the four shifters in the first pipeline
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Fig. 9. Hardware overhead of PSPPRBs vs. variable-length.
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stage, and also reuses the computational resources about the
normalization shift operation, the exponent adjustment and the
special cases processing in the last two pipeline stages, respec-
tively. In order to illustrate the details of resources reusing in the
proposed design, the six pipeline stages of the adder are shown in
Fig. 11, and the function of each pipeline stage is described as
follows.

The first stage: This stage mainly completes the exponent pro-
cessing, special case detection, bit inversion and alignment shift
operations. The exponent processing module computes all the
exponent differences between each two operands by six sub-
tractors in parallel, and then determines the shift amounts of the
three smaller operands relative to the biggest operand, respec-
tively. Since only three of the four operands should be shifted here,
one of the four shifters can be reused to save resources, such as the
shaded shifter of stage 1 in Fig. 11. In addition, if A and B (or C and
D) have opposite signs, the smaller one (absolute value) is required
to perform a bit-inversion operation and the sign of A+ B (or
C + D) is determined by the bigger one.

The second stage: The main function of this stage is to perform
the computations of (A+B) and (C + D). Two 52-bit carry save
adders (CSAs) are employed for these two additions in parallel.

The third stage: The function of this stage is similar to the first
stage. Since all shift operations have already been done in the first
stage, shifters and bit-inversions are no longer needed here. If the
results of (A+B) and (C+ D) have opposite signs, the smaller
result (absolute value) is needed to perform another bit-inversion
operation, and the final sign of (A+B)+ (C+D) is determined
based on the difference between these two results in this stage
as well.

The fourth stage: This stage completes the final addition of
(A+ B) + (C+ D). It has the similar function as the second stage,
but only one 52-bit CSA is needed here.

The fifth stage: The main function of this stage is to prepare the
result for the final output. The normalization shift operation and
the exponent adjustment are performed in parallel, according to
the shift amount computed by the leading zero anticipator (LZA).

The sixth stage: The main functions of this stage are to process
the special cases and to output the final result. All the abnormal
processing principles are compatible with the IEEE 754 standard.

In order to illustrate the advantages on resources reusing of the
proposed 4-input adder, Table 2 shows the comparisons of the
worst time delay and area between the conventional discrete 2-
input implementations and the proposed design synthesized in a
TSMC 65 nm CMOS technology. It is clear that the proposed design
not only saves nearly 28% hardware overhead, but also shortens
the critical path and reduces the rounding error significantly.

4.2. Fused floating-point 2-term dot product unit
The 2-term dot product computation is defined as the com-

putation of (A - B) + (C - D), which has been widely used in com-
plex multiplications. Some useful hardware implementations for
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Fig. 11. Detailed structure of the fused 4-input adder.

the 2-term dot product computations have been presented in the
existing literatures. For example, the authors in [18] have pre-
sented a fused floating-point 2-term dot product unit for FFT
butterfly computations recently. Although the state-of-the-art
design in [18] shows obvious advantages on hardware overhead
saving, worst delay reducing and rounding improvement, some
further optimization opportunities can be achieved in this paper.
In order to illustrate the details of the proposed design, the six
pipeline stages of the 2-term dot product unit are shown in
Fig. 12, and the function of each pipeline stage is described as
follows.

The first stage: The main functions of this stage are to generate
two 48-bit partial products of A - B and C - D by two radix-4 booth
encoding modules and to compute the exponents of these two
products as Eq. (12). Also, special case detection and sign XOR

Table 2
Comparisons between discrete implementations and the proposed 4-input adder.

Design Worst delay Area Roundings Technology
(ns) (um?) (nm)
Discrete  0.87 (100%) 262524 (100%) 2 65
Proposed  0.60 (69%) 19005.2 (72.4%) 1 65
operations for A- B and C - D are performed.
exp(A - B) = exp(A)+exp(B)—127
exp(C - D) =exp(C)+exp(D)—127 (12)

The second stage: In this stage, final additions of the two 48-bit
partial products are performed in parallel.
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Fig. 12. Detailed structure of the fused 2-term dot product unit.

The third stage: Two subtractions of exp(A - B)—exp(C - D) and
A-B—C-D are computed in parallel. Then the shift amount for the
smaller one of A-B and C-D is determined by the difference
between these two exponents, and the final result of the 2-term
dot product has the same sign as the bigger one of A- B and C - D.
Moreover, it is similar to the third stage of the proposed 4-input
adder that the smaller product (absolute value) is required to
perform a bit-inversion operation if A-B and C - D have opposite
signs. And the width of the bit-inversion results is extended to 97
bits to guarantee the computational accuracy.

The fourth stage: The function of this stage is similar to the
fourth stage of the 4-input adder, which is the final addition of the
two 97-bit shifted results.

The fifth stage: The function of this stage is also similar to the
fifth stage of the 4-input adder, LZA computes the shift amount for
normalization, and the final exponent adjustment is performed in
parallel in this stage.

The sixth stage: The main functions of this stage are to process
the special cases and to output the final result. All the abnormal
processing principles are compatible with the IEEE 754 standard.

Table 3 shows the comparisons of the worst time delay and
hardware overhead between the previous state-of-the-art design
[18] and the proposed 2-term dot product unit. For fair compar-
isons in different technologies, the normalized area (w.r.t. 65nm) is
used to evaluate the hardware overhead. It is obvious that better
area-efficiency and lower worst delay are achieved in the
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Table 3
Comparisons between previous design and the proposed 2-term dot product unit.

Design Worst Normalized Roundings Technology
delay (ns) area (pm?) (nm)
Swartzlander's [18] 2.72 33599.7 (100%) 1 45
(100%)
Proposed 0.96 27401.2 (81.5%) 1 65
(35.3%)

proposed design, even though the design in [18] uses a faster
technology (45 nm).

5. Results and comparisons
5.1. Numerical simulations

As presented in [14-17], detailed theoretical analysis had been
done about the advantages of floating-point FFTs over the fixed-
point case. As a summary, due to the floating-point representa-
tions, floating-point FFTs not only enjoy the almost unlimited
input signal magnitude without any concerns about the overflow
or underflow problems, but also provide a high SQNR due to the
relatively long mantissa (24 bits). In order to verify these advan-
tages of the proposed floating-point design, plenty of numerical
simulations have been performed. Then, SQNR can be calculated
by comparing the simulation outputs with the double precision
floating-point outputs of Matlab, and the formula of the calcula-
tion is given by Eq. (13) [18,26]:

”X[k]ref ||2
I QIXTKT — X[K]ref 12

where X[kl represents the double precision floating-point
reference results of Matlab, and Q[X[k]] is the quantized results
obtained from the numerical simulations. The symbol | - II is the
two-norm operator.

Random experimental environment was established, and the
uniformly distributed pseudo-random single-precision floating-
point numbers were taken as the input data sets. Random
experiments had been run several times to get a better error
approximation. The averaged SQNR results of the 16- to 1024-
point FFTs and 8- to 512-point DCTs are depicted in Fig. 13,
respectively. In order to illustrate the improvement on reducing
the rounding error by employing the proposed fused operators,
the SQNR of an equivalent reconfigurable FFT processor, where
RR4BF and complex multipliers were implemented by discrete 2-
input adders and 2-input multipliers, was measured at the same
time. Also, the SQNR of a normal radix-2 floating-point design [27]
had been simulated to show the advantages of the proposed radix-
4 design which utilized high-radix computations combined with
operators fusing technique.

Obviously, nearly 140 dB SQNR is achieved for 1024-point FFT
computations in the proposed processor. Compared with the
equivalent discrete 2-input implementations, the proposed 4-
input adder and 2-term dot product unit can improve about 3 dB
SQNR on average. Additionally, by combining the high-radix
computations and operators fusing, the proposed processor
reduces the rounding error significantly, and more than 10 dB
SQNR improvement has been achieved over the radix-2 design.

SQNR = 10 log (13)

5.2. Hardware resources comparisons

Table 4 shows the hardware resource comparisons among
several typical FFT architectures. It is obvious that the proposed
design has the highest resource utilization ratio on both the
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Fig. 13. SQNR results vs. variable-length.

computational resources and storage resources. The number of
required adders has been minimized which is especially mean-
ingful in terms of the proposed floating-point processor. The total
required storage resources (complex words) is calculated as Eq.
(14), while the control logic and the interconnection are ignored
based on the experimental results mentioned in Section 3.3:

logf -1
Storage = Z 7-4=7.(N/4—1)/3~0.58N—2.33 (14)
i=1

Compared with the radix-4 multi-path delay commutator
(R4MDC) processors, the proposed design reduces both the storage
resources and computational resources greatly, and has a sig-
nificant improvement on the resource utilization ratio of adders
and multipliers. Although R4MDC provides a four times through-
put of the proposed design, the high requirements on adders and
storage of R4MDC is unacceptable in terms of floating-point
implementations. In fact, if the RR4BF in the last stage of the
proposed processor is replaced by a parallel radix-4 butterfly, the
same throughput as R4MDC can be achieved with some increasing
of hardware overhead and power consumption. On the other hand,
compared with the R4SDF design, which is known as the high
memory utilization ratio and high processing speed in pipelined
processors [11], the proposed design reduces 75% latency due to
the 4-way input data path, and reduces 5/8 adders (a 4-input
adder is equivalent to three 2-input adders) due to the proposed
RR4BFs. To evaluate the control complexity of the proposed design,
the VLSI implementation results of the extra control logic used for
intermediate data caching in PSPPRB and R4SDF is presented in
Table 5, respectively. The extra control complexity of PSPPRB is
nearly 1.5 times of R4SDF, but both of them can be ignored in
medium- or large-size FFT computations based on the descriptions
in Section 3.3. To provide convincible basis of the area-efficiency
due to reducing adders and storage resources in this paper, an
equivalent R4SDF processor was implemented, where butterflies
and multipliers were realized by 4-input adders and 2-term dot
product units for fair comparisons. As a result, Fig. 14 shows both
the VLSI implementation results of the proposed design and the
R4SDF design. Apparently, compared with the R4SDF design,
although little control complexity increases in the proposed
design, up to 40% total hardware overhead can be saved without
any throughput loss, which is efficient for floating-point
implementations.

5.3. Performance comparisons

The proposed processor has been modeled by Verilog HDL and
synthesized in a TSMC 65 nm CMOS technology. In order to
quantitatively compare the performance with prior typical
designs, the latency for N-point FFT computations is calculated as
Eq. (15), while the clock cycles spent for filling the pipeline
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Table 4

Hardware comparisons between the proposed processor and typical designs for N-point FFTs.

Architecture Proposed R4SDF R4MDC 22RSDF R2MDC R2SDF
Multipliers log ,N—1 log,N—1 3log4N-3 log,N—1 2log4,N—-2 2log 4,N—2
Adders log 4,N* 8 log 4N 8 log 4N 4log 4N 4log 4N 4log 4N
Storage (complex words) 0.58N-2.33 N-1 25N-4 N-1 15N-2 N-1
Adder utilization 100% 25% 25% 50% 50% 50%
Multiplier utilization 75-100%" 75% 25% 75% 50% 50%
Storage utilization 100% 100% 25% 100% 50% 100%
Throughput 1 1 4 1 2 1

Latency® (cycles) N/4-1 N-1 5N/4-2 N-1 3N/2-2 N-1

2 A 4-input adder is equivalent to three 2-input adders.

b The utilization of the multiplier in the first stage is 100% and the others are 75%.

¢ The latency is from the first input samples to the first output samples, and the cycles spent for filling the pipeline registers of adders and multipliers are ignored here.

Table 5
Comparisons of control complexity between R4SDF and the proposed design in a
single stage.

Design No. of 2:1 No. of States in the Averaged area
multiplexers control FSM (Gate)
R4SDF 4 4 2366.8
PSPPRB 11 6 3639.7
100
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g 60
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Fig. 14. VLSI implementations of R4SDF and the proposed design.

registers in the fused floating-point operators (adders and dot
product units) is 6 based on the descriptions in Section 4:

logh -1 .
x > 4'tlog) x 6+(logh —1)
=1

x6=(N/4—1)+(2logh —1) x 6 (15)

AW

Latency =

Then, the latency for 1024/256/64/16-point FFT is 309, 105, 45 and
21 cycles, respectively. And, the latency for DCT computations is
only 6 cycles more than that of the corresponding FFTs due to the
attached floating-point multiplications in the last stage.

Table 6 gives the performance comparisons with previous FFT
processors. Since few floating-point FFT/IFFT or DCT/IDCT pro-
cessors have been reported in existing literatures, we compare our
proposed design to some state-of-the-art fixed-point or block
floating-point (BFP) processors. Due to the floating-point repre-
sentations and the proposed resources reusing strategy, the main
advantages of the proposed design can be concluded as the large
dynamic range, the high SQNR and the area-efficiency. Compared
with the design in [6], the proposed floating-point processor
shows significant advantages on SQNR because both the compu-
tational accuracy and input magnitudes are relatively limited by
the 12-bit fixed-point numbers employed in [6]. On the other
hand, the authors in [7,10] have made some SQNR improvements
due to the data scaling method of BFP technique. For example,
over 20 dB SQNR improvement can be achieved in [7] with the

same wordlength as [6]. However, it introduces extra hardware
complexity for data scaling circuits and is also difficult to be
integrated in the systems compatible with the IEEE 754 standard
for scientific computing.

Another advantage of the proposed processor is the area-
efficiency. Although floating-point units suffer from higher hard-
ware overhead and power consumption than fixed-point imple-
mentations, reasonable total hardware overhead and power con-
sumption can be achieved by optimizing the required storage and
computational resources in this paper. As a result, the total hard-
ware overhead of the proposed design is equivalent to 543k gates
which can be comparable with the fixed-point implementations in
[8] and [9]. In order to make fair comparisons among the designs
with different technologies and different wordlength, “normalized
FFTs per energy” shown in Eq. (16) is employed in Table 6 to reflect
the energy efficiency. To alleviate the influences of different
technologies, some terms such as MOS sizes (Tech.), the supply
voltage and wordlength (WL) are introduced to Eq. (16) as referred
to [8,10].

2 2
(@) x (49" x 340 +1(5D)°]
Power x Execution Time x 10°

The detailed power breakdown for variable-length FFT/FFT and
DCT/DCT computations are shown in Figs. 15 and 16, respectively.
It is obvious that up to 88.3% total power computation can be
saved for small-size FFT/IFFT computations by the clock gating
strategy. Furthermore, by carefully dividing the pipelines of the
internal floating-point arithmetic units, the clock frequency of the
processor reaches over 500 MHz. Although it is not efficient to
improve the throughput by using a highly parallel butterfly based
on the considerations of hardware overhead and power con-
sumption for floating-point implementations, the relatively high
clock frequency can also guarantee the high processing speed
requirement with the 0.5 GS/s throughput achieved.

Nor. FFTs per Energy = (16)

6. Conclusion

In this paper, a pipelined reconfigurable processor for variable-
length floating-point FFT/IFFT and DCT/IDCT computations is pre-
sented. By using the proposed RR4BF and PSPPRB, 75% floating-
point adders are saved compared with the conventional parallel
radix-4 butterfly, and efficient intermediate data caching
mechanism is achieved to guarantee the high throughput for the
pipelined design. Moreover, the floating-point 4-input adder and
floating-point 2-term dot product unit can further reduce 28% and
19% the computational resources compared with the three discrete
2-input adders and previous 2-term dot product unit, respectively.
Due to the floating-point representations, the SQNR of the pro-
posed processor reaches over 139 dB without the limitation of
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Table 6
Performance comparisons between the proposed processor and previous designs.
Design Proposed Cho's [6] Huang's [7] Yang's [8] Yang's [9] Tang's [10] Xilinx's” [27]
Technology/supply voltage 65 nm/1.0V 90 nm/1.2V 90 nm 90 nm/1.0V 65 nm/0.45V 0.18 pm/1.8V -
FFT size 16-1024 512 512 128-2048 128-2048 64-1024 64-1024
Data type Float Fixed Fixed Fixed Fixed Fixed Float
BFP employment - No Yes No No Yes -
Wordlength 32-bit 12-bit 12-bit 10-bit 12-bit 10-bit 32-bit
IEEE 754 compatibility Yes No No No No No Yes
SQNR 139dB 35dB 57 dB - - 40.3dB 133 dB®
DCT support Yes No No No No No No
Gate count ~543k 290k - - 1100k - -
Area (mm?) 0.874+0.133  0.78 0.93 31 1375 3.2 -
Nor. Area (mm?) 1.003 0.407 0.485 1.617 1375 0.417 -
Clock frequency 500 MHz 310 MHz 324 MHz 40 MHz 1.25-20 MHz 300 MHz 395 MHz
Throughput (GS/s) 0.5 25 2.59 0.078 0.08 24 ~04
Execution time/Latency for 1024-point FFT (ps) 2.05/0.62 - - 25.6 12.8 - 2.6/11.4
Power (mW) 43.5-372.3 92.8 42 51.69-63.72 4.05, 8.55 382~507 -
Nor. FFTs per energy (1024-point) 131 - - 0.207 1507 - -

2 The area of external memory is about 0.133 mm?.

b The selected FFT IP type is radix-4, burst 1/O and single-precision floating-point with Bit/Digit reversed output ordering.

€ The value is obtained from the simulation experiments.
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dynamic range. Compared with previous work, improvements on
area-efficiency, resource-utilization, power-scalability and high
SQNR are exhibited, relatively. The latency of the processor is
about 1/4 of the R4SDF design for FFT computations without any
throughput loss. Logic synthesis results show that the power
consumption ranges from 43.5 mW to 372.3 mW for 16- to 1024-
point FFTs at 500 MHz, and the total hardware overhead is
equivalent to 543k NAND2 gates. Consequently, reasonable total
hardware overhead and power consumption are achieved in terms
of the proposed floating-point design. In addition, the proposed
reconfigurable processor can also be modified and be extended to
support longer-size FFTs/DCTs or other FFT-based orthogonal

transformations easily. Hence, the proposed reconfigurable pro-
cessor has good potentiality in scientific computing and high-
resolution imaging applications.
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