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Abstract—Drowsiness in drivers has become a serious cause of 

concern due to the occurrences of a large number of fatalities on 

the road each year. Lives of pedestrians as well as passengers are 

put to risk as drivers tend to fall asleep at the steering wheel. In 

the recent past, many researchers have paid attention to the 

problem of drowsiness detection since safe roads and safe driving 

are of paramount concern to all societies.  This research work has 

led to the development of several novel and effective methods in 

detecting drivers’ drowsiness. These include 1. Vehicle based 

methods, 2. Behavioral methods and 3. Physiological methods. 

Since wake-sleep is an intermediate state between two 

physiologically dissimilar states, physiological signals can define 

this transition more accurately when compared to approaches 

that fall in other categories. This paper focuses on the role of 

physiological signals in detecting driver’s drowsiness level. The 

proposed methods measure the physiological signals by means of 

various sensors, which monitor the driver’s physiological 

parameters on a continual basis.  Multiple sensors can be 

embedded on the driver or in the vicinity of the driver to capture 

vital signs indicating the onset of drowsiness. The aim here is to 

provide an insightful review of all such key approaches that fall 

in this category. This paper conducts a detailed study in which 

key physiological parameters that relate to drowsiness are 

identified, described and analyzed. Furthermore, the overall 

advantages and limitations of these physiological based schemes 

are also highlighted.  

 
Index Terms— Drowsiness, ECG, EEG, EOG, fatigue, GSR, 

sEMG, ST 

I. INTRODUCTION 

ROWSINESS can be defined as ‘the propensity to fall 

asleep’. The transition time from awake to sleep can be 

categorized in three stages: fully awake, Non Rapid Eye 

Movement (NREM) sleep and Rapid Eye Movement (REM) 

sleep. NREM and REM sleeps occur cyclically over the period 

of sleep.  NREM sleep can be defined as deep but dreamless 

sleep [1, 2]. Autonomic physiological activity is found to be 

very low in this sleep state. NREM sleep covers 75 to 80 

percent of total sleep time. NREM sleep is also known as 

slow-wave sleep. The remaining 20 to 25 percent period is just 

 
 

REM sleep. Sleep episode initializes with NREM I, lasts for 1 

to 7 minutes and contributes 2 to 5 percent of total sleep. This 

is actually a shift from awake to sleep, also known as Sleep 

Onset (SO) [3], commonly termed as drowsiness.Driver 

fatigue leading to drowsiness has been identified as one of the 

major causes responsible for serious road fatalities.   

 In a report of US National Highway Traffic Safety 

Administration, it is found that drivers’ drowsiness results in 

1,550 deaths, 71,000 injuries and $12.5 billion losses in 

revenue every year [4].  In the state of Victoria in Australia, 

almost 300 injuries and 50 deaths are caused by drowsiness 

each year. Research that leads to the development of robust 

and effective drowsiness detection system is crucial to prevent 

impending accidents due to driver drowsiness. Various 

physiological activities during driving such as the activities of 

central nervous system from ElectroEncephaloGram (EEG) 

and ElectroOculoGram (EOG), activities of autonomous 

nervous system from ElectroCardioGram (ECG), Skin 

Temperature (ST), and Galvanic Skin Response (GSR) and 

neuromuscular activities as ElectroMyoGram (EMG) are 

observed and examined to differentiate drivers’ drowsiness 

from wakefulness. Sometimes these signals are combined 

together to upsurge the accuracy of the detection process. 

Many different technologies involving the use of novel types 

of electrodes have been proposed in recent past. From wet to 

dry electrodes, an upgradation has been observed. The widely 

used plating material for biofeedback sensors is silver/silver 

chloride [5]. Beside this, gold, stainless steel and a mixture of 

silver/silver chloride, aluminium, gold/gold chloride, nickel 

and titanium are being used in current sensor technologies [5]. 

There are two types of bio electrodes: one is wet, which 

requires electrolytic gel to make the surface act as a conductor 

and the other is dry. Wet electrodes are appropriate for clinical 

applications as it causes discomfort in real world monitoring. 

Thus dry electrodes are widely being used in drivers’ fatigue 

related studies [6]. A list of commercially available biosensors 

has been given in Table I. This paper investigates the role of 

the physiological measures in drowsiness detection. To the 

best of our knowledge we have not come across any previous 

work that has discussed key physiological parameters or 

markers such as Heart Rate Variability (HRV), and the 

spectral components of HRV, the EEG band components 

(delta, theta, alpha, beta), EEG entropies, blink amplitude and 

frequency, PERCLOS, SEM of EOG, EMG and GSR 

amplitude and ST, their association (positive/negative) to 

drowsiness, and the overall effectiveness of such measures as 

well as challenges present in the use of these schemes. The 

variations in physiological parameters and their effect on 
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drowsiness, along with the overall advantages, and limitations 

of these schemes are discussed in detail.  

A.     Drowsiness and Fatigue  

In the investigation of [7], fatigue has been classified as 

mental fatigue and physical or muscular fatigue. The physical 

fatigue is the effect of continuous physical exertion, which can 

be induced from physical exercise or from tasks requiring 

physical labor. The exact cause of mental fatigue is not well 

defined. According to [7], mental fatigue is a kind of subtle 

feeling that creates unwillingness toward performing any 

activity. Conforming to the works of [8, 9], fatigue is the 

representation of tiredness, whereas drowsiness is a feeling of 

hardship in remaining awake. Tasks requiring continuous 

performance generate reluctance towards the act and degrade 

the capacity to perform the task over time. This continually 

increasing reluctance is a process known as fatigue. However, 

drowsiness is also caused by the factors associated with sleep 

such as duration of last sleep, sleep quality and the period of 

having been awake. It is pointed out in [10] that fatigue can be 

generated from tasks (workload and work period) as well as 

from sleep (sleep deprivation and time of last sleep). The sleep 

related fatigue and drowsiness are both influenced by the sleep 

factors and are used alternately in driving episodes. In our 

work these two terms have been used synonymously.  

B.    Factors Contributing Drowsiness  

Factors associated with drowsiness are the quality of sleep, 

the biological clock known as circadian rhythm, age, fitness, 

and liquor consumption, work circumstances such as noise, in-

car temperature and driving schedule, road environments such 

as monotony, car density and number of lanes [11]. It has been 

reported that people who are harmonized with circadian 

rhythm, often found themselves in a drowsy state during 

13:00-15:00 h and 1:00-6:00 h in a day [12]. Besides, driving 

at night increases the risk factor to about 3 to 6 times than day 

time driving as the propensity to fall asleep increases with 

reduced vision at night [13]. It is observed that monotonous 

driving severely impacts the driver's attentional stimulation 

and it rapidly induces drowsiness when compared to any other 

contextual features [14].  

Drivers often fail to assess their state of drowsiness, leading 

to fatality [15]. Falling asleep at the wheel reduces drivers’ 

awareness to their surroundings and affects their response 

time. Furthermore, drowsiness diminishes the decision making 

capability of the drivers [16].  

C.    Drowsiness Countermeasures  

Drowsiness countermeasure is the behavior adapted by the 

drivers to combat fatigue in a drowsy state. The most 

commonly used countermeasures are: stopping for a while to 

take a short nap or to rest or to eat, drinking coffee or energy 

drink, washing face, adjusting the ventilation or the airflow, 

smoking, diverting the thoughts, looking around the view, 

changing the driver, listening to the music/radio [17, 18, 19]. 

Moreover, asking the co-passenger to start conversation and 

texting or making a phone call are other well known 

countermeasures, though these activities have been identified 

as the direct causes of distraction during driving.  Beside the 

driver initiated countermeasures, there are rumble strips which 

start vibrating whenever the vehicle running off the road or 

weaving in and out of the lane. According to [20], preventing 

night and/or prolong driving can automatically reduce road 

crashes to a great extent. Moreover, providing possible 

treatment to drivers, who are suffering from various sleep 

diseases, can further enhance road safety. 

A list of commercially available drowsiness detection 

systems has been illustrated in Table II, where a preference is 

given to vehicle based measuring techniques over other 

techniques in detecting drivers’ state in real time [21, 22]. 

Vehicle based drowsiness detection technique works well in 

controlled environments such as driving simulators, but it may 

become inefficient in practical situations as the deviation of 

these parameters from their normal baseline values such as 

frequent lane changing or weaving in and out may not always 

be due to drowsiness. Rash driving and road surfaces can be 

other general causes, which have been highlighted in Table II. 

Moreover, behavioral measurement requires different image 

processing techniques, which are highly sensitive to lighting 

changes. Furthermore, inadequate background-foreground 

lighting such as illumination due to drivers’ spectacles or 

sunglasses, drivers’ motion, speed of the passing vehicles may 

result in poor image quality. 

II. PHYSIOLOGICAL METHODS FOR MEASURING DROWSINESS 

A typical block diagram representation of physiological 

signal based drivers’ drowsiness detection system is illustrated 

in Fig. 1. Since the physiological signals are collected from 

the electrodes as shown in Fig. 1, and electrodes have 

negligible internal resistance, the skin-electrode interface may 

induce motion artifacts [23]. Moreover, nearby power line 

also results in noise in the original signal [24]. These noise 

and artifacts have been removed by using median filtering 

technique [24], independent component analysis [25], low 

pass filtering [26, 27, 28] and band pass filtering techniques 

[29, 30, 31, 32]. After preprocessing, signal amplitude, mean, 

TABLE I  
COMMERCIALLY AVAILABLE DRY ELECTRODE SENSORS THAT 

ARE USED TO COLLECT PHYSIOLOGICAL SIGNALS 

Physiological 

signals 

Commercially available dry electrodes 

EEG MindWave Headsets, Flex Sensors, Drypad Sensors, 

Imotive Headset, NeuroSky's Dry Sensor, Quasar 

Sensors 

ECG Alivecor System and ECG Check, EPI mini, 

Ambulatory ECG, Omron, Flex Sensors, Drypad 

Sensors, NeuroSky's Dry Sensor, Quasar sensors 

EMG NEURONODE, SX230, Trigno™ Mini Sensor, 

NeuroSky's Dry Sensor, Quasar Sensors 

EOG NeuroSky's Dry Sensor, Comnoscreen, Google glass, 
SMI Eye Tracking Glasses, ASL Eye Tracking Glasses 

GSR Empatica wristband, Shimmer 3, Grove – GSR 

ST MAXIM30205, YSI 400 Series Temperature Probe 

 



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2807245, IEEE Sensors
Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

3 

median, standard deviation, signal entropies are calculated as 

time domain features [32, 33]. To extract frequency domain 

features, Discrete Fourier Transform (DFT) [26], Fast Fourier 

Transform (FFT) [27, 34, 35], Discrete Wavelet Transform 

(DWT) [33, 36] and Wavelet Packet Transform (WPT) [37, 

38, 39] are common in previous works. The parameters are 

usually classified into alert and drowsy states data. If the 

recent data is closer to the alert feature set, the epoch is termed 

as an alert state, otherwise it is classified as a state of 

drowsiness. The distance between the current state data and 

the estimated data is measured by probabilistic Bayesian 

network [11, 26] and various distance matrices such as 

Mahalanobis distance [27], Artificial Neural Network (ANN) 

[29, 33, 36], clustering algorithms such as Fuzzy clustering 

[34, 38, 39] and K Nearest Neighbors (KNN) [37], Support 

Vector Machine (SVM) [31, 32, 40]. Whenever, the current 

state data is close enough to the drowsiness baseline data, the 

driver is considered to be drowsy and a visual as well as an 

audible alarm is sent to alert him/her. Such physiological 

features, which have been used to detect drivers’ drowsiness, 

are discussed in detail in the following sections:  

A.    ECG 

The ECG electrodes are used to collect ECG signals from, 

which we can obtain feedback on critical parameters that 

relate to Heart Rate (HR), Heart Rate Variability (HRV) or R-

R Interval (RRI), and respiration rate or breathing frequency. 

Each of these is closely related to drowsiness [41].  

 
 

Fig.1. Block diagram representation of a typical physiological signal based drivers’ drowsiness detection system using EEG sensors. 

TABLE II  

COMMERCIALLY AVAILABLE DROWSINESS DETECTION TECHNOLOGIES, CURRENT FEATURES AND FUTURE CHALLENGES 

Current 

Technologies 

Manufacturing 

Company 

Monitoring 

Device 

Detection 

parameters 

Warning 

system 

Detection 

category 
Important features Challenges 

Driver Alert 

Control 
 

Ford Camera 
Lane 

position 

Audio-

vibration. 

Vehicle based 

measure 

1. A reverse steering is 
applied to direct the 

vehicle back into the 

lane 

1. Apart from 

drowsiness, road side 
obstacle and rash 

driving are the other  

two main reasons of 
lane deviation 

Driver 
monitoring 

system 

Toyota 

Charge-

coupled 

camera 
(CCD) 

Eye tracking 
and head 

motion 

Audio 
Behavioural 

measure 

1. Advanced Obstacle 

Detection (AOD) 

System pushes the 
brake automatically by 

tightening the seat belt 

during the chance of 
forward collision 

1. Not feasible when 

the driver wears 
sunglasses or contact 

lenses  

2. Nodding off has 
been considered as 

the final stage of 

drowsiness when the 
driver falls asleep at 

the steering wheel 

3. AOD system 
lessens forward 

collisions, but no 

prevention has been 
offered if the driver 

in the rear vehicle 

falls asleep 

Attention 

Assist 
Mercedes-Benz 

Sensor on 

the 

steering 
column 

Steering 

wheel 

movement 
and speed 

Audio-visual 
Vehicle based 

measure 

1. Individual driving 

profile is created during 

the first few minutes of 
drive to be used as 

reference 

2. Driver’s behaviour, 
road surface, weather 

and period elapsed 

behind the wheel have 
been taken into account 

to check whether the 

errors are due to 
drowsiness or not 

1. Apart from 

drowsiness other 

factors such as side 
winds, road bumps 

and signal indicator 

may cause steering 
wheel movements 

Driver 
Fatigue 

Detection 

Volkswagan 

Sensor on 

the 

steering 
wheel 

Steering 
wheel 

movements 

Audio-visual 
Vehicle based 

measure 
 

1. Different driving 

styles and road 

surfaces are the 
primary challenges 

that inhibit the 

implementation of 
this system 

Driver Alert 
Control 

Volvo 

Camera 

and sensor 

for 
steering 

wheel 

movement 

The distance 
between the 

road line 

marking and 
the car 

Audio-visual 
Vehicle based 

measure 

1. Lane departure 

warning system 

prevents single vehicle 
running off the road 

crashes as well as head-

on collisions 

1. Good lighting for 

the visibility of lane 
marking is required 

2. Driving behaviour 

may not influenced 
by fatigue for 

professional drivers 
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1) Heart Rate  

HR can be defined as the number of heart beats per minute 

(bpm). A reduction in HR is observed during long duration 

night driving according to [42]. Mental and physical tasks as 

well as emotions and physical exertion deeply affect HR [43, 

44].  The work in [3] performs an experiment on 34 volunteers 

of different age groups that include subjects who are normal as 

well as those who suffer from a variety of sleep diseases. The 

authors observe a decreasing trend of HR with the induction of 

fatigue for normal subjects and patients having various sleep 

disorder. A reduction in HR is also investigated in the works 

of [41, 45, 46] when moving from awake to drowsy state. 

2) Respiration Rate or Breathing Frequency 

Respiration rate or breathing frequency is the number of 

breaths inhaled and exhaled per minute. The work in [41] 

obtains a link between respiration rate and drowsiness. 

According to the authors, respiration rate starts to fall from the 

normal rate, while fatigue initializes and sets in and continues 

to fall until sleep onset. However, there is no consensus on 

this. For example, the experiment conducted in [3] on 34 

volunteers could not find any changes in respiratory cycle, 

while drowsiness sets in.  

3) Heart Rate Variability   

Another widely used ECG parameter is HRV, which can be 

defined as the variation in time interval between two 

consecutive heart beats. This beat-to-beat interval is also 

known as R-R Interval or simply RRI. 

Activities of Autonomous Nervous System (ANS) alter in 

stress, fatigue and drowsy states. These activities of ANS can 

easily be described by HRV [47]. There are many studies in 

literature based on HRV and power spectrum of HRV. 

Researchers found a link between mental workload and HRV 

from a large number of experiments [48, 49]. These 

experiments show a negative correlation between workload 

and HRV and as workload increases, a reduction in HRV is 

perceived. The work did not find any significant change in HR 

during the test. The work of [49] also observes a reduction in 

HRV with the increasing load. However, this study contradicts 

the results presented by previous work in terms of HR. They 

perceived an increased HR with increasing load. The 

inconsistency in the variation of HR with workload has later 

been clarified in [50]. There are two categories of workload 

that are identified and described: one is heavy physical-light 

mental and the other one is light physical-heavy mental 

workloads. Finally, it is found that HR increases with physical 

workload, whereas, HRV reduces. 

In addition to HRV alterations, the Power Spectral Analysis 

(PSD) of HRV is significant in this study as well. The HRV is 

decomposed into three frequency bands: 

a) Very Low Frequency (VLF) is normally in the range from 

0.008Hz to 0.04Hz [45]. 

b) Low Frequency (LF) varies from 0.04Hz to 0.15Hz. 

c) High Frequency (HF) varies in the ranges from 0.15Hz to 

0.5Hz. 

The power in the LF band is primarily associated with 

sympathetic nervous system. However, it is further influenced 

by the parasympathetic activation, whereas HF band power is 

influenced by only the parasympathetic stimulation. The 

sympathetic nervous system remains active in tense state, but 

parasympathetic action upsurges during relaxation. Thus, an 

increase in the activity of sympathetic nervous system as well 

as declining levels of activity of parasympathetic nervous 

system defines wakefulness [47]. Similarly, drowsiness can be 

characterized by the decreased amount of sympathetic and an 

increased level of parasympathetic activity. 

However, subjects who are in sleep demand state but trying 

to remain active show an upsurge in LF band power due to 

sympathetic stimulation. To depict this certain observation 

adequately, low frequency to high frequency bands power 

ratio (LF/HF), known as sympatho-vagal balance need to be 

measured at times [3]. It is explained in [45] that a drop in 

LF/HF is observed prior to falling asleep (FA) as a symbol of 

losing alertness. However, an upsurge in LF/HF is observed 

sometimes after full sleep, which reflects the hardship of 

driver fighting drowsiness. 

A total of 34 patients are studied in the experiment 

conducted in [3], wherein these patients have broadly been 

classified into three groups. Normal patients with no sleep 

abnormality, Obstructive Sleep Apneic (OSAS) patients, and 

patients having a variety of other sleep disorders so as to 

check out the deviation of HRV with SO. In these 

experiments, a significant 2.5 fold decrease in VLF power 

from its initial baseline value is found in all of the above 

mentioned groups just 10 minutes before sleepiness. No 

changes in LF power spectrum is found for OSAS group, but a 

steady decay is noticed in the other two groups (p<0.05). 

Again the LF/HF reduces significantly for all throughout SO, 

especially 1-2 minutes after drowsiness sets in. Though 

discrimination in the level of variation in ANS is observed, the 

trend remains the same when the power level of the frequency 

components of HRV are changed as highlighted in preceding 

works. These results are further reinforced by studies 

conducted in [45] with 10 volunteers in the age range 22-40 

years and in [47] with 30 volunteers of in the age range 25-60 

years. 

Though many studies have been conducted in the recent past 

on each of these ECG parameters individually or in a 

combination, HRV currently gets the first priority to be used 

as an indicator of early fatigue detection. The main limitation 

of HRV is its instantaneous variation in observed time domain 

signal [3], which can be treated by the time frequency analysis 

of HRV as described in [51, 52]. It should also be noted that 

non-contact ECG measurement requires close proximity to the 

subject as highlighted in [41].  

B.    EEG 

Since, human brain is the center of any response to a certain 

stimuli, it is said that EEG signals are highly interrelated to 

vigilance, sleep and cognition, and therefore serves as a 

perfect tool in defining drivers’ drowsiness on board [53, 54, 

55, 56]. The parameters that are common in detecting drivers’ 

drowsiness are the EEG spectral power (delta, theta, alpha and 

beta bands), the amplitude and latency of the third and highest 

positive peak (P300) of Event Related Potential (ERP) and the 

last and final one is the EEG signal entropy. EEG signals are 

taken basically from different positions of the brain with a 

view to locating the right position on scalp that gives optimal 
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results in drowsiness detection. 

1) EEG Spectral Power   

After the frequency transformation of EEG signals, we 

obtain four basic EEG frequency components, which show the 

electrical activity of brain in terms of rhythms. Due to a high 

inter personal variability, no specific frequency limits of these 

EEG spectral band components has been found in the 

literature [57]. The defined frequency ranges of the EEG 

bands in most of literature are as follows: 

a) Delta band comprises of frequencies from 1Hz-4Hz. 

b) Theta band spectrum falls between 4Hz-8Hz. 

c) Alpha band frequency spectrum lies in 8Hz-12Hz. 

d) Beta band contains the frequency range of 12Hz-18Hz, 

[58]. 

Power in the beta region is significant all through the 

cognitive task demanding high levels concentration [58]. 

Decreasing alertness results in a gradual rise in alpha band 

power and this continues to steadily increase as drowsiness 

gradually sets in [59]. The power in theta band is found in the 

primary phases of sleep, while alpha band power almost 

flattens immediately after this wake-sleep alteration. The 

power for delta band is used to classify brain activity in 

intense sleep condition [1]. The probability of having delta 

frequency power in wakeful state is almost zero [60]. 

To establish a correlation between drowsiness and EEG 

band power, an experiment has been conducted on 16 healthy 

subjects in the age range 20-35 years on a driving simulator 

with 33 EEG channels in [25]. Their test results reveal that 

power in the range of 8-13 Hz (alpha band) increases with the 

driving time and so also the driving errors. The works in [34, 

61, 62] also observe a similar increase in EEG alpha power 

level while drowsiness sets in. Beside alpha power, an 

increase in spectral power in theta region is perceived in [34]. 

The scalp site for collecting EEG data is another widely used 

technique. The experimental results of [25] have concluded 

that the positions of electrodes are critical when collecting the 

EEG data from the subjects. The study perceives that the EEG 

alpha power at central to occipital lobes can be used as an 

appropriate drowsiness indicator for all subjects who have 

participated in this experiment. A steady increase in alpha and 

theta spectra power at occipital region is observed with an 

accuracy of about 82.8% in a 20 minute driving task of [27]. 

The experiment described in [58] has generated a database of 

12 male volunteers within the 22-27 years age range. This 

analysis reveals an overall decrease in beta band power in 

frontal, central and temporal (p<0.05) regions after a 120 

minute driving task.  In addition to this, a significant increase 

in alpha (central, occipital, parietal and temporal) and theta 

(frontal, central and occipital) (p<0.05) power levels is found 

throughout the task. The experiment also reveals that alpha 

power follows a slightly reduced trend after a sharp increase, 

while theta power continues to steadily increase. Occipital 

alpha power alone has been used in the works of [61, 62]. 

According to [61, 62], it is the occipital cortex, which controls 

drivers’ level of alertness. 

The work in [63] measures the temporal and parietal theta, 

alpha and beta power and obtains 90% accuracy in mental 

fatigue detection system. The parietal and occipital regions are 

utilized to measure the alpha and theta spectra power in the 

experiments of [34]. The work in [64] finds the frontal alpha 

and theta power as the most appropriate factors to monitor and 

therefore label them as most preferred drowsiness detectors 

with an accuracy of about 81%. Though there are a variety of 

opinions and experimental results on selecting appropriate 

EEG scalp topology for the purpose of drowsiness detection, 

the rise in spectral power in alpha band at occipital region has 

been found to be the classic change of EEG signal in 

drowsiness [61, 62]. 

 EEG alpha spindle, which is a short burst from 0.5-2 

seconds in alpha band, has been detected as another objective 

indicator of fatigue or drowsiness [65]. Alpha spindle activity 

has been observed by [66] in car drivers during drowsiness. 

2) ERP  

An ERP is the response of brain to a certain stimuli, 

cognition or motor event [67]. Beside EEG band power, ERP 

has been used in classifying the brain activity with operator 

performance from alertness to mental workload, in fatigue 

state to drowsiness and in various phases of sleep for more 

than 30 years [68]. In particular, the amplitude and latency of 

P300 of ERP have been of interest to the researchers, when 

dealing with drowsiness. P300 is the third and highest positive 

peak of ERP. The amplitude of P300 indicates the quantity of 

available cognitive resources, while the latency reflects the 

rapidity of response to a certain event [69]. 

It is evident from the experiment of [68] that P300 can 

replicate the mental task irrespective of motor stimulus.  An 

inverse relation is noticed between the amplitude of P300 and 

mental workload, while carrying out an experiment on 20 

subjects within an age range 20-33 years (p<0.001). 

Furthermore, the investigation of [58] reveals that the latency 

of P300 increases, while the amplitude reduces after a long 

duration driving session. The induction of drowsiness reduces 

alertness, thereby reducing the amplitude of ERP. Longer 

reaction time is another consequence of losing awareness.  

3) EEG Entropy (En)  

Another recent and interesting parameter of EEG signal is 

Entropy (En), which can be defined as the irregularities in the 

EEG wave patterns. The greater the degree of uncertainty, the 

higher is the EEG entropy. Reduction in entropy results in 

drowsiness as EEG series tends to be uniform, while losing 

alertness. According to [33], when the subjects (20 male 

subjects in the age range from 20-35 years) are drowsy, an 

almost regular pattern in the EEG waveform is observed, 

which conversely reduces the entropy. A  variety of entropy 

calculations are performed based on a wide range of 

parameters such as spectral entropy, approximate entropy, 

sample entropy and fuzzy entropy all of which are negatively 

correlated with drowsiness and commonly used in EEG based 

drowsiness estimation [70]. According to [70], fuzzy entropy 

based EEG analysis in drowsiness detection gives an accuracy 

of about 93.50% over 12 volunteers with an average age of 

21.5 years, which is the highest among all other entropy based 

drowsiness detection techniques. 

Though the EEG signals are most accurate and reliable when 

compared to other physiological signals in detecting 
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drowsiness, placing electrodes to collect EEG sample data 

may cause inconvenience to the subject [47]. Moreover, due to 

its small amplitude, sampling the original EEG signal from 

noise becomes difficult [25, 60]. 

C.    EOG   

EOG signal is the biofeedback taken from the potential of 

the electric field created between the cornea and the retina and 

it typically varies from 0.05-3.5 mV [71]. Any kind of eye 

activity such as eye blink, and eye movement alters this 

potential difference, thus resulting in a modification in EOG 

signal [72, 73]. A blink actually happens when the upper lid 

touches the lower one and lasts for about 200-400 ms [72]. If 

eye remains closed beyond 0.5 seconds then this is known as 

microsleep [74]. 

Naturally, 15-20 blinks per minute are observed in relaxed 

and calm state. It drops down to 3 blinks per minute in any 

task requiring tremendous concentration, and this in turn 

reduces the blink frequency as well [72]. Blink frequency, 

blink amplitude, blink duration, delay of lid reopening and 

PERCLOS are generally eye lid movements based indicators 

of drowsiness. On the other hand, Rapid Eye Movement 

(REM) and Slow Eye Movement (SEM) are under eye ball 

based EOG alteration. 

Many measuring parameters have been analyzed to detect 

drowsiness in the domain of eye lid movements based 

drowsiness detection. These are: 

1) Blink Duration  

Blink duration can be defined by the period from the 

beginning to the end of a blink [71]. It is represented in ms. 

2) Blink Frequency 

The blink frequency is the number of blinks per minute 

(blinks/min) [71]. Any increase in blink frequency indicates 

drowsiness being induced, as it is hard to keep eyes open in 

this state [75].  

3) Blink Amplitude  

Blink amplitude is the electric potential measured by the 

EOG electrodes during a blink. The amplitude of typical blink 

in EOG varies from 100-400 µV [71]. 

4) PERCLOS 

The proportion of time in a minute that the eyes remain at 

least 80% closed can also be a drowsiness indicator and is 

known as PERCLOS [60].  

5) Delay of Lid Reopening  

It is the duration from full closure to the start of lid 

reopening [74]. A few ms delay of reopening is typical in 

wakefulness, while increases during drowsiness and extents to 

about several hundred ms in microsleep. 

6) Eye Ball Movement 

The eye ball movements are due to the dislocation of eye 

ball from its point of fixation [76]. Eye ball movements result 

in a change in EOG amplitudes collected by the horizontal as 

well as vertical electrodes.  

Considering the blink rate and blink duration, drowsiness 

has been divided into four stages such as awake, reduced 

vigilance, fatigued and sleepy in [77]. Increased blink 

frequency during the transition from wakeful state to a state in 

which there is reduced vigilance was perceived, while 

performing an experiment on 11 volunteers using a driving 

simulator. In addition, it was observed that drowsiness was 

characterized by long duration blink along with increased 

blink frequency. In the study of [78], drowsiness has been 

divided into three stages in terms of EEG band power, blink 

parameters and eye-ball movements. According to this study 

the first stage towards drowsiness is reduced vigilance, which 

can be represented by increased EEG theta band power and 

decreased eye (eye lid and eye ball) movements. Sleep 

propensity is the second stage and can be characterized by 

extended blink duration and longer lid reopening. Increased 

blink rate defines the final stage in which driver almost loses 

the capacity to react to the traffic events.  The impacts of no 

reactions are: over stepping the red light signal, dangerous 

steering manoeuvres (over or under steering), veering off the 

road as well as weaving in and out of the lane. 

In order to determine the relationship between these eye lid 

movements based parameters and drowsiness, an experiment 

is conducted in [74] involving 129 among 138 participants 

(mean age 33.4±11.5 years). The outcome is longer blink 

duration (mean and median blink duration) when gradually 

moving from alert to the drowsy state. A gradual delay in lid 

reopening is also perceived with increasing levels of 

sleepiness. Extended duration is typical in microsleep [79, 80]. 

Further consequence is the reduction in the blink amplitude 

[60]. PERCLOS is evident in the works of [81, 82, 83, 84, 85] 

for the period of drowsiness. PERCLOS is often noticeable in 

a situation, where the driver almost loses control over himself 

and fails to respond to the ongoing traffic situations in a 

spontaneous and appropriate manner. Thus, PERCLOS based 

detection technique lead to situations that are accident prone 

[60]. Moreover, all drowsy drivers do not show prolonged 

periods of lid closure all through the driving episode [74]. 

If we now examine the performance of eye ball movement, a 

slower movement of eye ball is observed during drowsiness 

than in wakeful state [76, 86, 87, 88, 89, 90]. Some studies 

have utilized these movements, and have characterized sleep 

into different stages [91, 92, 93, 94]. It is apparent from the 

previous work done in this area for us to conclude that Slow 

Eye Movements (SEM) can be a reliable indicator of 

drowsiness. 

To check the validity of eye ball movements in drivers’ 

drowsiness detection, the work in [95] has conducted an 

experiment on 11 volunteers between the age group of 26 to 

40 years. A delay is observed in participants’ response time in 

avoiding collisions while they are drowsy, and SEM is 

common in all participants during this time. The findings also 

reveal the presence of SEM in 84.6% of the accident cases that 

occur under drowsy driving (p<0.01). This phenomenon is 

defined as “thalamic gating”, and it actually prevents the 

communication of sensory information between the thalamus 

and cerebral cortex, thereby causing sleep onset while eyes 

remain open. 

When collecting EOG data, a particular emphasis is given to 

the placement of EOG electrodes [95]. The farther the distance 

of the electrodes from the eyes, the weaker is the strength of 

the received EOG signal [24]. Again attaching electrodes near 
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eye disturbs the driver, and this is very similar to the 

disturbance caused by the EEG electrodes. Double blink, 

which implies full blink immediately following a half blink, 

presents a challenge, when using EOG method [24]. 

Furthermore, differentiating vertical eye ball movements from 

the normal eye blink is also very tedious task. Eye ball moves 

upwards while a blink occurs and causes a change in electric 

field, which is measured by the vertical EOG electrodes. 

Furthermore the same vertical electrodes are also employed to 

sense the potential difference due to the vertical movements of 

the eye balls. Thus vertical movements of eye ball may result 

in artifacts in blink based drowsiness detection and vice-versa. 

In addition, blink behavior based drowsiness detection may 

not be suitable for mentally imbalanced people [60] as their 

eyes remain wide open even in drowsy state or they may 

exhibit symptoms relating to drowsiness in a non- drowsy 

state e.g. increased number of blinks with long duration in 

awake state.  

D.    EMG 

An EMG is the electrical signal generated from the muscle 

contraction [96, 97, 98]. In widely used non-invasive EMG 

collection methods the electrodes commonly referred to as 

sEMG are placed on the surface of the skin. Much of the 

previous work in this area has found a link between muscle 

fatigue and EMG amplitude since the amplitude in this context 

reflects the strength of the muscles. According to the results 

furnished, the amplitude decreases progressively with fatigue. 

Some previous works [99, 100] have observed a shift in center 

frequency component towards lower spectral band during 

muscle contraction. While performing an experiment on 11 

rower athletes, where electrodes are placed on Posterior 

Deltoid, Vastus Lateralis, Biceps Femoris and Biceps Brachii, 

the muscles that are directly involved in rowing [101], a 

similar center frequency shift is perceived at the time of 

fatigue. This muscular fatigue or sEMG analysis is later 

extended to drowsiness detection and some substantial work 

has already been done in last decade in order to establish a 

correlation between the two [30, 37, 102, 103, 104, 105]. 

The main disadvantage of using EMG signals underlies in 

its random and complex nature [106]. Furthermore, the 

collected signals may alter due to the structural and biological 

TABLE III 
PHYSIOLOGICAL PARAMETERS ASSOCIATED WITH DROWSINESS, THEIR RELATIONS WITH DROWSINESS, LIMITATIONS 

AND DETECTION PERFORMANCE 

Physiological 

signals 

Amplitude/frequency 

Range 

Correlation of physiological 

indicators with drowsiness/fatigue Limitations Detection accuracy 

References in 

chronological 
order Positive Negative 

ECG 

 

50µV-50mV [41] 

0.05Hz-100Hz 

 Heart Rate 
 Detection rate 
is sensitive to 

non-intrusive 

ECG proximity 
sensors 

96% [47] 
30 volunteers  

41-52 
HRV  

HF VLF, LF, LF/HF 

 
Breathing 

Frequency 

EEG 
 

2µV-10µV [41] 

10Hz-2kHz 

θ and α Bands 

Power 
 β Band Power 

The low 

amplitude of 

EEG signal 
makes it 

difficult to 

separate from 

noise  

96.7%  [34] 

6 volunteers 
53-70 

P300 Latency  P300 Amplitude 

 Entropy  

EOG  
0.05mV-3.5mV [71] 

0.1Hz-100Hz [41] 

Blink 

Duration 
 

Detection rate 

depends on the 

placement of 
EOG electrodes  

81.7% [111] 

20 volunteers 
71-95 

Blink 
Frequency 

 

Lid 

Reopening 
Time 

 

 Blink Amplitude 

PERCLOS  

 Eye Movements 

 EMG 
20µV-10mV [41] 

10Hz-10kHz  

 EMG Amplitude 
Muscle 

amplitude may 

alter due to 
muscular 

biology  

94% [30] 

right anterior deltoid 
4 volunteers  

96-106 
Centre frequency shift towards 

lower frequency region 

GSR 
10kΩ-10MΩ [108] 

1.76V-0.14V 
Skin 

Resistance 
Skin Conductance 

 
Very much 

sensitive to 

ambient 
temperature 

 

80% [31] 
13 volunteers 

107-109 

ST 89.60 F-950F [110]  Skin Temperature  110 
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properties of the muscle [101]. 

E.    GSR 

GSR is the skin conductance measured from the skin, which 

alters due to the sweat-gland secretion. GSR is also termed as 

Electro Dermal Activity (EDA), Electro Dermal Response 

(EDR), Psycho Galvanic Reflex (PGR), Skin Conductance 

Response (SCR), and Skin Conductance Level (SCL).  

Secretion of sweat gland is controlled by the sympathetic 

arousal of ANS. When the activity of parasympathetic nervous 

system is triggered during drowsiness, sweating reduces, 

thereby increasing the skin resistivity, and reducing the skin 

conductivity and vice versa [37, 107, 108, 109]. The basic 

problem associated with GSR is its high sensitivity to 

atmospheric temperature [107].  

F.    Skin Temperature 

The Skin Temperature (ST) measurement techniques 

measure the temperature of the skin surface, the mean value of 

which is 32
0
 C-35

0
C (89.6

0
 F-95

0
F) for healthy human [110]. 

On the other hand, the core body temperature is the internal 

operating temperature of the body organs. The skin 

temperature (ST) is the direct result of thermoregulation 

system, which is primarily responsible for the maintenance of 

the body temperature in humans within a certain range. 

Drowsiness has been classified into five levels such as awake, 

slightly drowsy, drowsy, very drowsy and extremely drowsy 

based on the ST in [28] by measuring the Nasal Skin 

Temperature (NST), the left and right Forehead temperature 

(FHT) and the left and right Tympanum Temperature (TT). 

The NST and FHT reflect the skin temperature, whereas the 

TT represents the core temperature. Among the three 

temperature variables, the experiment reveals an indicative 

decrease in observed FHT values when transitioning from 

drowsy to extreme drowsy state. The FHT starts to fall as 

subjects become drowsy, and the fall continues until an 

extreme drowsy state is reached. 

G.    Hybrid techniques 

All Physiological parameters identified and explained above 

have an impact on drowsiness. Moreover, each parameter has 

certain advantages and limitations over the others. Depending 

on a single physiological parameter to detect drowsiness could 

lead to misclassifications and may impact the detection 

accuracy. Hence, to increase the success rate of detection 

system, some studies have utilized a combination of several 

physiological indicators to assess drowsiness. The EEG band 

power, RRI, HRV spectral power, respiration rate, right/left 

Anterior Tibialis muscle power are combined together in the 

experiment of [3], whereas the work in [32] utilizes EEG 

energy, sample entropy, EEG band power along with HRV 

spectral components to detect drowsiness. The GSR and EMG 

signals are both analyzed in the study of [37]. HR, HRV, blink 

rate, and breathing rate altogether have been used in the work 

of [41]. HRV and breathing frequency are used in [47]. In 

addition to EEG spectral power, [58] utilizes the ECG entropy 

and amplitude of P300 in fatigue detection. The work in [85] 

has combined the EEG band power and PERCLOS to detect 

fatigue or drowsiness. 

A summary based on this review has been depicted in Table 

III, illustrating the amplitude and frequency variations of the 

physiological signals and the correlation between key 

physiological parameters and drowsiness. Table III 

demonstrates how each nominated physiological parameter 

alters in the presence of drowsiness and their limitations. It 

also highlights the difficulty in measuring these parameters 

due to the underlying challenges in collection, sampling and 

processing of physiological signals in real time situations. It 

also throws light on detection accuracy of the physiological 

measure based detection system. From Table III, it can be 

inferred that with the initialization of drowsiness, the HR falls 

from its normal value, and the HRV increases. Furthermore 

longer duration blink as well as increased blink frequency is 

observed with respect to wakefulness. Reduced muscular 

potential indicates the induction of fatigue while further 

reduction in muscle amplitude is an indication that sleepiness 

is taking over. It has been found from this review that among 

all physiological techniques, EEG power spectrum analysis is 

the most common, and frequently used technique to detect 

drowsiness. An increase in EEG alpha band power in occipital 

region is a primary indicator of drowsiness setting in. The 

highest success rate of EEG spectral power based drowsiness 

detection technique is almost 97% over 6 subjects, and is the 

most accurate when compared to other physiological 

measures,. The basic problem associated with EEG based 

drowsiness detection system lies in the collection of EEG data, 

where electrodes are required to be placed on the head. This 

whole setup is not feasible in real life driving scenario due to 

its complex arrangement, and may even prove to be a 

hindrance in driving. To reduce the intrusiveness, in-ear EEG 

electrodes are currently available in the market [31]. 

The review also finds the spectrum analysis of HRV as 

another gold drowsiness detector since the success rate of 

HRV based drowsiness detection is found to be around 96% 

over 30 subjects. The key observation is the significant 

reduction in LF/HF component, while drowsiness gradually 

sets in. The other components of HRV are the VLF, LF and 

HF powers. Though the ECG sensors/electrodes can be used 

in a non-intrusive way, the detection rate primarily depends on 

the accuracy of the sensors in close proximity to the subject. A 

similar problem arises while sampling the EOG signal, which 

gives a success rate of about 81% over 20 subjects in 

predicting drowsiness using long duration blinks, the typical 

objective measure of drowsiness. The sEMG and GSR signals 

can be collected in a less intrusive way, giving success rates of 

94% over 4 participants, and 80% over 13 participants, 

respectively. Human muscles may lose its strength due to 

reasons other than drowsiness, e.g. due to physical exercise, 

reduction in the sEMG amplitude, whereas, GSR and ST may 

largely be affected by ambient temperature. 

The primary experimental setup consists of a driving 

simulator, cameras to monitor driver’s behavior and data 

acquisition system. A typical virtual driving simulator has 

three major parts: simulator software, graphic user interface 

and 3D visual system as shown in Fig. 2. Participants who 
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have been selected to participate in driving experiments must 

fall under the age ranges from 18-65 years, not having any 

mental/physical disabilities, and must have valid driving 

licenses.  Some experimental work use only fully rested 

subjects, whereas in some other experiments participants can 

be fully rested, partially sleep deprived and fully sleep 

deprived [47]. A variation is also observed in driving period in 

virtual environment. A 90 minute session of test drive is 

common [30, 111], whereas, 2 hours of continuous drive with 

10 mins break after each hour is also a commonly found 

scenario [47]. Driving in a monotonous highway is typical in 

most of the previous works [30, 31, 34, 47]. Biggest difference 

is observed in selecting the number of participants [30, 31, 34, 

47, 111]. 

III. DISCUSSION 

If we now visualize the correlation among the critical 

physiological parameters of drowsiness by taking the vigilance 

state as reference, we can observe the EEG alpha band power 

is in its baseline value during this state. The state can be 

characterized by normal blinks (blink duration and blink 

frequency) with usual eye movements. During the vigilance 

state, the sympathetic nervous system remains active over 

parasympathetic stimuli, which maintains the ECG low 

frequency to high frequency power ratio (LF/HF) to a 

moderate level. This actuates the sweat gland secretion, 

thereby reducing the skin resistance. A drop in vigilance 

results in irregular occurrences of EEG alpha band power, 

accompanied by long duration blinks with little eye 

movements. The blink frequency remains the same but starts 

to increase with decreasing vigilance. While drowsiness is 

taking control of vigilance, the alpha band power begins to 

increase gradually. Longer blink duration with higher blink 

rate is observed. Moreover, eyes become steady in position. In 

the initial stages of lapses in vigilance, an increased level of 

LF/HF is observed as a result of the driver pushing hard to 

regain normal vigilance levels. As these lapses continue to 

occur more frequently in the drowsy state, a reduction in 

LF/HF is observed due to the continuous activation of 

parasympathetic nervous system. This in turn causes reduction 

in sweat secretion, giving rise to the skin resistance. Skin 

temperature falls throughout the process. Muscles are 

observed to be losing strength due to drowsiness, resulting in 

the reduction in sEMG amplitude. 

Physiological signals are found to be more accurate and 

consistent in detecting drivers’ drowsiness levels. However, 

there are still some issues that need to be urgently addressed. 

Real time physiological signal based drowsiness detection 

system is still not in commercial use due to the invasive nature 

of biofeedback sensors. These signals require bio sensors to be 

attached to the driver which may hinder the concentration of 

the driver. Moreover, attaching bio sensors impose some 

restrictions on the driver. For example, if EOG signal needs to 

be clearly detected, drivers are urged not to wear any kind of 

glasses, and moreover they are advised to restrain their 

movements as much as possible to avoid noise and distortions 

during the signal collection. Acquiring bio signal from driver, 

processing and analyzing the signal to ascertain the state of the 

driver, and finally sending out an alarm needs to be fast 

enough so that the detection system can generate an alert 

(early warning sign) before any accident occurs. Individual 

variability and human factors such as age, gender, experience, 

sickness (insomnia, fever, hypo and hyper tension, eye sight 

problem) make it almost difficult to model a real time 

physiological signal based drowsiness detection system. 

Again, real world driving challenges are very different from 

the virtual driving environment, where drivers are always 

trying hard to keep themselves awake to remain alert, which is 

unusual in virtual driving. As a result, drivers in virtual 

driving environment offer less resistance and tend to fall 

asleep easily. Another important factor is the car’s internal 

temperature, which has a great effect on drowsiness induction. 

However, if we consider a fixed in-car temperature to design a 

generalized drowsiness model, drivers have to maintain that 

temperature throughout the driving session, which is not 

feasible in real life driving scenarios as keeping the internal 

car temperature to a prescribed level throughout the journey 

may cause discomfort for the driver. 

Future research work can be carried out in two different 

ways by considering the following: 

A.     The EEG delta power, which is conspicuous in deep 

sleep stage, is still not taken into consideration in drivers’ 

drowsiness related studies. Only few experiments in the 

literature have confirmed the existence of EEG frequency 

components at 3Hz and 4Hz in drowsy state [57, 112], which 

provide evidences of the occurrence of EEG delta band power 

in this state. Thus future research can be directed if there is 

any incidence of EEG delta band power in this transitional 

state. 

B.    A detailed analysis of the role of EDA in drowsiness 

detection is an area of investigation that requires attention. 

Investigating the role of EDA could provide an opportunity to 

classify a variety of transitional states such as resting 

condition to mental workload, mental workload to mental 

fatigue and mental fatigue followed by drowsiness. This 

 
Fig. 2. Primary setup of driving simulator (FORUM8). 
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technique can also help define the general states of drowsiness 

such as early, middle and late. 

IV. CONCLUSION 

This paper presents a thorough review of proposals that 

currently use sensors to measure physiological signals in 

drowsiness detection. Though various methods exist to 

measure drowsiness, the focus of this paper is restricted to the 

physiological signals based drowsiness detection schemes. 

With the study and analysis of vast literature, we contribute in 

identifying key physiological parameters that characterize 

drowsiness, and describe them in some detail and strive to 

highlight their advantages and limitations from a practical 

perspective. In particular, emphasis has been given on the 

improvisation of the sensing materials such as silver/silver 

chloride, gold/gold chloride, titanium, nickel, aluminium and 

stainless steel material are popular as these sensors can be 

used without any conducting gel. Even though the dry 

electrodes help to collect physiological data during driving, we 

observe that the intrusive way of signal collection is still 

preferred, and is more commonly used.  The reason is the 

precision of the nonintrusive biosensor solely depends on how 

near/far it has been placed to the user. Apart of this, we find 

that the inter-individual variability is another big challenge 

that restricts the commercial use of physiological signal based 

drowsiness detection system, as generalization is the major 

problem here. Our study reveals that previous works do not 

adhere to a standardized experimental setting and as a result 

noticeable differences were observed in  sample numbers, age, 

gender, driving experiences, length of driving sessions, time of 

experiments and types of participants (normal, sleep deprived, 

partially sleep deprived). This lack of uniformity makes it 

difficult in comparing results from different laboratory 

settings. Furthermore, several experimental studies are needed 

in different countries to measure/monitor an individual’s 

physiological parameters to ascertain their impact under 

different conditions. 
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