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Abstract—Real-time Internet of Things (IoT) applications have
stringent delay requirements when implemented over distributed
sensing and communication networks in smart traffic control.
They require the system to reach a permissible neighbourhood
of an optimum solution with tolerable delay. The performance
of such applications mostly depends on the delay introduced
by the underlying optimisation algorithms, with the localised
computational capability. In this work, we study a smart traffic
control scenario - a real-time IoT application, where a group
of autonomous vehicles independently decide on their lane
velocity, in collaboration with road side units to efficiently
utilise intersections with minimal environmental impact. We
decompose this problem as an unconstrained network utility
maximisation problem. A consensus-based, constant step-size
gradient descent algorithm is proposed to obtain a near optimal
solution. We analyse the delay-accuracy trade-off in reaching a
near optimal velocity. Delay is measured in terms of the number
of iterations required before the scheduling operation can be
done for a particular tolerance. The operation of the algorithm
under quantised message passing is also studied. On contrary to
the existing methods to intersection management problems, our
approach studies the limit at which an optimisation algorithm
fails to cater for the requirements of a real-time application
and must fall back for a pareto-optimal solution, due to the
communication constraints. We use SUMO (simulation of urban
mobility) to incorporate the microscopic behaviour of traffic flows
to our simulations and compared our solution with traditional
and state-of-the-art intersection management techniques.

Index Terms—Distributed Optimisation, Autonomous Vehicles,
Intersection Management

I. INTRODUCTION

LARGE scale deployment of interconnected sensors and

actuators, blending seamlessly with the environment

around us, is an integral part of Internet of Things (IoT). [1].

Among few striking applications of IoT in industry are smart

transportation and logistics. Systems, where computing, com-

munication and control technologies are tightly integrated, are

broadly classified as cyber-physical systems (CPS). A detailed

study of information framework required for CPS, especially,

smart city related applications, can be found in [2]. CPS

requires data from sensor networks to be processed in real-time,

as they are associated with the control of physical systems. In

one way or another these CPS is going to drastically influence

our future. For example, intelligent transport systems (ITS)

will be developed, in which most of driving tasks will be

handled by the vehicles themselves. Efficiency of an ITS could
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be drastically increased by effective co-ordination among the

automated vehicles, which requires real-time communication

and data processing. To minimise the delay incurred in data

transfer, for such real-time applications, it is better to process

the data as close to the network edge. Thus, the traditional

cloud-centralised approach for data processing is not always

suited for large scale real-time applications. Thanks to the

advances in semiconductor technology, more memory and

processing power can be incorporated with distributed sensors,

enabling fog computing [3] bringing down the cloud to lower

layer.

This paper considers a smart traffic control setting, in

which autonomous vehicles and road side units collaborate

to maximise the efficiency of the intersection with minimal

environmental impact in-terms of fuel consumption. Rapid

change in traffic infrastructure, such as autonomous intersec-

tions, will become prevalent in future with increased penetration

of autonomous vehicles [4]. Even in present systems, a trade-

off between the throughput of the intersection and the delay

experienced by vehicles crossing it can be obtained by adjusting

the phase duration [5]. Further, for safe operation of such a

system, control operation should be taken by each system agent

within fraction of a second. For example, every vehicle in a lane

should reduce speed as soon as possible, if the vehicle in front

slows down for some reason. Let us define efficiency of an

intersection as the maximum number of vehicles it can handle.

Efficiency of the system can be increased by reducing the

minimum headway, which is the minimum time gap to be kept

between two crossing convoys for safety guarantee. The extent

to which minimum headway can be reduced depends mainly on

the accuracy of the calculated solution and the response time

provided for the vehicles to adjust to the calculated schedule. In

short, automated vehicles will have to attain global objectives

with acceptable latency, using limited local communication,

computing, and memory capabilities. Therefore, distributed

IoT algorithms must be developed, to reach at a predetermined

neighbourhood within a limited number of iterations specified

by corresponding applications.

In many practical real-time applications, as explained above,

global objective has to be solved collectively by agents which

have access only to their local data sets. Many problems

requiring distributed processing of large data sets can be posed

in the framework of convex optimisation [6]. For example,

the resource allocation subject to various constraints related

to fairness and efficiency have been formulated as network
utility maximisation (NUM) problems [7], where agents try to

optimise the global objective of maximizing aggregate utility.

The authors of [6] and [7] have analytically obtained the

convergence rate estimates for the corresponding asymptotically

converging algorithms, and explicitly characterised the accuracy
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of the generated approximate optimal solutions. Trade-off

between real-world factors like intersection throughput, delay

experienced by crossing vehicles, minimum headway can be

achieved by varying the delay-accuracy parameters of the

distributed optimisation algorithm. Moreover, in many real-

time applications such as transport and power systems, the

underlying network graph and channel conditions are often

time varying. It is thus worthwhile studying the effect of graph

and channel impairments.

In this work, we adopt a constant step-size, consensus

based distributed optimisation algorithm to obtain a near

optimal solution. Due to scalability and delay constraints

for real-time applications mentioned earlier, it is preferred

to solve the problem distributively, i.e., without assigning

any central node to collect and process the data from each

agent. Thus, the system of agents is forced to obtain the

global objective only using locally available data collected

from its neighbours. In every iteration, each agent must

perform an averaging and updating step. First, they collect

the estimates of system variables from its neighbours and do

weighted averaging to obtain an estimate of the current system

variable. Next, it updates its estimate of the system variable,

following a simple constant step size gradient descent on its

local objective function. Additionally, we formulate a smart

intersection management application using our algorithms and

compare them with traditional and state-of-the-art intersection

management algorithms. We use SUMO (simulation of urban

mobility) [8], one of the widely employed mobility simulators,

to mimic the microscopic behaviour of the traffic flows in all

our simulations.

This paper is organised as follows. A literature survey on

optimisation for real-time systems, intersection management

applications, vehicular communications, and traffic simulators

are given in Section II. Problem formulation for an inter-

section management application operating on centralised and

hierarchical network architectures formed by vehicles and RSU

is explained in Section III. Section IV briefly present our

developed analytical tools and their usage in the algorithm

design. Key results and the performance of the optimisation

algorithms as well as the overall traffic application is explained

in Section V. Section VI discusses the important observations on

results in detail, followed by concluding remarks in Section VII.

II. STATE-OF-THE-ART

This section explains the connection between delay-accuracy

trade-off for real-time applications and the underlying optimisa-

tion algorithm (including our algorithm). It also briefs the state-

of-the-art techniques in intersection management, vehicular

communication, and the existing traffic simulators.

A. Delay-Accuracy Trade-Off for Real-Time Systems

Authors of [9] analyse the performance of a distributed

averaging algorithm under uniform quantisation scheme. They

prove that either a quantised consensus or a cyclic oscillating

behaviour is obtained by the system in finite time depending

on initial conditions. Analysis of a distributed sub-gradient

algorithm operating under a zooming-in technique based

quantiser was done in [10]. A universal (quantisation scheme

independent) bound on the rate of exponential mean square

convergence is obtained by [11]. They analysed the primal-

dual algorithm, under quantised message passing between

agents and the system (bipartite graph topology) and obtained

a bound on the convergence for a class of quantisation schemes.

An extension of this work to a distributed system, imple-

menting consensus based, constant step-size, gradient descent

algorithm [12]. They explore the possibility of distributively

obtaining a near optimum solution under finite iterations for a

quadratic NUM problem.
Many of the literature discussed so far considers a totally

distributed/centralised scenario, where the computation load is

either evenly distributed or centralised at a single point. We

consider a hybrid scenario where computation is distributed

among a master node and a group of sub-nodes. While the

master node solves the master problem, utilising a simple

gradient-descent algorithm, the sub-problems are solved using

the algorithms developed in [12].

B. Intersection Management Application
Although traffic intersections are a relatively small part

of the road network, they account for a significant amount

of traffic accidents [13] and traffic delay. Hence, safe, and

efficient intersection management is always a prime concern

for traffic engineers. Since their appearance at the end of

19th century, traffic lights are used as a primary mode for

intersection management [5]. The efficiency and capacity of

a traffic network drastically increases, when the traffic lights

dynamically adapt to real-time traffic conditions. Thus, static

traffic light switching patterns gave way to dynamic traffic

signalling, which includes wide application of communication,

computation, and sensing technologies, to control the traffic

flow [14]. State of the art sensing techniques like inductive

loop, RFID, microwave radar, video image processor are placed

either on road or road side to sense the traffic conditions in

real-time. In most of the cases, sensed data are communicated

to the cloud and processed to obtain traffic flow predictions.

Finally, traffic lights or dynamic speed limits are controlled

in accordance with the predicted traffic conditions. The main

hurdle towards further improving the efficiency of such a system

is the communication delays and the inaccuracy in the sensed

data.
Authors of [15] do delay minimisation at a single lane one-

way intersection, in a mixed traffic of conventional vehicles

and connected vehicles, using V2I communication links. Their

approach found slight savings on delay (< 10%) at low traffic

intensities (1000veh./h) and the savings tend to decrease at

higher traffic intensities. Interestingly, this work and many

similar ones in intersection management utilise only the V2I

capability of autonomous vehicles to feed in and out data to a

centralised controller. On the contrary, our approach is to study

the effect of utilising the distributed computing and vehicle
to vehicle (V2V) communications on performance of such

applications.
In the near future, with the increasing penetration of au-

tonomous vehicles, cooperative intelligent transport systems (C-

ITS), where connection and cooperation between road users,
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infrastructure and control centre will be enabled by real-time

information exchange [13]. Cooperative intersection manage-

ment, where road users and infrastructure jointly optimise the

safety and efficiency of intersections through negotiations and

cooperation, will become an integral part of future C-ITS.

Unfortunately, most of the current style of implementations are

not designed to utilise the distributed sensing and computational

capabilities of autonomous vehicles.

C. Vehicular Communication

Various intelligent transport applications, broadly classified

into safety applications, efficiency applications and comfort

applications have varying communication requirements. A

succinct overview of state-of-the-art vehicular communication

technologies can be found in [16]. Intersection management

application falls under the category of traffic management

applications, which requires highly reliable, secure, short range,

low latency (< 100ms) communication. As suggested in [17],

wireless access in vehicular environments (WAVE) technology

satisfies these requirements under high mobility conditions. The

WAVE protocol stack is composed of IEEE 802.11p and IEEE

1609.x protocols. An overview of different transfer data rates of

802.11p WAVE standard can be found in [18]. Digital channel

satisfying 802.11p standards is used for both V2V and V2I

communication in this work. For our application, we selected 6

Mbps, BPSK modulated scheme with a coding rate of 1/2 for

V2I link. The scheme uses OFDM symbols that could transmit

48codedbits/symbol (24databits/symbol) with a maximum

symbol rate of 250symbols/second (6000/24). Similarly, for

V2V communication, we chose 24Mbps links with a coding

rate of 1/2 (which translates to 4 slave iterations per master

iteration). The overheads that may be caused by headers, control

bits, packet loss etc. are neglected here.

D. Simulators

A complete simulation of vehicular wireless network requires

an interplay between a mobility simulator and a network

simulator (or a combined version of both) [19]. Mobility

simulators like CORSIM, PARAMICS, VISSIM, AIMSUN,

SUMO etc. simulates the location, velocity and acceleration

of each vehicle that participates in the simulated scenario.

Whereas, the role of network simulators like ns− 2, ns− 3
or OMNeT ++ is to simulate the PHY and MAC layers of

the wireless network.

We choose SUMO (simulation of urban mobility) [8], one of

the most widely employed mobility simulators , to mimic the

microscopic behaviour of the traffic flows in all our simulations.

SUMO is freely available and is released under an open-source

license. SUMO implements a krauB model - a famous car-

following model, to perform vehicular mobility simulation.

Further, traffic network simulation environment (TraNS) [20]

can be used to interface SUMO with ns − 2 using the

traffic control interface (TraCI). Detailed PHY and MAC

layer implementation of the vehicular wireless network is

intended to be implemented in future. Currently, we model

wireless link in Matlab using a Unit Disk Model [21]. All

nodes are assumed a communication radius, r, a bidirectional

link between two nodes, n1 and n2, exists if and only if

Dist(n1, n2) ≤ r, where Dist(., .) denotes the Euclidean

distance. Each bi-directional link is assumed to have a limited

capacity and is quantised accordingly. Our current simulation

setup uses TraCI to interface SUMO with Matlab [22].

III. PROBLEM FORMULATION

The primary objective of our work is to study the effect of

delay-accuracy trade-off in real-time systems operating under

a distributed optimisation algorithm. Different applications

in smart traffic control such as emergency electronic brake

lights, slow vehicle warning, pre-crash sensing, lane change

warning has varying delay-accuracy requirement [23]. Thus,

we expect applications to be implemented as different software

modules prioritizing their operation on a same set of hardware

accordingly. This modularity also eases application design, i.e.,

one could concentrate on any functionality by assuming that

its prerequisites will be taken care of by other applications.

For example, the cars can be clustered using any platooning

algorithm [24] and then the intersection management algorithm

can deal with the platoon head, instead of dealing with

each individual platoon. Here, we consider an intersection

management system, whose goal is to enable smooth flow

of vehicles across the intersection. We implemented two

different approaches with centralised and hierarchical network

architectures. In the centralised network architecture, vehicle

clusters communicate their status (e.g., velocity, distance from

intersection, cluster length) and utility function parameters

to a central unit allocated for the intersection. The central

unit then allocates a time slot for the cluster and instructs the

cluster to adjust its velocity accordingly. When it comes to

hierarchical network architecture, the computational load is

distributed among the RSU and vehicle clusters and distributed

algorithms proposed in [12] are used by the vehicle clusters

to solve the sub-problems distributively. Rest of the Section,

discusses the mathematical formulation of our application.

Our application aims at maximising the intersection effi-

ciency with minimum ecological impact. Relationship between

fuel consumption and average speed of the vehicle is provided

in [25]. Except the vehicle model specific parameters, they

have categorised passenger cars broadly into three categories

(i.e., large, medium, and small) and provided the parameters for

each category in the report. According to [25], the fuel velocity

relationship can be approximated with desirable accuracy using

a quadratic equation in our desired speed range. The fuel

consumption (in fact, negative of fuel consumption) of each

vehicle is be modelled using a quadratic utility function of the

form

fi(v) =
ai
2
v2 + civ (1)

where v is the velocity of the vehicle, ai < 0, ci ∈ R, ∀i. ai
and ci are designed so that the desired velocity of each vehicle

is ci
|ai| and the gradient of the utility function, aiv+ci expresses

the willingness of a vehicle to vary from velocity v. Let us

assume an intersection of two perpendicular one-way lanes,

without any turn at the intersection. To add to the efficiency of

the implementation, we devised a simple platooning algorithm,

utilising car following model provided in SUMO. All vehicles
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are assumed to have a convoy management software which,

considers vehicle dynamics and manages the distance between

vehicles. Vehicles flowing in a lane are expected to form

convoys using this convoy management mechanism.

Fig. 1. Conceptual diagram of a smart traffic intersection

The idea is to set a buffer zone of length d, in all the lanes,

before the intersection, as illustrated in Figure 1. Velocity of

the vehicle convoys reaching the buffer zone is determined col-

lectively using V2V and V2I message passing. At a particular

instant, li, vi are the length and velocity, respectively, of vehicle

convoys (hereafter mentioned as Ci ) entering buffer zone in

lane i. The traffic intersection controller could communicate to

at least one of the convoy agents from a distance d′ > d through

RSUs. Let estimated time of arrival, ETA(Ci) = t+ d
vi

, and

estimated time of departure, ETD(Ci) = t + d+li
vi

, be the

respective estimated time of arrival and departure of convoy

Ci at the intersection. Let ETD0 be the estimated time of

departure of existing of cluster at the intersection.

Let C1 denote the convoy that reaches the intersection

first, i.e., C1 = argmin(ETA(Ci)) and C2 be the other

convoy. Ideally, the condition for smooth intersection operation

is
(
ETA(C1) ≥ ETD(current convoy)

)
and

(
ETA(C2) ≥

ETD(C1)
)
. Thus, the optimisation problem can be formulated

as

maximise
v1,v2

∑
i∈C1

fi(v1) +
∑
j∈C2

fj(v2) + T (ρ)(v1 + v2)

subject to: ETA(C1) ≥ ETD0 + δ

ETA(C2) ≥ ETD(C1) + δ (P o)

v1 ≥ 0, v2 ≥ 0, v1 ≤ vmax, v2 ≤ vmax

The terms
∑

j∈Ci

fj(vi), denote the priority given to fuel

minimisation by the cluster i, where fj(vi) is the quadratic

utility function of vehicle j as explained in Equation 1.

T (ρ)(v1 + v2) is the additional term added by the traffic light

to incorporate its preference to speed up the traffic flow based

on the traffic intensity, ρ.

It should be noted that the problem is to maximise the

objective function and T (ρ)(v1 + v2) is maximum, when the

sum (v1 + v2) is maximum. v1 and v2 are constrained to stay

within 0 and vmax (25mps), Hence in absence of any other

component of the objective function, the term T (ρ)(v1 + v2),
is maximum when v1 and v2 are equal to vmax.

The first constraint avoids collision between upcoming

cluster and the clusters crossing the intersection, whereas the

second constraint prevents collision between upcoming cluster

and the cluster following it. The remaining constraints ensure

that the cars will not go in reverse, i.e., no negative velocity,

and the maximum lane speed is maintained.

To study the effect of communication architecture on

the performance of the algorithm, we will model both the

centralised and hierarchical scenarios.

A. Centralised Architecture

In order to obtain the best performance possible with the

intersection management algorithm, a centralised solution of

the optimisation problem P o is implemented, neglecting com-

munication and computation delays. In the centralised scenario,

vehicles communicate their objective function coefficients to

the road side unit (RSU). The schedule is then computed

at the RSU. In real-world systems with complex, locally

known, objective functions, it becomes practically impossible

to communicate the entire objective function due to security

and communication constraints [26]. Hence, the hierarchical

approach, explained in subsection III-B, is preferred. We used

Matlab’s Fmincon() solver to solve Problem P o centrally.

This architecture is used to implement the centralised solution

mentioned in the rest of the paper, whereas, all our remaining

algorithms operate on the hierarchical architecture explained

below.

B. Hierarchical Architecture

A simplified version of the problem, as explained below,

is used in the case of hierarchical architecture. It should be

noted that during the implementation of the algorithm, ETD0,

is known to the intersection controller and δ is the minimum

headway. Substituting for ETAs and ETDs in terms of velocities

and distances translates the first two constraints to v1 ≤ Kd and

v2 ≤ v1d
d+l1+v1δ

, where K = 1
ETD0+δ . To simplify the second

constraint, we design the buffer distance d and the minimum

headway, δ, such that vmaxδ << d + l1. Thus, the second

constraint becomes v2 ≤ ( d
d+l1

v1 − δd
(d+l1)2

v21). Simplified

version of the problem, as explained below, is used in the case

of hierarchical architecture.

maximise
v1,v2

∑
i∈C1

fi(v1) +
∑
j∈C2

fj(v2) + T (ρ)(v1 + v2)

subject to: v1 ≤ min(Kd, vmax)

v2 ≤ d

d+ l1
v1 − δd

(d+ l1)2
v21 (P s)

v1 ≥ 0, v2 ≥ 0, v2 ≤ vmax

Problem P s can be proved to be a convex optimisation

problem, where the objective function and the constraint

space are both convex. Convexity makes the problem easier

to solve, since the local minima and the global minima are

be the same. For the totally distributed scenario, the problem
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is to be solved using simple gradient descent followed by

projection. The communication network, among the vehicles in

a cluster and the repeater, can be modelled using an undirected

graph, G = (N ,E ), consisting of the set of nodes (vehicles)

N = {1, ..., n} connected by a set of edges E , where each

edge {i, j} is an ordered pair of distinct nodes. The graph is

assumed to be static and connected throughout computation

of a single schedule. Let Ni denote the set of neighbours of

node i. W is a doubly stochastic weight matrix. Wi,j > 0, if

{i, j} ∈ E , meaning i, j are neighbours; Wi,j = 0, otherwise.

Thus, each vehicle in both approaching clusters solves for the

following set of equations.

vi(k) =

N∑
j=1

Wi,jvi(k − 1) (2)

vi(k) = PXi
[vi(k) + α∇fi(vi(k))] (3)

where PXi is the local projection operator at agent i, which

projects the velocity calculated to the feasible region defined

by the constraints in Problem P s (in this specific case, it

is a bound on velocity). Information about the constraints

is stored and exchanged through the RSU. In order to

solve Problem P s using an hybrid architecture, where the

computation is distributed among vehicles and the RSU, we

decompose the problem into master-slave sub-problems. The

Lagrangian of the Problem P s can be written as

L(v1, v2,λ) =
∑
i∈C1

fi(v1) +
∑
j∈C2

fj(v2) + T (ρ)(v1 + v2)

− λ1

(
v1 −min(Kd, vmax)

)

− λ2

(
v2 − d

d+ l1
v1 − δd

(d+ l1)2
v21
)

+ λ3v1 + λ4v2 − λ5(v2 − vmax)

where, λ = [λ1, λ2, λ3, λ4, λ5] We can apply dual decom-

position techniques [27] to decompose the problem in to sub-

problems. For a given λ1 and λ2, vehicle clusters solve their

corresponding sub-problem

v̂1 = argmax
v1

∑
i∈C1

fi(v1) + T (ρ)(v1)− (λ1 − λ3)v1+

λ2
d

d+ l1
v1 − λ2

δd

(d+ l1)2
v21 (4)

and

v̂2 = argmax
v2

∑
j∈C2

fj(v2) + T (ρ)(v2)− (λ2 − λ4 + λ5)v2

In each iteration, any vehicle in each subgroup updates the

ci and ai of its utility function ( c′i = ci − λ1 + λ2
d

d+l1
,

a′i = ai−λ2
dδ

(d+l1)2
for cluster C1 and c′i = ci−λ2 for cluster

C2) according to the update from the master. Thus, each sub-

problem needs to minimise the sum of quadratic terms. These

problems are called unconstrained quadratic NUM problems

and their analysis has been done in Section IV.

The master dual problem that will be solved by RSUs is

minimise
λ≥0

λ3v1 + λ4v2 − λ1(v1 −min(Kd, vmax))−

− λ2

(
v2 −min(

d

d+ l1
v1 − δd

(d+ l1)2
v21 , vmax)

)

− λ5(v2 − vmax) (5)

As mentioned in [27], the master dual problem could use a

gradient based method, and update λ1 and λ2 in each iteration

as

λ̂1 =
[
λ1 + α1

(
v̂1 −min(Kd, vmax)

)]+
, λ̂3 =

[
λ3 − α1v̂1]

+

λ̂2 =
[
λ2 + α1

(
v̂2 −min(

d

d+ l1
v1 − δd

(d+ l1)2
v21 , vmax))

]+

λ̂4 =
[
λ4 − α1v̂2]

+, λ̂5 =
[
λ5 + α1(v̂2 − vmax)]

+ (6)

where α1 > 0 is a sufficiently small positive step-size, and

[.]+ denotes the projection to non-negative orthant.

C. Delay and Accuracy Constraints

Theoretically, if the traffic is heavy enough, an efficient inter-

section should always be occupied, i.e., ETA(nextcluster) =
ETD(currentcluster). But in practice, a minimum headway,

δ, should always be kept between crossing clusters on safety

grounds. This time interval provides the system tolerance

towards slight calculation errors in schedule velocities and

deviations of clusters from the calculated schedule at the cost

of reduced intersection efficiency. Since the vehicles must

travel with a controlled velocity within the control zone, it is

preferred to keep the control zone as small as possible. The

computation of cluster velocities should be finished with the

desired accuracy, by the time the vehicles reach the buffer zone.

At least one of the cluster agents will be able to communicate

with the intersection manager from a distance of d′ > d
from the intersection and initiate distributed convoy formation

application. Then, they need to collaboratively decide on the

convoy velocity by the time they travel d′ − d distance. In

the best possible case, d′ can be the distance to the previous

intersection. But considering the unpredictability in traffic flow,

d′ − d cannot be made quite large. On the other hand, the

more time agents get to compute their cluster velocity, the

more accurate it can be. To increase the system efficiency, δ
value need to be reduced. Therefore, the system designer has

to carefully consider delay-accuracy trade-off while designing

a practical system.

IV. ANALYTICAL TOOLS

Convex NUM problems are a well-studied problem and its

convergence to a near optimal solution under constant step-size

gradient-descent algorithm has been stated in Theorem 2 in [28].

The authors analyse the delay-accuracy trade-off for a quadratic

NUM problem solved using consensus based, constant step-size,

gradient-descent algorithm and studies the effect of quantisation

on convergence rate of the algorithm. The performance limits,

under constrained channel conditions, derived in [12] are used

for choosing proper buffer zone distance in our simulations.

In addition, they also proposed a novel finite-time distributed

algorithm which could reach any desired accuracy within 2N
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Fig. 2. Convergence properties of our algorithms

iterations, where N is the number of agents in the system.

We have applied the finite-time and asymptotic optimisation

approach in the hierarchical and distributed network approach

to see the difference. The finite-time algorithm proves to be a

really handy tool for the system designers, as it could directly

influence the delay in decision making by adjusting the number

of vehicles permitted in each cluster.

V. SYSTEM PERFORMANCE AND RESULTS

We implement 10 simulations of 15-minute duration for

each parameter set. RSU’s communication range, d′, is fixed

to 200m in our simulations. The buffer zone, d, mentioned in

section III starts at 50m from the intersection. A maximum of

8 vehicles are allowed in a platoon and length of a platoon is

capped to 150m. A buffer zone of 50 m from the traffic

light is set and the centralised solver is initiated in-case,

the asymptotically converging algorithm fails to calculate

the cluster schedule before reaching the buffer zone. Total

communication failure is not factored in here as we assume

purely digital channel, where any impairment is transformed

into reduction in bit-rate. However, in such cases vehicles may

switch to manual control and other automated cars may identify

it as a non-communicable vehicle and take necessary caution.

Additionally, the intersection management may switch back

to conventional algorithms. The results obtained are broadly

divided into two subsections. The first set of results compares

the convergence properties of the asymptotically converging

algorithms (both quantised and unquantised) with finite-time

converging algorithm, when implemented over the hierarchical

network architecture. Average time taken to compute one traffic

schedule, average master problem iterations per schedule and

average sub problem iterations per master iterations are used

for the comparison of our algorithms. The second set of results

shows the real-world impact of implementing our algorithm.

We compare the intersection management application developed

using our algorithms, to traditional static traffic lights and state-

of-the-art SOTL schemes. Average trip waiting time, average

traffic velocity and excess fuel consumed are the parameters

used for comparing intersection management applications

A. Convergence Properties of Our Distributed Algorithms

We first compare convergence properties of various op-

timisation algorithms that have been implemented over the

hierarchical network architecture. The optimisation problem

was decomposed to master and slave problems (Equation

(6) and (4)) and is solved by RSUs and vehicle clusters,

respectively. In all our algorithms, the master problem is solved

using asymptotically converging diminishing step-size gradient

descent algorithm, they differ in sub-problem implementation

as explained below. The parameters of the problem are chosen

such that all algorithms have provided comparable performance

at master level.

1) ACSP (asymptotic converging sub-problem): Fixed step-

size, asymptotically converging, consensus based optimi-

sation algorithm for solving the sub-problems.

2) ACSP quantised (asymptotic converging sub-problem
quantised): Fixed step-size, asymptotically converging,

consensus based optimisation algorithm under quantised

message passing for solving the sub-problems. We

implemented a zoom-in quantisation scheme as in [29],

which is optimum achieving, i.e., the scheme eventually

reaches the solution obtained by unquantised version of

the algorithm.

3) Centralised Soln.: The problem is solved centrally at the

RSU, assuming star network architecture as explained

in Subsection III-A. All vehicles communicate their

objective function parameters to the RSU, which will

compute the optimum schedule and communicate back

to the clusters.

4) 2NIterCSP (2N iteration converging sub-problem): Fixed

step-size, consensus based optimisation algorithm which

could find the optimum solution in 2N iterations, for

solving the sub-problems.

The performance of various algorithms is compared using

average time taken to compute one schedule as illustrated in

Figure 2a (only communication delays are considered).

It can be seen from Figure 2a that as traffic intensity

increases, average time taken to compute a schedule increases.

The key reason behind this is the increase of vehicle cluster size,

which almost linearly increases from 1.5 vehicles/cluster at 600
vehicles/hour to 3.8 vehicles/cluster at 3000 vehicles/hour, and

hence, increasing the average number of sub-iteration required



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2877217, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

500 1000 1500 2000 2500 3000
Vehicles per hour

55

60

65

70

75

80

85

90

95

A
vg

. d
el

ay
 p

er
 v

eh
ic

le
 in

 se
co

nd
s

Average trip waiting time

ACSP
ACSP quantised
Centralised Soln.
2NIterCSP
SOTL
Conventional TL

(a) Average Trip Waiting Time per vehicle under different
schemes for varying vehicle densities.

500 1000 1500 2000 2500 3000
Vehicles per hour

16

17

18

19

20

21

22

23

A
vg

. v
el

oc
ity

 in
 m

/s

Average velocity

ACSP
ACSP quantised
ACSP centralised
2NIterCSP
SOTL
Conventional TL

(b) Average velocity under different schemes for varying
vehicle densities.

500 1000 1500 2000 2500 3000
Vehicles per hour

1

1.01

1.02

1.03

1.04

1.05

1.06

R
at

io
 (F

ue
l c

on
su

m
ed

: i
de

al
 v

el
oc

ity
 c

on
su

m
pt

io
n) Excess fuel consumed

ACSP
ACSP quantised
ACSP centralised
2NIterCSP
SOTL
Conventional TL

(c) The ratio of the fuel consumed to the ideal fuel
consumption.

500 1000 1500 2000 2500 3000
Vehicles per hour

1

1.05

1.1

1.15

1.2

1.25

R
at

io
 (F

ue
l c

on
su

m
ed

: i
de

al
 v

el
oc

ity
 c

on
su

m
pt

io
n) Excess fuel consumed around intersection

ACSP
ACSP quantised
Centralised Soln.
2NIterCSP
SOTL
Conventional TL

(d) The ratio of the fuel consumed around intersection to
the ideal consumption.

Fig. 3. Performance of the algorithms

per main iteration. Further, if the number of elements in a

cluster is more than 2, the sub-problem output obtained will

be only near accurate in case of asymptotically converging

algorithms. Thus, they require more master iterations per

schedule to reach a feasible schedule. The 2NIterCSP algorithm

calculates the optimum solution for the sub-problem accurately

in 2N iterations, and it could find a feasible schedule in less

number of master iterations. Thus, the time taken to reach an

optimum solution will not increase drastically for the finite-

time algorithm. These observations are illustrated in Figures 2b

and 2c. Thus, even though all our algorithms perform equally

well for low traffic intensities, the 2NIterCSP, outperforms

them as the traffic intensity increases.

B. Performance of the Algorithms

We compare the performance of our algorithms, explained

in Subsection V-A, with conventional fixed switching traffic

lights and self organising traffic lights (SOTL) [30] schemes.

Under traditional fixed switching scheme, traffic lights are

programmed to change phase at predefined intervals irrespective

of the traffic condition. SOTL programs each traffic light,

independently, based on input from induction sensors installed

before the intersection, then minimal computation is required

at the traffic lights. Like in SOTL, our algorithm also does

not require any communication among traffic lights, but the

decision on the phase switching schedule of each traffic light

is made collectively by the traffic light and the vehicles

approaching it. Our algorithms distribute the computation load

among vehicles and the traffic light. Centralised solution of

our problem highlights the best possible performance by our

algorithms. The following matrices are used for comparison

of real-world performance of the algorithms.

• Average trip waiting time (ATWT): Trip waiting time

for one car is defined as the travel time minus minimum

possible travel time. ATWT is the waiting time averaged

over all vehicles in the system [30].

• Average Velocity of the traffic flow

• Ratio of fuel consumed to ideal fuel consumption: Fuel

consumption of a vehicle can be linked to its velocity [25].

We use the ratio of the fuel consumed under the scheme to

the least possible fuel consumption (assuming cars could

travel at their preferred velocity).

• Ratio of fuel consumed around intersection: This is the

ratio of fuel consumed within a radius of 200m from the

intersection and the ideal fuel consumption in that region.

Figures 3a and 3b compares the average delay (in terms

of waiting time) per vehicle and the average traffic velocity,

respectively, under various schemes for varying traffic densities.

It is evident from the figures that the efficiency of the traffic

can be increased considerably by the active participation of

vehicles and traffic lights in the decision-making process.

But this requires, vehicle to vehicle (V2V) and Vehicle to
infrastructure (V2I) communications and immense amount of

processing power. Our algorithm distributes the data processing
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load among vehicles and the traffic lights. However, it is to

be noticed that, under high traffic demand, the asymptotically

converging version of our algorithm fails. This is because of the

inaccuracy permitted in the calculation of optimum solution as

explained in Subsection VI-A. Whereas, the finite-time version

of our algorithm could compute the solution with high precision

and could also function well even at high traffic intensities.

Figures 3c and 3d measures the performance of algorithms

from an environmental perspective. Figure 3c measures the

average fuel consumption of the vehicles throughout their

journey, whereas Figure 3d provides the information about

the fuel consumed by vehicles at an 100m distance from the

intersection. In both the figures fuel consumption is expressed

as a ratio to the fuel consumed if the vehicles were to

navigate at their most fuel efficient velocity. The fixed iteration

scheme proves to be best in terms of fuel efficiency. Further, a

slight increase in fuel consumption can be observed with the

introduction of quantisation, due to sub-optimal scheduling of

the vehicle clusters.

Obviously, our algorithms perform better in all the four

matrices. Even-though the performance of asymptotically

converging algorithm degrades at high traffic intensities, its

finite-time counterpart performs better throughout the given

range.

VI. DISCUSSION

A. Delay-Accuracy Trade-Off and Performance

For any generalised optimisation application, designed using

our algorithm, delay-accuracy trade-off can be achieved by

adjusting the master/sub-problem step-sizes. The practical

implications of such a trade-off vary from one applicaiton to

another. For instance, in the current setup, delay-accuracy trade-

off in the optimisation problem is translated to adjustments

in calculation zone length and yellow-light duration. A longer

calculation zone provides more time for computing the solution,

improving its accuracy, by which the safety gap between the

crossing schedules - the yellow light timing - can be reduced.

An acceptable guideline for optimum delay-accuracy trade-

off varies from one problem to another. For a traffic system,

any feasible solution should ensure robustness over a range

of traffic intensities. It should be noted that we introduced

the parameter T (ρ) in the objective function. Increase of T (ρ)
implies adding more weight to intersection efficiency over fuel

efficiency. Since our primary objective is to find the most eco-

friendly solution, the best solution ensures smooth traffic flow

across the intersection with least possible value of T (ρ).
In our simulations, we used the step-sizes and the buffer-zone

length, which stabilised the traffic flow over the desired traffic

injection ratios, found via trial and error. T (ρ) is increased

exponentially with respect to traffic intensity, and yellow light

duration is reduced linearly with increase in traffic intensity,

in order to ensure accepable system performance at high

traffic intensities. However, as explained in the following

paragraph, the combination seems to fail at extremely high

traffic intensities for the asymptotically converging algorithm.

Asymptotically converging version of our algorithm proves to

be equally good as the centralised one at low traffic intensities

(a) Normal operation of intersection under our algorithm.

(b) Long queues before intersection: this occurs due to the delay-accuracy
trade-off taken by the algorithm.

Fig. 4. Screen shot of the implementation

and a degraded performance at higher traffic intensities. The

reason for this degradation is the delay-accuracy trade-off in the

optimisation problem. The inaccuracy in calculation leads to a

larger gap between the crossing clusters. For instance, say the

yellow phase duration is 500ms and due to the inaccuracy in

computing the crossing clusters leave a gap of 600ms between

them. The intersection will thus be engaged for additional

100ms and upcoming cars has to be delayed by 100ms. At high

traffic intensities, it is observed that the system cannot adjust

to this slow down. Therefore, the whole traffic gets choked

at the intersection owing to cascaded slowing downs. This

phenomenon is depicted in Figure 4b. On the other hand, trying

to go for more accurate solution needs more iterations there by

increasing the communication delays. Hence, finding optimum

delay-accuracy trade-off for the optimisation problem is critical

for any real-time application [2]. Quantisation amplifies the

above mentioned effect by further degrading the quality of the

solutions obtained.

B. SOTL From Environmental Perspective

Authors of [30] only compared SOTL algorithm based on

the average delay incurred. From the figures, it is clear that

SOTL has the worst fuel consumption over all. A reason for

this may be that SOTL forces the vehicles to cluster at the

intersection by stopping them for a while and they remain in

the cluster for the rest of their journey (as there is no turns

or overtaking is allowed) and each individual vehicle has no

control over the cluster velocity.

C. Effect of Quantisation

It has been noted that, in limited number of cases, the

asymptotically converging algorithm takes exceptionally large

number of iterations (in the range of 100s, compared to

usual < 10) to reach the optimal solution, due to the
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oscillatory behaviour of the fixed step-size gradient descent

algorithm. The quantiser prevents this oscillatory behaviour to

an extend by limiting the maximum deviation possible in each

step-size. Hence, as observed from the results, quantisation

is marginally increasing the performance of asymptotically

converging gradient-descent algorithm at low traffic intensities.

As the traffic intensity increases, the accuracy of the solution

becomes more important and the performance of the algorithm

degrades on quantisation.

D. Scalability and Applicability

The applications we have developed are for real-time

intersection management, with projected heavy penetration

of automated vehicles. Since the algorithms considered do

not need inputs from other intersections, they can be scaled

and implemented independently under a multiple intersection

scenario. The current simulations are set up for a single lane

traffic intersection. As evident from our results, single lane

intersection itself becomes quite challenging at high traffic

intensities, considering the real-time nature. Currently, we are

extending the application to a more complex scenario with

two-way traffic and multiple lanes. Additionally, extending

the algorithm by factoring in inputs from other intersections

will lead to a more optimal intersection management solution.

From an algorithmic perspective, we are developing finite-time

distributed optimisation for more complex and constrained

optimisation problems.

VII. CONCLUSION

A smart traffic intersection management application for

automated vehicles is implemented, with superior performance

than both conventional fixed switching and state of the art

(SOTL) algorithm. The system is used to study the effect of

delay-accuracy trade-off in real-time applications operating

under a distributed optimisation algorithm. It is observed

that, due to the delay-accuracy trade-off taken, asymptotically

converging algorithm fails on high traffic intensities, whereas

the finite-time algorithm that gives highly accurate results in

2N iterations performs better at high vehicle densities. This

highlights the importance of the trade-off between delay and

accuracy for distributed optimisation problems in real-time

IoT systems. Counter-intuitively, it is seen that the system

performance slightly increases with an information constrained

channel. Therefore, we recommend more detailed studies to

identify perfect quantisation level for a distributed optimisation

problem. The application studied can be put into a real-life

scenario by extending to more complex scenarios with multiple

lanes and turns. Additionally, developing finite-time distributed

algorithms for more generalised constrained problems can be

considered as an entirely novel research direction in distributed

optimisation.
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