
IEEE SIGNAL PROCESSING LETTERS, VOL. 26, NO. 3, MARCH 2019 485

Medical Image Fusion via Convolutional Sparsity
Based Morphological Component Analysis
Yu Liu , Xun Chen , Rabab K. Ward , Fellow, IEEE, and Z. Jane Wang , Fellow, IEEE

Abstract—In this letter, a sparse representation (SR) model
named convolutional sparsity based morphological component
analysis (CS-MCA) is introduced for pixel-level medical image fu-
sion. Unlike the standard SR model, which is based on single image
component and overlapping patches, the CS-MCA model can si-
multaneously achieve multi-component and global SRs of source
images, by integrating MCA and convolutional sparse representa-
tion (CSR) into a unified optimization framework. For each source
image, in the proposed fusion method, the CSRs of its cartoon and
texture components are first obtained by the CS-MCA model us-
ing pre-learned dictionaries. Then, for each image component, the
sparse coefficients of all the source images are merged and the fused
component is accordingly reconstructed using the corresponding
dictionary. Finally, the fused image is calculated as the superpo-
sition of the fused cartoon and texture components. Experimen-
tal results demonstrate that the proposed method can outperform
some benchmarking and state-of-the-art SR-based fusion methods
in terms of both visual perception and objective assessment.

Index Terms—Medical image fusion, sparse representation (SR),
morphological component analysis (MCA), convolutional sparse
representation (CSR), dictionary learning.

I. INTRODUCTION

DUE to the diversity of image capturing mechanisms, med-
ical images with different modalities may reflect very dif-

ferent categories of organ/tissue information. For example, the
computed tomography (CT) images can clearly exhibit dense
structures like bones and implants, while the magnetic reso-
nance (MR) images provide high-resolution anatomical infor-
mation for soft tissues. The aim of pixel-level medical image
fusion technique is to combine the complementary information
in multi-modality medical images by generating a composite
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image, which is hoped to be more suitable for physician obser-
vation or machine perception [1].

A variety of image fusion methods have been proposed in
the last few decades. According to a recent survey [2], these
methods can be generally grouped into four categories based
on the image transform strategy adopted: multi-scale decom-
position (MSD)-based methods [3]–[12], sparse representation
(SR)-based methods [13]–[25], methods performed in other do-
mains [26]–[34] and methods based on combination of different
transforms [35], [36]. It is noted that the SR-based methods have
recently emerged as an influential branch in image fusion, al-
though they have only appeared within the last decade since the
pioneering work by Yang and Li [13]. A comprehensive review
on this topic can be found in [37]. In this letter, we mainly focus
on SR-based image fusion.

One of the most crucial issues in SR-based image fusion is the
adoption of an SR model [37]. The early SR-based fusion meth-
ods [13], [15] employ the standard sparse coding model [38]
which is based on single image component and local patches.
The source images are divided into a set of overlapping patches
in the original spatial domain for sparse coding. This practice
is followed by most existing SR-based fusion methods, which
generally attempt to the promote model performance by adding
elaborate constraints into the model [19], [22], designing more
effective dictionary learning strategies [20], employing multiple
sub-dictionaries for representation [16], [18], etc.

To address the issue of single-component representation,
Jiang and Wang [17] proposed a novel multi-component SR-
based fusion method via morphological component analysis
(MCA) [39], which can obtain the sparse representations of
cartoon and texture components of each source image. This
component separation process can significantly improve the
flexibility for designing more effective fusion strategies. On the
other hand, to overcome the drawbacks caused by patch-based
coding, Liu et al. [21] proposed a global SR-based image fusion
method by introducing the convolutional sparse representation
(CSR) model [40], where sparse coding is performed over the
entire image rather than on overlapping patches to achieve better
representations.

In this letter, we study SR-based image fusion that simulta-
neously addresses the above two issues: multi-component and
global sparse representations. The contributions are two-fold:

1) We introduce an SR model, the convolutional sparsity
based morphological component analysis (CS-MCA),
into the field of image fusion. By integrating MCA and
CSR into a unified optimization framework, this model
can achieve multi-component and global sparse represen-
tations of source images at the same time.

2) We propose a new medical image fusion method based on
the CS-MCA model. Experimental results show that the

1070-9908 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2211-3535
https://orcid.org/0000-0002-4922-8116
https://orcid.org/0000-0002-2471-1902
https://orcid.org/0000-0002-3791-0249
mailto:yuliu@hfut.edu.cn
mailto:xunchen@ustc.edu.cn
mailto:rababw@ece.ubc.ca
mailto:zjanew@ece.ubc.ca


486 IEEE SIGNAL PROCESSING LETTERS, VOL. 26, NO. 3, MARCH 2019

proposed method outperforms several benchmarking and
state-of-the-art SR-based fusion methods in terms of both
visual quality and objective assessment.

II. RELATED WORK AND MOTIVATION

A. Standard SR Model Based Image Fusion

In [13], Yang and Li first introduced SR into image fusion. In
their method, a source images is divided into a set of overlapping
patches, and the standard sparse coding model [38] is applied
independently on each image patch. Mathematically, the applied
SR model can be expressed as

min
x

||x||0 s.t. ||y − Dx||2 < ε, (1)

where y ∈ Rn means a stacked vector version of an image
patch of size

√
n ×√

n. D ∈ Rn×m means an over-complete
dictionary. x ∈ Rm is the sparse vector to be calculated and the
sparsity is measured by its l0-norm which counts the number
of non-zero entries. ε represents the tolerance of reconstruction
error. The orthogonal matching pursuit (OMP) algorithm is em-
ployed to solve this optimization problem. In [15], Yang and
Li improved this method by applying the simultaneous OMP
(SOMP) algorithm, which can ensure that the source image
patches at the same location are decomposed by identical dictio-
nary atoms. For these patch-based SR methods, the target image
is finally obtained by aggregating all reconstructed patches and
averaging the overlapping pixels.

B. MCA-Based Image Fusion

In [17], Jiang and Wang proposed a multi-component SR-
based image fusion method by adopting the MCA model [39],
which can be formulated as

min
xc ,xt

1
2
‖y − Dcxc − Dtxt |‖2

2 + λc ||xc ||1 + λt ||xt ||1 , (2)

where xc and xt denote the sparse representations of the cartoon
and texture components using dictionaries Dc and Dt , respec-
tively. The l1-norm is used to constrain the sparsity, while λc and
λt are regularization parameters.1 Clearly, the main advantage
of the MCA model is that it can separate the cartoon and texture
components from the original image for individual fusion. Since
the cartoon and texture components focus on distinct image con-
tents (i.e., the cartoon component mainly contains piecewise
smooth contents such as geometric structures in large scales,
while the texture component hold repeated/oscillating patterns
and fine details in small scales), this separation can allow better
flexibility in designing more effective fusion strategies.

C. CSR-Based Image Fusion

In [21], Liu et al. introduced a CSR-based image fusion ap-
proach to address the defects caused by patch-based represen-
tation manner. The CSR model [40] is defined as

min
Xm

1
2

∥
∥
∥
∥
∥
Y −

M∑

m=1

dm ∗ Xm

∥
∥
∥
∥
∥

2

2

+ λ

M∑

m=1

‖Xm‖1 , (3)

where Y is an entire image instead of a local image patch in Eq.
(1). It is modeled as the sum over a set of M convolutions be-

1The standard SR model can also be expressed using an unconstrained form
as minx

1
2 ‖y − Dx‖2

2 + λ||x||1 .

Fig. 1. The relation of this work to prior works.

tween local dictionary filters {dm} and global sparse coefficient
maps {Xm}. To make a clear distinction with the patch-based
SR, the image and sparse maps are written in capitals. We con-
tinue to use the l2-norm and l1-norm since the contents within
them can be stacked as column vectors. As opposed to the stan-
dard SR model using independent patch-based coding, the result
of CSR is single-valued and optimized over the entire image,
leading to better capability in detail preservation for image fu-
sion [21]. Moreover, CSR has the property of shift invariance
[40], which is of great significance for an image fusion method
in ensuring its robustness to mis-registration.

D. Motivation of This Work

As mentioned above, the MCA-based method [17] and CSR-
based method [21] provide two different fashions to promote
SR-based image fusion, namely, multi-component representa-
tion and global representation, leading to their respective advan-
tages as summarized in Fig. 1. However, each of them neglects
the issues addressed by the other one. In this work, inspired
by some recent advances in convolutional sparse coding (CSC)
[40], [41], the CS-MCA model (presented in Section III-A)
is introduced to combine these advantages by simultaneously
achieving multi-component and global sparse representations
of source images. The relation of this work to prior works is
shown in Fig. 1.

III. THE PROPOSED METHOD

A. The CS-MCA Model

By referring to the above standard SR, MCA and CSR models,
the CS-MCA model is defined as

min
X c , m ,X t , m

1
2

∥
∥
∥
∥
∥
Y −

Mc∑

m=1

dc,m ∗ Xc,m −
Mt∑

m=1

dt,m ∗ Xt,m

∥
∥
∥
∥
∥

2

2

+ λc

Mc∑

m=1

‖Xc,m‖1 + λt

Mt∑

m=1

‖Xt,m‖1 , (4)

where {dc,m}Mc
m=1 and {dt,m}Mt

m=1 denote two sets of dictio-
nary filters for the SR of the cartoon and texture components,
respectively. In our method, they are independently pre-learned
from cartoon and texture images using the CSR dictionary learn-
ing approach presented in [40]. {Xc,m}Mc

m=1 and {Xt,m}Mt
m=1

are the corresponding sparse coefficient maps. It is clear that the
CS-MCA model can be viewed as the CSR-based version of the
MCA model given in Eq. (2) as well as the MCA-based version
of the CSR model given in Eq. (3), leading to multi-component
and global sparse representations at the same time.

The CS-MCA model can be solved iteratively over Xc,m and
Xt,m by the following two sub-problems:
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Algorithm 1: Algorithm for Solving the CS-MCA model.

1: Input: Y, {dc,m}Mc
m=1 , {dt,m}Mt

m=1 , λc , λt , L
2: for i = 1: L
3: Calculate Xc,m by solving Eq. (5);
4: Calculate Xt,m by solving Eq. (6);
5: end for
6: Output: {Xc,m}Mc

m=1 and {Xt,m}Mt
m=1 .

Sub-problem Xc,m (given the fixed Xt,m ):

min
X c , m

1
2

∥
∥
∥
∥
∥
Y′ −

Mc∑

m=1

dc,m ∗ Xc,m

∥
∥
∥
∥
∥

2

2

+ λc

Mc∑

m=1

‖Xc,m‖1 , (5)

where Y′ = Y − ∑Mt

m=1 dt,m ∗ Xt,m .
Sub-problem Xt,m (given the fixed Xc,m ):

min
X t , m

1
2

∥
∥
∥
∥
∥
Y′′ −

Mt∑

m=1

dt,m ∗ Xt,m

∥
∥
∥
∥
∥

2

2

+ λt

Mt∑

m=1

‖Xt,m‖1 , (6)

where Y′′ = Y −
Mc∑

m=1
dc,m ∗ Xc,m .

These two sub-problems can be efficiently solved by the
ADMM-based CSC algorithm presented in [40]. The overall
algorithm for solving the CS-MCA model is summarized in
Algorithm 1.

B. Detailed Fusion Scheme

Let Ik , k ∈ {1, . . . ,K} denote a set of K pre-registered
source images, the proposed CS-MCA-based medical image
fusion method consists of the following steps.

1) Sparse Coding Based on the CS-MCA Model: Apply the
CS-MCA model to each source image Ik . Let {Xk

c,m}Mc
m=1 and

{Xk
t,m}Mt

m=1 denote the obtained sparse coefficient maps of the
cartoon and texture components, respectively.

2) Fusion of Sparse Coefficient Maps: In accordance with
the related SR-based fusion methods [13], [15], [17], [21], the
l1-norm of sparse coefficient vectors is employed as the activity
level measurement of source images. For either Xk

c,m or Xk
t,m ,

we use the same fusion strategy (the strategy used in the CSR-
based fusion method [21] is adopted in this work to make a fair
comparison) but with independent setting of free parameters.
Thus, for notational simplicity, we adopt the character n (n ∈
{c, t}) to universally denote the cartoon and texture components
when applicable. Specifically, let Xk

n,1:Mn
(x, y) denote the Mn -

dimensional vector containing the coefficients of Xk
n,m at pixel

(x, y). The initial activity level map Ak
n (x, y) is defined as

Ak
n (x, y) =

∥
∥Xk

n,1:Mn
(x, y)

∥
∥

1 , n ∈ {c, t}. (7)

Further, a window-based strategy is applied to improve the ro-
bustness to mis-registration and noise. The final activity level
map is calculated as

Āk
n (x, y) =

∑rn

p=−rn

∑rn

q=−rn
Ak

n (x + p, y + q)

(2rn + 1)2 , n ∈ {c, t},
(8)

where the parameters rc and rt are the window radius for the
cartoon and texture components, respectively. Finally, the fused

Fig. 2. Ten pairs of source images used in our experiments.

coefficient maps {Xf
n,m}Mn

m=1 , with n ∈ {c, t}, are obtained us-
ing the “choose-max” rule:

Xf
n,1:Mn

(x, y) = Xk ∗
n,1:Mn

(x, y), k∗ = arg max
k

(Āk
n (x, y)).

(9)
3) Reconstruction of the Fused Image: Having {Xf

c,m}Mc
m=1

and {Xf
t,m}Mt

m=1 , the fused image If is reconstructed as

If =
Mc∑

m=1

dc,m ∗ Xf
c,m +

Mt∑

m=1

dt,m ∗ Xf
t,m . (10)

IV. EXPERIMENTS

A. Experimental Settings

1) Source Images: In our experiments, ten pairs of multi-
modal medical images are used for testing, as shown in Fig. 2.
They are all from the Whole Brain Atlas [42], a popular medical
image database created by Harvard Medical School.

2) Compared Methods: Four existing SR-based image fu-
sion methods are employed for performance comparison: the
SR-SOMP-based method [15], the MCA-based method [17],
the CSR-based method [21], and the cartoon-texture decompo-
sition and sparse representation (CTD-SR)-based method [24].
The first three can be viewed as the benchmarking methods with
regard to our method, as presented in Section II. The last one is
a state-of-the-art SR-based fusion method, in which CTD and
SR are adopted but with a totally different pipeline in contrast
to our method. In the CTD-SR-based method [24], the CTD
is performed using a total variation (TV)-based algorithm and
the texture components are fused with a patch-based SR ap-
proach. The source codes of the SR-SOMP, MCA and CTD-SR
based methods are all provided by their original authors. The
code of the CSR-based method is publicly available at [43]. All
the parameters in these methods are set to the default values
for unbiased comparison. In our method, we experimentally fix
λc = λt = max(0.6 − 0.1 × i, 0.005) during the i-th iteration
and the number of iterations L is set to 6.

3) Objective Metrics: In [44], the objective evaluation
metrics for image fusion are summarized into four categories:
information theory based metrics, image feature based metrics,
image structure similarity based metrics and human perception
inspired metrics. In our experiments, for each category, one
widely used metric is adopted. Specifically, the applied metrics
include the localized mutual information (LMI) [45], the
gradient-based metric QAB/F [46], the structure similarity
based metric QE [47] and the human visual system (HVS)-
based metric QH V S [48]. For each of these four metrics, a
higher value indicates a better performance. Please refer to
[45]–[48] for more details of these metrics.

4) Learning Dictionary Filters: In our experiments, using
the dictionary learning approach for CSR presented in [40], 60
cartoon images and 60 texture images collected from the Internet
are applied to learn {dc,m}Mc

m=1 and {dt,m}Mt
m=1 , respectively.
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TABLE I
IMPACTS OF FREE PARAMETERS ON OBJECTIVE PERFORMANCE

Fig. 3. Two sets of image fusion results obtained by different methods.

In accord with the settings used in the CSR-based fusion method
[21], we fix Mc = Mt = 32 and the spatial size of each filter is
set to 8 × 8. Please refer to the supplementary material for more
details about dictionary learning.

B. Analysis of Free Parameters

Table I reports the objective performance of the proposed
method using different values of rc and rt in Eq. (8). The aver-
age scores over all ten testing examples are calculated, and the
highest score for each metric is indicated in bold. It can be seen
that the effects of rc and rt are distinctly different, which ac-
tually reflects the benefits of applying multi-component SR. A
smaller value of rt tends to produce better results, but the impact
is relatively slight. The impact of rc is much more significant
and a clear increasing trend from 2 to 5 exists for all the metrics.
However, when it exceeds 5, the scores of some metrics start to
be stable or even decrease. Based on the above observations, we
set rc = 5 and rt = 2 in our method.

C. Comparison With Other Methods

Fig. 3 shows two sets of image fusion results and two close-
ups are provided in each set. The source images in the first set
are CT and MR-T2 (T2-weighted MR) images, while in the
second set are MR-T1 (T1-weighted MR) and MR-T2 images.
It can be seen that the SR-SOMP and CSR methods tend to lose
some spatial details and image energy. The MCA and CTD-

Fig. 4. Objective performance of different fusion methods on four metrics.

TABLE II
THE AVERAGE RUNNING TIME OF DIFFERENT METHODS WHEN FUSING TWO

IMAGES OF SIZE 256 × 256 PIXELS

It is noted that only the SR-SOMP, CSR and CS-MCA are implemented in
pure MATLAB.

SR methods suffer from obvious undesirable visual artifacts in
many fused regions. Overall, the proposed method obtains more
competitive visual quality in consideration of detail extraction,
energy preservation and the prevention of visual artifacts. Fig. 4
shows the objective performance of different methods. For each
metric, the ten scores of a method are connected to generate
a curve and the average score is provided in the legend. It is
clear that the proposed CS-MCA method outperforms other
methods on all the four metrics. Table II lists the average run-
ning time of different methods when fusing two images of size
256 × 256 pixels with a 4.0 GHz CPU and 32 GB RAM. It is
noted that the SR-SOMP, CSR and our CS-MCA methods are
implemented in pure MATLAB, while MATLAB and C/C++
mixed-programming is applied in the MCA and CTD-SR meth-
ods. It is believed that the efficiency of our method can be greatly
improved by applying more efficient implementation techniques
such as C/C++ programming and GPU acceleration.

V. CONCLUSION

In this letter, we introduce a novel SR model CS-MCA for
image fusion. By integrating MCA and CSR into a unified op-
timization framework, the CS-MCA model can simultaneously
achieve multi-component and global sparse representations of
source images. A new medical image fusion method based on
the CS-MCA model is proposed. Experimental results verify the
effectiveness of the proposed method.
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