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Abstract—Palmprint directions have been proved to be one of
the most effective features for palmprint recognition. However,
most existing direction-based palmprint descriptors are hand-
craft designed and require strong prior knowledge. In this
paper, we propose a discriminant direction binary code learning
method for palmprint recognition. Specifically, for each palm-
print image, we first calculate the convolutions of the direction-
based templates and palmprint, and form informative convolu-
tion difference vectors by computing the convolution difference
between the neighboring directions. Then, we propose a simple
yet effective model to learn feature mapping functions that can
project these convolution difference vectors into discriminant
direction binary codes (DDBC). For all training samples, (1) the
variance of the learned binary codes is maximized, (2) intra-class
distance of the binary codes is minimized and (3) the inter-class
distance of the binary codes is maximized. Finally, we cluster
the block-wise histograms of DDBC forming the discriminant
direction binary palmprint descriptor for palmprint recognition.
Experimental results on four challenging contactless palmprint
databases clearly demonstrate the effectiveness of the proposed
method.

Index Terms—Palmprint recognition, Direction feature learn-
ing, Discriminant direction binary code, Biometrics.

I. INTRODUCTION

B IOMETRICS refers to automatically recognizing an in-
dividual based on ones unique biological and behav-

ioral traits without carrying any token and password, which
significantly facilitates every aspect of our life [1][2]. As a
result, in the modern society, biometric technologies have been
becoming an ideal solution to the problems of a wide range
of highly secure personal authentication applications [3]. So
far, various biometric technologies such as face, fingerprint,
iris and gait have been exhaustively investigated, and some of
them have been successfully deployed [3]-[7]. As one of the
most important hand-based traits, palmprint-based biometrics
has also been receiving tremendous research efforts in recent
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years due to its rich discriminative features such as principal
lines and ridge patterns [8][9] and wide potential of real-world
applications. In the past decades, a variety of palmprint recog-
nition technologies have been investigated in the literature,
such as low-resolution palmprint, high-resolution palmprint,
multispectral palmprint and 3-D palmprint recognition [10]-
[14]. In general, high-resolution palmprint images share highly
similar ridge-based features as well as feature extraction meth-
ods such as fingerprint. Multispectral palmprint recognition
refers to use and fusion of multiple models of low-resolution
palmprint images for recognition [15][16]. In addition, most
3-D palmprint recognition methods converted 3-D surface
information of palmprint into 2-D low-resolution palmprint
images for feature extraction and recognition [13][17]. To this
end, in recent years, most efforts on palmprint recognition
mainly focus on low-resolution palmprint recognition [18]-
[22].

In general, palmprint recognition consists of two steps
of palmprint feature representation and matching [23]. The
palmprint feature representation aims to exploit the discrim-
inative features to make palmprint more separable, and the
second step is to design effective classifiers to differentiate
the extracted features. There is no doubt that palmprint feature
representation significantly affects the performance of palm-
print recognition. How to extract the discriminative features
remains the crucial and challenging problem in palmprint
recognition. Existing palmprint feature representation methods
can be roughly grouped into categories of holistic feature
and local feature representations [24]. Representative holistic
feature representation methods include principal component
analysis (PCA) [25], linear discriminant analysis (LDA), s-
parse representation (SR) [26] and deep-learning [27], which
have been widely used for palmprint recognition. For example,
Maadeed et al. [26] proposed a hybrid palmprint representation
method by representing a query palmprint image with a sparse
combination of a class-specific dictionary and a dense combi-
nation of a common intra-class variation dictionary. However,
these conventional methods do not consider much and utilize
the characteristics of palmprint, and their performance is still
far from satisfactory. In addition, some of them are compu-
tation and memory expensive. By contrast, the typical local
feature based methods generally extracted the intrinsic features
of palmprint such as the principal lines and wrinkles [28]-
[30]. However, the limited principal lines and messy wrinkles
cannot offer acceptable performance.

It is well recognized that plenty of lines in a palmprint carry
rich direction features, which are insensitive to illumination
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changes. Due to this finding, most methods propose to extract
and encode the direction-based features of palmprint. The most
typical direction-based method was the palmcode proposed
by Zhang et al. [8], which encoded the palmprint by using
Gabor phase encoding scheme on a fixed direction. To better
reflect the line features of palmprint, Wong et al. [31] used a
bank of Gabor filters with different directions to extract the
dominant direction feature of palmprint achieving promising
accuracy. After that, various extended versions of the dominant
direction based method were proposed, and the representative
methods include fusion code [32], robust line orientation code
method (RLOC) [33] and discriminative robust competitive
code (DRCC) [34] methods, and so on. To completely fit
the direction features of palmprint, many multiple-directions
based methods were proposed. For example, Sun et al. [35]
used three grouped Gaussian filters to extract direction features
on three orthogonal directions. Guo et al. [36] proposed a
binary orientation co-occurrence vector (BOCV) method by
encoding palmprint on six directions. Fei et al. [23] proposed
a double orientation code method by extracting and encoding
two dominant directions. Luo et al. [37] designed a local line
direction pattern representation by jointly encoding two op-
tional directions. Zheng et al. [38] proposed a novel palmprint
direction feature descriptor by computing the Difference of
Vertex Normal Vectors (DoN) of a palmprint image. Moreover,
more direction-based methods were comparatively studied
in [22][39].

The direction-based palmprint recognition methods with
promising accuracies have proved the success of the direc-
tion features for palmprint recognition [18]. However, most
existing palmprint direction representations are hand-crafted
and heuristics, which usually require strong prior knowledge
to engineer them. Moreover, hand-crafted direction features
do not represent the most discriminative direction features
of palmprint. In this paper, we propose a learning-based
method for discriminant palmprint direction feature extraction
and recognition. We first calculate the convolution difference
vector (CDV) for palmprint images as the feature container,
which contain informative direction information. Then, we
learn a feature mapping to project the CDV into discriminant
direction binary codes (DDBC), making them have maximized
variances and also maximized inter-class distance and mini-
mized intra-class distance. Lastly, we cluster the block-wise
statistics of DDBC maps forming the discriminant direction
binary palmprint descriptor for palmprint recognition. Fig. 1
illustrates the basic idea of the proposed method.

The main contributions of this paper can be summarized in
three fold:

• We propose a novel and informative convolution differ-
ence vector for discriminant direction feature learning.
CDV can better describe the multiple dominant direction
features as well as the significance of the directions. In
addition, a CDV has a zero mean value and is suitable
for feature learning without performing additional zero
normalization.

• We propose a feature learning-based method to jointly
learn and encode the discriminant and data-adaptive di-
rection features of palmprint images. To our knowledge,

Fig. 1. The flow-chart of the proposed method. We first compute the
convolution difference vector for each palmprint image. Then, we learn
mapping functions, which project CDV into discriminant direction binary
codes. Finally, we concatenate the block-wise histograms of DDBC into
discriminant direction binary palmprint descriptor for palmprint recognition.

this is the first work with an attempt to use hash learning-
based method for palmprint feature extraction and recog-
nition.

• We conduct extensive experiments on four challeng-
ing contactless palmprint databases. Experimental results
demonstrate that the proposed method is superior to state-
of-the-art palmprint descriptors. The promising perfor-
mance of the proposed method also validates the effec-
tiveness of the hash learning-based method for palmprint
recognition.

The rest of this paper is organized as follows. Section II
introduces the related work for the preparation of the proposed
method. Section III proposes a discriminant direction feature
learning method for palmprint representation and recognition.
Section IV presents the experimental results. Section V offers
the conclusion.

II. RELATED WORK

This section briefly reviews three related topics of this paper,
including the direction features of palmprint, binary coding of
direction features and discriminant feature learning.

A. Direction features of palmprint

In general, since palmprint images are captured from the
hands, it is inevitable that the captured images contain both
the palm images and the finger parts. Therefore, the original
captured palmprint images need to be preprocessed to extract
the region of interest (ROI) for palmprint feature extraction
and recognition. Fig. 2 shows the basic procedure of the ROI
extraction.

Palmprint contains rich principal lines, wrinkles and ridge
patterns, and thereby carry informative direction features.
There have been extensive methods that exploited the direction
features for palmprint recognition [31]-[39]. The common way
of extracting palmprint direction is to define a bank of line-like
templates with predesigned directions, such as Gabor filters
and MFRAT, which can be used to detect the direction features
of palmprint. Representative direction based methods include
the competitive code method and RLOC, which extract the
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(a) (b) (c)

Fig. 2. The basic procedure of the ROI extraction of a palmprint image. (a)
An input palmprint image; (b) The original palmprint image is first convolved
with the low-pass Gaussian filter to smooth the palmprint image and then
converted into a binary image by thresholding, so as to obtain the boundary of
the binary image. Finally, the valley points at the bottom of the gaps between
fingers are determined as the landmarks to establish a coordinate to locate
a certain area; (c) The sub-image located at a certain area of a palmprint is
cropped as the ROI of the palmprint image.

most dominant direction features of palmprint. They first use a
bank of direction-based templates to convolve a palmprint im-
age, and then take the direction of the template that produces
the maximum direction response as the dominant direction of
the palmprint. In other words, it assumes that any pixel in a
palmprint image belongs to a line. The template that carries
the consistent direction of the palmprint line can produce
the maximum filtering response. The dominant direction of
a palmprint can be extracted as follows:

θd(I) = argmax
θj

Resp(T (θj), I), j = 1, 2, ..., Nθ, (1)

where T (θj) represents the templates with the directions of
θj(j = 1, 2, ..., Nθ), and Nθ is the direction number of the
templates. I represents a palmrint image. “Resp” is the line
response of the templates and the palmprint image, and it
usually denotes the convolution operation. θd represents the
dominant direction feature map of the palmprint.

It is recognized that a palmprint usually contains various
lines, such as cross lines and bend lines, carrying multiple
direction features [36]. To this end, there have also been a
number of works that proposed to exploit different kinds of
direction features from palmprint. Generally, they employ a
series of direction-based templates to convolve the palmprint
and encode the line responses on multiple directions, but not
on a single direction. A common representation of multiple
direction feature extraction is as follows:

θf (I) = f(Resp(T (θj), I)), j = 1, 2, ..., Nθ, (2)

where f represents a encoding function than encode the palm-
print line response into direction feature codes. θf represents
the special-designed direction feature map of the palmprint. In
general, most existing palmprint direction representations are
hand-crafted and thus need strong prior knowledge to engineer
them.

B. Binary direction code

The binary code based feature representation has been
widely used in pattern recognition work due to its high
robustness and low computational complexity. There have
also been extensive works that encode the direction features
of palmprint into binary codes. For example, the original

competitive code method used the direction index as the
feature code. To improve the computational efficiency, the
competitive code method further converted the direction index
code into three binary codes [31], which can be efficiently
matched and thus applicable in real applications. Moreover,
the binary based direction code representation shows good
robustness to illumination changes [18] and image rotation
of palmprint [36], which frequently affect the performance of
palmprint recognition. For these reasons, the binary encoding
is an effective scheme for palmprint feature representation. The
widely used binary encoding schemes include thresholding
operation [36] and sign function [7]. In this work, we propose
a feature learning-based method to learn binary direction code
for palmprint recognition.

C. Discriminant feature learning

Discriminant feature learning is to learn some mapping
functions that can convert raw data into discriminative feature
subspace. In recent years, a variety of discriminant feature
learning methods were developed, such as the subspace-
learning [40], dictionary-learning [41], transfer-learning [42],
metric-learning [43] and deep-learning [27][44]. Of them,
principal component analysis (PCA) and linear discriminant
analysis (LDA) are ones of the most representative discrim-
inant feature learning methods. Specifically, PCA is to learn
projection functions than make the data have the maximum
variances in the projected subspace. LDA is to learn a new
subspace where the samples have the maximized inter-variance
and meanwhile minimized intra-variances. To date, both PCA
and LDA criteria have been successfully used for palmprint
feature learning and recognition. For example, Ribaric et
al. [45] extracted the eigenpalm features of palmprint by using
the PCA principle. Wu et al. [46] proposed a fisherpalm
method based on the LDA scheme for palmprint recognition.
Rida et al. [47][48] proposed a hybrid palmprint recognition
method by first building incoherent sample dictionary based on
2DPCA and then extracting discriminative features using 2DL-
DA. Most existing learning-based methods learn palmprint
features from raw-pixels of palmprint images. In this work, we
learn novel and discriminative direction binary features from
direction-based convolution difference for palmprint recogni-
tion.

III. DISCRIMINANT DIRECTION BINARY PALMPRINT
DESCRIPTOR

In this section, we first introduce the convolution difference
vector of palmprint images. Then, we propose a discriminant
direction binary code learning method for palmprint feature
extraction and recognition.

A. Convolution difference vector

The conventional methods usually extract hand-crafted di-
rection features of palmprint image, which require strong prior
knowledge. In addition, the hand-crafted direction features
may not be the optimal discriminant features of palmprint
images. Based on these observations, in this paper, we propose
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to learn discriminant direction features for palmprint recog-
nition. Unlike the conventional direction-based methods that
directly encode the line responses of palmprint images, we
form a novel convolution difference vector for discriminant
direction feature learning. We first employ a bank of direction-
based templates to obtain the original convolution responses
of a palmprint and then generate the CDV for discriminant
direction learning. The following describes the details of the
CDV.

The Gabor filter is used as the direction-based templates
to extract the direction features of palmprint due to its good
2-D spectral specificity property as well as the impressive
performance in palmprint recognition [31]. Specifically, we
define twelve Gabor templates as [23][31] with evenly dis-
tributed directions, i.e., θj = (j − 1)π/12(j = 1, 2, ..., 12).
For these Gabor templates, the radial frequency in radians per
unit length and the standard deviation of the elliptical Gaussian
are empirically set to 0.0916 and 5.6179, respectively [23][31].
Then, the convolution response between the templates and
palmprint can be represented as:

cj(x, y) = G(θj) ∗ I(x, y), (3)

where G(θj) is the real part of the Gabor template with the
direction of θj). “∗” is the convolution operation, c represents
the convolution response result and (x, y) denotes a pixel of
the palmprint I . We obtain the CDV of a pixel by calculating
the convolution difference between a direction and the front
neighboring direction as follows:

CDV = [(c1− c12), (c2− c1), ..., (ck− ck−1), ..., (c12− c11)].
(4)

The size of the CDV is the direction number of the used Gabor
templates. Fig. 3 shows an example of generating the CDV.

Fig. 3. An example of how to form a convolution difference vector. For any
pixel of the palmprint, we convolve twelve Gabor templates with the palmprint
image to obtain a bank of convolution values. Then, the convolution difference
between the current direction and the front neighboring direction is computed
to form the CDV.

CDV measures the convolution differences between neigh-
boring directions so that it can better describe how direction-
based convolution response changes. It can be seen that the
CDV can implicitly denote the dominant direction features of
palmprint. Specifically, a positive CDV data means that the
convolution response on the current direction is stronger than
that on the “front” neighboring direction, and a negative one
denotes that its response is weaker than the “front” direction.

Hence, a positive CDV value following a negative one es-
sentially indicates a dominant direction feature. Therefore, the
multiple dominant directions of palmprint can also be precisely
depicted by the CDV. Moreover, the magnitude of the CDV
can represent the significance of the direction. In addition, the
mean of the values within a CDV is zero, which is suitable for
feature learning without extra zero normalization. Therefore,
the CDV contains rich and informative direction information
of a palmprint image. In this paper, we use the informative
CDV to a learn discriminant direction descriptor for palmprint
feature representation and recognition.

B. Discriminant direction binary code learning

Due to the fact that binary features are effective and robust
to local changes such as illumination and the promising effec-
tiveness of feature extraction of hash learning [49][50][51],
we aim to design a learning method to learn a bank of hash
functions that can convert the CDV into discriminant direction
binary codes. Specifically, given a set of training palmprint
images, we first calculate the CDVs of all pixels for each
palmprint image, and integrate them into a CDV matrix for
the image. Then, we concatenate the CDVs of all the training
palmprint images into a global training CDV matrix. Let
X = [x1, x2, ..., xN ]∈Rd×N be the global CDV matrix and xi

represents a CDV of a pixel, we aim to learn K hash functions
that can convert the CDV into binary codes as follows:

bi = 0.5×(sgn(WTxi) + 1K×1), (5)

where W = [w1, w2, ..., wK ]∈Rd×K is the projection matrix,
and bi∈{0, 1}K×1 is the binary direction code vector of a
CDV. 1K×1 is a column vector that contains K elements
with the values of 1. sgn(u) represents a sign function, which
converts u = [u1, u2, ..., uK ]T into the {0, 1}K×1 based on the
sign of each ui(i = 1, ...,K). Specifically, for each element
of u, sgn(ui) equals to 1 when ui > 0, and -1 otherwise.

Inspired by the PCA and LDA criteria, in the feature space,
we require that the variance of the learned binary codes
is maximized. Furthermore, the learned binary codes have
the maximized inter-class distance and meanwhile minimized
inter-class distance. To achieve these objectives, we formulate
the following objective function to learn the projection func-
tions:

wk = argmax
wk

J(wk)

=
N∑
i=1

||bi,k − b̄k||2 + 2λ
N∑
i=1

(
∑

xj∈Ω(xi)

||bi,k − bj,k||2

−
∑

xj′∈Υ(xi)

||bi,k − bj′,k||2),

(6)

where b̄k is the mean of the k − th binary codes of all the
CDVs. Both the Υ(xi) and Ω(xi) represent the CDV sets,
which have the same index as the xi in palmprint images. In
addition, the samples in Υ(xi) are from the same palm as the
xi, and the samples in Ω(xi) are from different palms. The
objective function has two terms with a trade-off parameter λ.
The objective of the first term is to maximize the variance of
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the learned binary codes making samples more separable in
an unsupervised manner. The second term is to maximize the
intra-class distance and minimize the inter-class distance of
the learned binary codes. The combination of these two terms
aims to learn the optimal discriminant direction features of
palmprint images. Fig. 4 depicts the basic procedure of the
direction binary code learning of the proposed method.

Fig. 4. An illustration of the proposed direction binary code learning model.

To optimize the objective function, we replace the l2−norm
distance metric in the second term with the sign function
multiplication, and reformulate the objective function of Eq.
(6) as:

J(wk) = J1(wk) + 2λJ2(wk)

=
N∑
i=1

||bi,k − b̄k||2 + 2λ
N∑
i=1

(
∑

xj′∈Υ(xi)

b̃i,k×b̃j′,k

+
∑

xj∈Ω(xi)

−(b̃i,k×b̃j,k)),

(7)

where b̃i,k = 2bi,k − 1 = sgn(wT
k xi). To our knowledge,

Eq. (7) is an NP-hard problem duo to the non-linear sgn(.)
function. According to [43][52], we can relax the sgn(.)
function to its signed magnitude. Thus, the first term of Eq.
(7) can be written in matrix form as follows:

J1(W ) = ||WTX −WTM ||2

= tr((WTX −WTM)(WTX −WTM)T )

= tr(WTXXTW − 2WTXMTW +WTMMTW ),

(8)

where M = [m,m, ...,m]∈Rd×N be the CDV mean matrix,
and m∈Rd×1 is the column mean vector of X . The second
term can be written in a compact matrix form as:

J2(W ) =
1

2
tr(WTXSXTW ), (9)

where S∈RN×N is a matrix indicating the correspondence of

X:

Sp,q =


1, if xq∈Υ(xp),
−1, if xq∈Ω(xp),
0, else.

(10)

For example, in Fig. 4, Si,j′ = 1, Si,j = −1 and Si,j′′ = 1.
As a result, the two criterions in the objective function can be
combined as:

J(W ) = J1(W ) + 2λJ2(W )

= tr(WTXXTW − 2WTXMTW +WTMMTW )

+λtr(WTXSXTW )

= tr(WT (XXT − 2XMT +MMT + λXSXT )W )

= tr(WTQW ),

(11)

where Q = XXT − 2XMT +MMT + λXSXT . Therefore,
the objective function can be rewritten as:

W = argmax
W

J(W ) = argmax
W

tr(WTQW ),

subject to : WTW = I.
(12)

Mathematically, Eq. (12) can be solved by finding the
maximum variance directions of Q, which is a typical eigen-
value problem. W = [w1, w2, ..., wK ] is the matrix that
comprises of the eigen-vectors corresponding to the top K
eigen-values of Q.

After the projection matrix W is obtained, a bank of
discriminant direction binary codes can be obtained for each
pixel of a palmprint. In other word, the proposed method can
extract at most K binary feature code maps for a palmprint
image. Fig. 5 shows some examples of the learned direction
binary feature code maps of the first to six levels. It can be
seen that the different levels of DDBC can extract different
kinds of binary features

Fig. 5. The learned discriminant direction feature maps. The first image is
a palmprint image. The second to seven ones are the learned DDBC maps of
the first to six levels, respectively.

C. DDBC-based palmprint descriptor

Palmprint images have obviously position-specific direction
features. For example, the principal lines and wrinkles of
palmprint have obvious direction features and comparatively
some flat region has superficial direction features. To address
this, we propose to use the block-wise statistics of DDBC as
palmprint representation. Specifically, we first learn the DDBC
features from a palmprint image. Previous studies [31][36]
have shown that six binary codes can achieve encouraging per-
formance. Inspired by this finding, in this paper, we extract six
DDBCs for each pixel of palmprint images, unless otherwise
stated. Then, we encode the binary feature DDBC codes of
each CDV into a real value. Third, we divide the DDBC fea-
ture map into non-overlapping blocks, and compute the DDBC
histograms for these blocks. Finally, all the DDBC block-wise
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features within the same palmprint are concatenated as the
global feature vector, named as discriminant direction binary
palmprint descriptor (DDBPD). Algorithm 1 summarizes the
procedure of the proposed method.

Algorithm 1 DDBPD
Input: Training sample set X = [x1, x2...xn], parameter λ,

binary code length K, a new palmprint image y.
Output: Feature mapping matrix W , the feature descriptor of

y
1: Forming the CDVs of X and y
2: Calculating the mapping matrix W based on the CDVs of

X using Eq. (12)
3: Computing binary feature codes of y based on W using

Eq. (5)
4: Forming the block-wise histogram-based feature descrip-

tor of y
5: return W and feature descriptor of the palmprint image

y.

In palmprint recognition, the similarity of two DDBPDs can
be measured by using the chi-square distance metric. Fig. 6
illustrates the pipeline of the DDBPD-based representation and
matching. In this paper, the local block size is empirically set
to 16×16 pixels.

Fig. 6. The pipeline of DDBPD-based palmprint representation and matching.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed DDBPD method
via extensive experiments on the four challenging contactless
palmprint image databases, including the CASIA, IITD, TJU
and HFUT databases. The CASIA and IITD databases are
employed to show the effectiveness of the proposed method
on palmprint identification, and the large-scale TJU and HFUT
databases are used to test the proposed method for palmprint
verification. All experiments were conducted on a PC with
double-core Intel(R) i7-7700 (3.60GHz), RAM 16.00 GB and
MATLAB 8.3.0 in Windows 10.0 operating system. In the
following, we show the detailed experiments and the results
on each database.

A. Databases

The CASIA palmprint database [53] contains 5,502 palm-
print images captured from 312 subjects, who provided 8
to 17 palmprint images for each palm. All of the palmprint

images were captured by using a normal CMOS camera fixed
on a specific-developed device without restricting the posture
and position of palms. Note that two individuals provided
no palmprint images in the CASIA database. In addition, a
palmprint image was wrongly labeled. As a result, we re-
formed the CASIA database with 5501 palmprint samples
collected from 310 subjects of 620 different palms to conduct
the experiments.

The IITD palmprint database [55] consists of 2,601 palm-
print images collected from 230 subjects of 460 different palm-
s. Each palm provided 5 to 6 palmprint images. Exceptionally,
one palm contained 7 palmprint images. All the samples from
the database were captured by a normal camera in an indoor
environment with circular fluorescent illumination around the
camera lens.

The TJU palmprint database [26] consist of 12,000 palm-
print images collected from 300 volunteers of 600 different
palms, including 192 males and 108 females. The samples of
each individual were collected in two sessions with an average
interval of about 61 days. 10 palmprint images were captured
from a palm in each session, and thus 20 palmprint images
were contributed for a palm in two sessions. All samples were
captured in a specific-devised device with free variations in
pose, rotation, scale and palm opening-degree.

The HFUT palmprint image database [18] contains 16,000
palmprint images collected from 400 individuals with 800
different palms. All samples were captured in two sessions
with an interval of around 10 days. Each palm of an individual
provided 10 palmprint images in one session, and thus an
individual provided totally 40 samples for both the left and
right palms in two sessions. Therefore, the HFUT databases
consist of 800 different palms of palmprint images and each
palm contains 20 samples. To the best of our knowledge, the
HFUT is the largest contactless palmprint image database.

Table I tabulates the basic information of the four palmprint
databases. In the following experiments, we use the ROI
segmentation method [8] to extract the ROIs of all palmprint
images and resize them into 64×64 pixels. Fig. 7 shows
some typical palmprint images selected from the four different
databases as well as the corresponding ROIs. It can be seen
that all samples captured under relatively free environments
have large intra-class variations in pose, rotation and transla-
tion.

TABLE I
DESCRIPTIONS OF THE CASIA, IITD, TJU AND HFUT PALMPRINT

DATABASES.

Database Total image
number

Individual
number

Palm
number

Image per
palm

CASIA 5,501 310 620 8∼17
IITD 2,601 230 460 5∼7
TJU 12,000 300 600 20
HFUT 16,000 400 800 20

B. Experiments on the CASIA database

In this experiment, we first form a training sample set by
evenly selecting different samples per each palm and use the
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Fig. 7. Some typical palmprint images selected from four different palmprint
databases. The first to fourth rows show the samples selected from the CASIA,
IITD, TJU and HFUT databases, respectively. For each row, the first two
images are the original captured palmprint samples and the last two images
are the corresponding ROIs.

rest as probe samples. Then, we perform projection functions
learning on the training sample set and apply the learned
projections on both the training set and probe set for feature
extraction. Lastly, we perform feature identification based on
nearest neighbor classifier. In this study, we form four training
sample sets by selecting k palmprint images from each palm
as the training samples and the rest as the test samples.
Specifically, we select the first k images from each palm, that
are the {1, 2, ..., k}− th samples of the palm, to form the first
training sample set. We select the last k palmprint images, that
are the {n−k+1, n−k+2, ..., n}−th samples, from each palm
forming the second training set. In addition, the third training
set selects the {1×step, 2×step, ..., k×step} − th palmprint
images from each palm, where “n” is the total sample number
of a palm and “step=floor(n/k)”. The forth training set consists
of the {n− k×step+1, n− (k− 1)×step+1, ..., n− step+
1} − th palmprint images of each palm. k is respectively set
as 3 and 4. For each training set, we calculate the average
identification accuracies for the corresponding probe set. We
empirically set λ in DDBC learning model as 0.1, and the
DDBC number as 6.

To better evaluate the proposed method, the popular feature
descriptor such as LBP and state-of-the-art direction-based
palmprint descriptors, including the competitive code [31],
ordinal code [35], E-BOCV [39], fast competitive code (Fast-
Comp) [20], LLDP [37], HOL [22], DoN [38] and DRCC [34],
were implemented. In addition, the recently published holistic
feature-based methods including the CR Compcode [26] and
E-SRC [48] were also executed. It is noted that both HOL and
LLDP have different implementations. Since different versions
of them achieve comparable performance, in this study, we
implemented the HOL algorithm based on Gabor filter and
implemented the LLDP algorithm based on the MFRAT tem-
plate with the LDN encoding scheme, respectively.

The proposed DDBPD method learns the discriminant fea-
tures from the CDV container. To show the distance between
the DDBPD and the CDV, we directly encode each CDV of

a palmprint image into binary code features by using sign
function for palmprint recognition. Specifically, each CDV
is encoded into twelve binary codes so that a palmprint
image can be converted into twelve binary code maps. Then,
the NN classifier with hamming distance is used for feature
identification.

Table II summarizes the rank-one identification accuracies
and the standard errors of different palmprint descriptors based
on different number of training samples (#Tr). It can be seen
from the table that the proposed method can achieve higher
identification accuracies than the state-of-the-art direction-
based palmprint descriptors. This is because our DDBPD
learns and encodes the data-adaptive discriminative directions
of palmprint as features when compared with the existing
hand-crafted descriptors. Compared with the LBP represen-
tation, the DDBPD is elaborately designed for discrimina-
tive palmprint feature extraction, so that better recognition
performance is obtained. In addition, the CDV-based palm-
print descriptor cannot achieve comparable accuracies as the
conventional direction-based methods such as the competitive
code and ordinal code. The possible reason is that the CDV-
based descriptor simply encodes the CDV values without any
feature learning and selection. Any code map of the CDV-
based descriptor with low discriminability possibly reduces
the performance of the CDV-based descriptor. However, the
promising performance of the DDBPD method demonstrates
that the CDV can provide informative data for discriminant
feature learning for palmprint recognition.

TABLE II
THE RANK-ONE IDENTIFICATION ACCURACIES AND STANDARD ERRORS

(%) OF DIFFERENT METHODS ON THE CASIA DATABASE.

#Tr k=3 k=4

CDV 78.7147±10.1303 82.8958±9.3751
LBP 73.2079±8.6587 76.6220±8.7438
Competitive code 82.2370±8.9281 85.9235±7.8811
Ordinal code 80.5822±9.2164 84.5747±8.4951
E-BOCV 82.1890±9.1595 85.6670±8.2822
FastComp 82.1065±8.6790 85.5511±1.8606
CR CompCode 85.6015±6.6451 87.2973±6.6287
E-SRC 82.0022±3.2431 84.9851±3.2685
LLDP 94.0632±2.9975 95.1437±2.6391
HOL 89.3677±5.7950 91.6414±4.8414
DoN 82.5935±7.5359 86.6396±8.8935
DRCC 84.9973±7.5017 88.2241±6.5620
DDBPD 95.4958±2.8050 96.4085±2.6860

The DDBC learning model contains one balancing pa-
rameter, i.e., λ. To evaluate the affects of the parameter on
discriminative feature learning, we test the performance of the
model with different values of λ. Specifically, we set λ as
0.001, 0.01, 0.1, 1, 10, 100 and 1000, respectively, based on
which we learn the projection matrix on the aforementioned
training sets. Then, we perform palmprint identification on the
corresponding probe sets and calculate the average recognition
rates, as shown in Fig. 8. It can be seen that the proposed
method achieves the optimal recognition performance when
λ is set to 0.1 and 1. In addition, the proposed method can
achieve comparable performance for different λ, showing good
robustness to the parameter.
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Fig. 8. The average rank-one identification accuracies of the proposed method
based on different values of λ on the CASIA database.

For the proposed method, the CDV is calculated on twelve
directions and thus the CDV size is 12. Thus, at most twelve
DDBCs can be learned for a point on a palmprint. In this
section, we test the performance of the DDBPD with different
DDBC numbers from 1 to 12, respectively. Fig. 9 depicts
the average identification accuracies of the proposed DDBPD
method on the aforementioned probe sample sets. It can be
seen that the recognition rate of the proposed method is rapidly
increased when the DDBC number increases from 1 to 6. After
that, the recognition rate is slowly improves. It is noted that
using more DDBCs will increase the size of the DDBPD as
well as the computational time. It is observed that the DDBPD
with DDBC numbers of 6 and 7 can achieve close to the
optimal recognition rate. Thus, we can set DDBC number as
6 to balance the recognition performance and the size of the
DDBPD.

Fig. 9. The average rank-one identification accuracies of the proposed method
using different number of DDBC on the CASIA database.

C. Experiments on the IITD database

In this experiment, we form two training sample set groups
by evenly selecting k samples per each palm as the training
sample sets, where k = 2 and k = 3, respectively. For k = 3,
the training sample set group contains four training sets which
are formed as the same scheme as subsection IV.B. For the
training sample set group with k = 2, we form four training
sets by selecting the {1, 1 + step} − th, {2, 2 + step} − th,
{n − step − 1, n − 1} − th and {n − step, n} − th samples
from each palm, respectively, where “n” is the total sample

number of the palm and “step = floor(n/k)”. Similar to
the comparison on CASIA, we also compared the proposed
method with LBP and state-of-the-are palmprint descriptors.
Table III lists the average rank-one identification accuracies
of different methods based on these training sample sets. It is
clearly seen that the proposed method outperforms the LBP
descriptor and the representative direction-based palmprint
recognition methods. This is possibly because our proposed
DDBPD is a data-adaptive feature representation of palmprint
images.

TABLE III
THE RANK-ONE IDENTIFICATION ACCURACIES AND STANDARD ERRORS

(%) OF DIFFERENT METHODS ON THE IITD DATABASE.

#Tr k=2 k=3

LBP 60.8268±1.8719 62.4898±4.3353
Competitive code 81.3801±0.2524 84.7257±2.7770
Ordinal code 79.2981±0.3699 82.8624±2.9090
E-BOCV 86.0351±0.4355 88.5340±2.3222
FastComp 82.3171±0.3308 85.8518±2.8928
CR CompCode 86.8828±0.8545 87.7969±2.5146
E-SRC 79.6508±4.2402 85.5872±3.1437
LLDP 93.7646±0.8193 94.8231±1.2276
HOL 91.7609±1.0536 92.6290±1.9416
DoN 81.7458±4.1719 84.8764±3.3412
DRCC 85.9176±7.4503 88.7797±2.7677
DDBPD 95.3599±0.3699 96.4373±1.1079

To evaluate the affects of the tradeoff parameter λ, we set it
with different values as 0.001, 0.01, 0.1, 1, 10, 100 and 1000,
respectively, and conduct palmprint identification. The aver-
age rank-one identification accuracies on the aforementioned
sample sets are shown in Fig. 10. It is seen that the proposed
method with λ = 0.1 and λ = 0.01 achieves the best accuracy.
Based on the experimental results and previous comparisons
in subsection IV.B, we empirically set λ = 0.1 in this paper.
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Fig. 10. The average rank-one identification accuracies of the proposed
method based on different values of λ on the IITD database.

Moreover, to find the optimal number of DDBC, we conduct
palmprint identification by using the proposed method with
different number of DDBC. Fig. 11 depicts the identification
result, which shows that the accuracy of the proposed method
is rapidly increasing at the beginning and slowly later. The
accuracies of the proposed method are very close to the best
when DDBC number is larger than 6, which is consistent to
the previous findings in subsection IV.B. In general, the DDBC
number exactly determines the size of the DDBPD, and thus
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heavily affects to the computational time cost. To balance the
accuracy and calculation burden, it is optimal to set the DDBC
number as 6 or 7 for the proposed method.

Fig. 11. The average rank-one identification accuracies of the proposed
method using different number of DDBC on the IITD database.

D. Experiments on the TJU database

In this section, we use the TJU database to evaluate the
performance of the proposed method on palmprint verification.
We follow the evaluation protocol in [26], which used the
samples captured in the first session forming the gallery
sample set and the samples of the second session forming the
probe sample set. Thus, both the gallery and probe sample sets
contain 6,000 palmprint images. We first learn the projection
functions on the gallery set. Then, we apply these functions
on both gallery and probe samples for feature extraction. In
the matching stage, we use the Chi-square distance to compute
the similarity of two descriptors.

In our verification experiments, each palmprint image in the
probe set is to match against all the samples from the gallery
set. If two matched palmprint images are from the same palm,
the matching of the two samples is named as a genuine match;
otherwise, defined as an impostor match. Then, we calculate
the false acceptance rate (FAR) and genuine acceptance rate
(GAR) to evaluate the proposed method. Fig. 12 shows the
ROC curves of FAR versus GAR obtained by the proposed
DDBPD method and the representative direction-based palm-
print recognition methods. For our DDBPD, we respectively
use 6 (dotted red line) and 7 (solid red line) DDBCs to form
the palmprint descriptors. Table IV lists the GARs of these
methods under the same settings of FAR=0.001 and FAR=0.1.
It is clearly seen that the proposed method can achieve better
performance than the compared methods, demonstrating the
effectiveness of the proposed DDBPD method on palmprint
verification.

In addition, Table V tabulates the identification accuracies of
these methods on the TJU database. It shows that the proposed
method with seven DDBCs can achieve the best accuracy on
the TJU database.

E. Experiments on the HFUT database

In the experiment, the palmprint images captured in the first
session, which are the first 10 images of a palm, are used
to form the gallery set. Correspondingly, the rest palmprint

Fig. 12. ROC curves of different methods on TJU database.

TABLE IV
THE GAR(%) WITH FAR=0.001 AND FAR=0.1 OF DIFFERENT METHODS

ON THE TJU DATABASE.

GAR (FAR=0.001) GAR (FAR=0.1)

Competitive code 85.1633 97.1150
Ordinal code 82.8283 95.3750
E-BOCV 77.9633 96.2586
FastComp 85.3350 96.6100
LLDP 86.3650 98.2550
HOL 82.0633 97.8717
DoN 84.9673 96.6836
DRCC 85.7150 97.2817
DDBPD(DDBCn=6) 88.2900 98.4800
DDBPD(DDBCn=7) 90.0517 98.6583

images collected in the second session are used as the probe
samples. Each probe sample is matched with all the samples
in the gallery set, and the GAR and FAR are computed. The
ROC of the proposed method and the representative direction-
based methods are shown as in Fig. 13. The corresponding
GAR on FAR=0.001 and FAR=0.1 are listed in Table VI. It is
seen that the proposed method with DDBC=6 (dotted red line)
and DDBC=7 (solid red line) outperforms most of the existing
methods. In particular, the proposed DDBPD with DDBC=7
can achieve the best GAR among the six compared methods
under the same FAR settings.

Moreover, Table VII tabulates the identification results of
the above compared methods on the HUFT methods. It shows
that the proposed method with DDBC=7 can achieve the best
identification performance than the other compared methods.

TABLE V
THE RANK-ONE IDENTIFICATION ACCURACIES (%) OF DIFFERENT

METHODS ON THE TJU DATABASE.

Methods Identification rate

Competitive code 96.2333
Ordinal code 96.2000
E-BOCV 96.8333
FastComp 97.1500
CR CompCode 98.4833
E-SRC 96.4500
LLDP 98.5000
HOL 95.2833
DoN 95.8333
DRCC 97.2500
DDBPD(DDBCn=6) 97.8333
DDBPD(DDBCn=7) 98.7333
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Fig. 13. ROC curves of different methods on the HUFT database.

TABLE VI
THE GAR(%) WITH FAR=0.001 AND FAR=0.1 OF DIFFERENT METHODS

ON THE HFUT DATABASE.

GAR (FAR=0.001) GAR (FAR=0.1)

Competitive code 83.1738 97.4963
Ordinal code 82.2825 96.8138
E-BOCV 77.3800 87.9900
FastComp 83.2825 97.3550
LLDP 83.1850 97.8375
HOL 82.8525 97.0300
DoN 80.4075 97.3125
DRCC 75.9000 95.9125
DDBPD(DDBCn=6) 80.9675 97.5450
DDBPD(DDBCn=7) 83.3450 98.0238

F. Noisy palmprint recognition

In practical applications, contactless palmprint images are
usually captured under open and free environments. This
means there is an inevitability that the captured palmprint
images suffer from some noise due to the influences of external
environment, image capture device and image processing. In
this subsection, we simulate the noisy palmprint images by
adding noise on the existing palmprint images to test the
performance of the proposed method. Specifically, we add the
Gaussian noise with the mean of 0 and the variance of 5 on
the images of the CASIA and TJU palmprint database, to form
two synthetic noisy palmprint image datasets. Fig. 14 shows
some typical samples of the synthetic noisy palmprint images.

TABLE VII
THE RANK-ONE IDENTIFICATION ACCURACY (%) OF DIFFERENT

METHODS ON THE HFUT DATABASE.

Methods Identification rate

Competitive code 96.9750
Ordinal code 97.0625
E-BOCV 93.1250
FastComp 96.9125
CR CompCode 96.7675
E-SRC 96.2750
LLDP 97.2500
HOL 95.9000
DoN 96.5125
DRCC 97.5750
DDBPD(DDBCn=6) 97.4875
DDBPD(DDBCn=7) 97.8625

Fig. 14. The examples of the noisy palmprint images. The images of the
first row are the noisy palmprint images corresponding to the samples of the
second row selected from the CASIA database. The images of the third row
are the noisy palmprint images corresponding to the samples of the fourth
row selected from the of the TJU database.

Then, we follow the protocols of subsections IV.B and
IV.D to conduct palmprint identification experiments on the
noisy CASIA and noisy TJU datasets, respectively. Table VIII
tabulates the identification results of different methods on these
two noisy palmprint image datasets. It can be seen that for each
dataset the accuracy of each method is lower than that on the
original palmprint database. In addition, the proposed method
always achieves a higher accuracy than the ten compared
method on each dataset. This demonstrates the effectiveness
of the proposed method for feature learning of noisy palmprint
images.

TABLE VIII
THE EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE NOISY

CASIA AND TJU PALMPRINT DATASETS.

Methods Noisy CASIA Noisy TJU

Competitive code 79.7515±9.6379 95.7167
Ordinal code 76.7715±10.4422 95.4833
E-BOCV 79.3464±10.2956 96.2000
FastComp 80.0948±9.3644 96.5833
CR CompCode 82.8108±7.1210 95.9667
E-SRC 80.9852±6.6868 95.7000
LLDP 89.4809±5.7044 97.0167
HOL 74.2928±8.4390 92.0167
DoN 80.2359±10.1584 95.4000
DRCC 83.4523±8.2040 96.8000
DDBPD(DDBCn=6) 89.7281±5.6344 96.4333
DDBPD(DDBCn=7) 90.1813±5.4713 97.3167

G. Discussion and computational complexity

The above comparative experimental results demonstrate the
proposed method achieves the best performance than state-of-
the-art palmprint descriptors on both palmprint identification
and verification. This is because the proposed method auto-
matically learns the discriminative features from informative
direction container, namely convolution difference vectors of
palmprint images. By contrast, the conventional palmprint
descriptors extract hand-craft direction features from the raw-
data of palmprint images. Moreover, the promising recognition
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accuracy achieved by the proposed method demonstrates the
feasibility of the hash learning-based methods on palmprint
recognition.

Compared with the existing hand-craft based methods, the
proposed method needs to learn a bank of projection functions
for discriminative direction feature extraction. To solve the
DDBC learning model, a relation matrix S needs to be
constructed. The size of S is proportional to the size of
palmprint images and the training sample number. Suppose
there are n images in the training set and each palmprint has
p pixels, the size of S is (p×n)2, and thus S is possible to be
a very large matrix. Note that S is a spare matrix containing a
large number of zeros, and the positions of both 1 and -1 can
be easily indicated. Therefore, we do not need to construct
the matrix in real calculation. Instead, we directly sum up
the values of these positions indicated by 1 and -1 in the
matrix, which could significantly reduce the memory storage
and computational time.

To test the computational cost of the proposed method,
we form a training sample set containing 100 samples and
computed the computation time of the feature extraction and
identification. Table IX shows the average feature extraction
and identification time of 100 query samples based on different
methods. The projection functions learning time of the pro-
posed method is about 52 s. It is seen that the proposed method
takes a litter more feature extraction time than other methods.
This is because the proposed method uses more direction-
based templates than the conventional methods. In addition,
the proposed method constructs CDV for feature extraction
and the conventional methods extract features from raw-data.
Note that the projection function learning of the proposed
method and the feature extraction of the training samples
can be performed offline in real applications. Therefore, the
efficiency of palmprint recognition heavily depends on the
feature matching time. It can be seen that DDBPD has a fast
matching speed and a complete identification time of a query
sample is less than 0.03 s, which is acceptable for real-world
applications.

TABLE IX
THE AVERAGE FEATURE EXTRACTION AND IDENTIFICATION TIME (S) OF

DIFFERENT METHODS.

Methods Feature extraction Identification

Competitive code 0.0126 0.0040
Ordinal code 0.0068 0.0204
E-BOCV 0.0134 0.0346
LLDP 0.0206 0.0034
DDBPD 0.0265 0.0020

V. CONCLUSION

In this paper, we propose a new direction binary code
learning method for palmprint representation and recognition.
We first form informative convolution difference vectors from
palmprint images, and then learn discriminant direction binary
codes from CDV. Finally, we pool the global block-wise
DDBC histograms as feature representation, namely discrimi-
nant direction binary palmprint descriptor, for palmprint recog-
nition. Experimental results on four benchmark contactless

palmprint databases demonstrate that the proposed method
achieves better recognition performance than state-of-the-art
palmprint descriptors. The reasonable good performance of
the proposed method also validates the effectiveness and
feasibility of the hash learning-based methods for palmprint
recognition. As the proposed method is a general feature
learning method, it is reasonable and interesting to apply
the DDBPD to other hand-based biometrics tasks such as
dorsal-hand-vein and finger-knuckle-print recognition to fur-
ther demonstrate its effectiveness. In addition, how to apply
the DDBPD model to further learn the discriminant features
form the existing hand-crafted palmprint descriptors such as
the competitive code seems to be another interesting direction.
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