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Abstract—The click feature of an image, defined as a user
click count vector based on click data, has been demonstrated to
be effective for reducing the semantic gap for image recognition.
Unfortunately, most of the traditional image recognition datasets
do not contain click data. To address this problem, researchers
have begun to develop a click prediction model using assistant
datasets containing click information and have adapted this
predictor to a common click-free dataset for different tasks.
This method can be customized to our problem, but it has two
main limitations: 1) the predicted click feature often performs
badly in the recognition task since the prediction model is
constructed independently of the subsequent recognition prob-
lem; 2) transferring the predictor from one dataset to another
is challenging due to the large cross-domain diversity. In this
paper, we devise a multitask and multidomain deep network with
varied modals (MTMDD-VM) to formulate image recognition
and click prediction tasks in a unified framework. Datasets with
and without click information are integrated in the training.
Furthermore, a nonlinear word embedding with a position-
sensitive loss function is designed to discover the visual click
correlation. We evaluate the proposed method on three public dog
breed image datasets, and we utilize the Clickture-Dog dataset as
the auxiliary dataset that provides click data. The experimental
results show that 1) the nonlinear word embedding and position-
sensitive loss function largely enhance the predicted click feature
in the recognition task, realizing a 32% improvement in accuracy;
2) the multitask learning framework improves accuracies in
both image recognition and click prediction; and 3) the unified
training using the combined dataset with and without click data
further improves the performance. Compared with state-of-the-
art methods, the proposed approach not only performs much
better in accuracy but also achieves good scalability and one-
shot learning ability.

Index Terms—Image recognition, Click prediction, Transfer
deep learning, Multitask learning, Word embedding.

I. INTRODUCTION

F INE-GRAINED image recognition serves as a core prob-
lem in the computer vision community. Though many

efforts have been made to improve the performance, the high
visual similarities among different categories still challenge
this task [1]–[3]. To address this issue, some researchers have
been focusing on utilizing user click data [4] for improved
image recognition.
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User click data, which is the human annotation for the
correlation of a query-image pair, has been demonstrated to be
effective for reducing the semantic gap in fine-grained image
recognition [4]–[6]. It consists of three parts: queries, images,
and the corresponding click count. Fig. 1 has visualized user
click data, wherein some clicked queries with corresponding
click count for three dog (top row) and bird (bottom row)
samples are shown. The correlation between images and
associated queries can be quantified by click count [5].

With click data, each image can be represented as a click-
count-feature-vector based on its clicked query/word set [3],
[7], e.g., term frequency-inverse document frequency (TF-IDF)
vector shown in Fig. 1. The nonzero elements in TF-IDF vector
can capture valuable image attributes. Compared with visual
features, the click feature not only easily describes semantics
but is also invariant to the changes of image conditions.

A. Motivation

Though the click feature is powerful, most existing
datasets do not contain user click data. Recently, Bai et al.
proposed a deep word embedding model to learn the visual
click correlation from an assistant user click data, and adapted
it to dataset construction tasks [7]. The word embedding model
is used for click feature regression from the visual feature
(shown in Fig. 3(a)), and is learned by minimizing the distance
between the regressed click feature and ground truth one.

One can consider this word embedding model as a click
predictor, and directly use it for image recognition tasks on a
common click-free dataset (refer to Fig. 2). However, it may be
problematical since the learning of click predictor and image
classifier are independent. Note that the prediction model is
learned only by minimizing the prediction error without any
supervised information for recognition, i.e., ground truth cat-
egory labels. This unsupervised learning framework decreases
the discriminant of the predicted click feature in recognition
tasks and may result in unsatisfactory accuracies.

B. Idea of Our Approach

To address these issues, we formulate the click prediction
and the image recognition tasks in a unified framework. A
click predictor is learned via jointly minimizing the predic-
tion and recognition error (refer to Fig. 3(b)), wherein the
combined softmax and `2 distance loss function is designed.
Note that softmax and `2 loss functions are utilized for image
recognition (plotted in purple-dotted box) and click prediction
(plotted in red-dotted box) tasks, respectively. We call the click
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Fig. 1. Visualization of some clicked queries and the corresponding click feature, namely TF-IDF vector, for three dog (top row) and bird (bottom row)
samples. The category name of each sample is listed below. For each TF-IDF vector, only a subset feature vector with respect to four word-items are shown.

Visual feature

Source dataset

Target dataset

Click predictor

Corelation learning

Softmax

loss
CONCAT

Click feature
Click data

Click feature

Visual feature

Fig. 2. Traditional pipeline of image recognition with predicted click feature.
It first learns a click predictor from an assistant dataset with click information,
then adapts the predictor to another click-free dataset for the recognition task.

predictor learned with only the `2 distance loss function (refer
to Fig. 3(a)) and the combined loss (refer to Fig. 3(b)) task-
independent and task-related learning, respectively. Compared
with the task-independent learner, the task-related learner
helps generate more discriminative click features since 1) it
provides additional supervised information for recognition,
i.e., the image category labels in softmax loss and 2) it is more
robust to noise. This is because the task-independent learners
try to enhance the click prediction accuracy on all image
samples even if they are noises, while for the task-related
learners, noises will likely be penalized with the softmax
loss (the noisy sample always has large recognition error).
In summary, we propose a novel image recognition approach
with a combined deep visual and predicted click feature, and
propose a multitask and multidomain deep network with varied
modals (MTMDD-VM) to learn both the deep visual feature
and click predictor. A multitask learning framework is devised
by minimizing the prediction and recognition error simultane-
ously. Additionally, to address the cross-domain diversity, we
combine both the datasets with (source) and without (target)
click data in a unified training framework. We call our model
MTMDD-VM since both the click prediction and recognition

tasks are simultaneously formulated and since the input images
are sampled from different domains with varied modals (one
containing click data while another being a click-free one).

Furthermore, to better model the visual click similarity, a
nonlinear word embedding with position-sensitive loss func-
tion is developed. The nonlinear word embedding handles the
isomerism of visual click feature spaces, while the position-
sensitive loss function improves the robustness of click predic-
tion against the heavy noise in the ground truth click-count-
vector. In MTMDD-VM, different loss functions are developed
for different subtasks. For the image recognition task, a cate-
gorical cross-entropy loss is designed on the combined visual
and click feature; for the click prediction task, both the count-
based and position-sensitive loss functions are developed on
the click feature space.

We conduct extensive comparisons and validations on
three challenging public datasets, which demonstrate the ad-
vantages of our method.

C. Contributions

The contributions of this work are threefold:

• It is the FIRST paper to address the image recognition
problem using the combined deep visual and predicted
click feature. A click feature predictor is learned with
the help of an assistant dataset that contains user click
data. The proposed method has good scalability and one-
shot learning ability even when the source and target data
originate from different objects.

• We devise a novel multitask multidomain deep neural
network with varied modals to simultaneously learn the
deep visual feature and click feature predictor. Both
the click prediction and image recognition tasks are
formulated into the problem. Datasets with (source) and
without (target) click information are combined in a
unified training framework, wherein the multiple domains
are with different input modals.
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Fig. 3. Click predictors trained with task-independent and task-related learners. The `2 loss and softmax loss are designed for click prediction and image
recognition tasks, respectively. The softmax loss is computed on the concatenated predicted click and visual feature.

• We propose a nonlinear word embedding with a position-
sensitive loss function to improve the robustness of click
prediction model. The nonlinear word embedding can
better handle the isomerism of visual click feature spaces.
The position-sensitive loss function helps to predict the
click position in addition to the actual click count for
images, which improves recognition accuracy as well as
generating a better click feature that is much closer to
the ground truth one.
The rest of this paper is organized as follows. Section II

discusses some related work. Section III describes our model,
including the formulation and training framework. Section IV
presents the experimental results. Finally, Section V concludes
our work and sketches several directions of future work.

II. RELATED WORK

A. Fine-grained Image Recognition

In terms of input data, research on fine-grained image
recognition can be categorized into two groups: 1) visual
feature-based recognition. It is challenging due to illumination
variations, view changes, occlusion, etc. In addition, semantic
gaps appear in visual feature-based recognition; 2) recogni-
tion from combined visual feature and image attributes. The
attributes are either distinctive object parts [8] or property de-
scriptors [9]. Recently, user click data are increasingly used as
the attribute annotations [4], [6]. Note that in most existing re-
search on click data-based recognition, image datasets already
contain user click information [4], [6], [10]. Unfortunately, in
practice, datasets that contain click data are extremely rare,
resulting in a large limitation for click data-based recognition.
Recently, some researchers started to construct click prediction
models and customize them to a common click-free dataset for
different tasks, e.g., retrieval, dataset construction [3], [7], etc.

B. Click Prediction

Research on click prediction can be summarized into at
least two categories: 1) Click completion. Predict the zero
items using the nonzero items in an incomplete click feature
vector. As shown in Fig. 4(a), for the input image x and its
corresponding “rough” click feature v, the predictor helps
to generate a dense click vector bv by estimating the zero
items. For example, Yu et al. proposed a multimodal sparse
coding to predict these zero items [10]; Tan et al. proposed
a similarity-based propagation method for this task [6]. One
large limitation of these methods is that a “rough” sparse click

feature is required in advance. 2) Click generation. Predict
the whole query click feature vector for each image. As shown
in Fig. 4(b), for the input image x, the predictor is used to
generate a click vector bv without any prior information. It is
a challenging task since the visual click feature correlation is
required to be learned. This problem is RARELY studied but
of great help for image recognition, since most of existing
recognition datasets contain NO click data.

Closely related techniques for click generation/prediction
can be roughly summarized into the following groups:

1) Transfer Learning. With this method, a click predictor
is first learned from one dataset and then adapted to other
datasets for different tasks, such as recognition, retrieval, etc
[11]. Due to the powerful transferability of the convolutional
neural network, many researchers focus on transferring the
learned convolutional features to different tasks. For example,
Bai et al. proposed a deep neural network to learn the image
query correlation using click data, and transfer it to a dataset
construction task with query-dependent categories [7]. Note
that, the transferability of features in different layers varies
considerably [12], such that the performance of model transfer
is greatly influenced by the used feature layers.

2) Multitask/multidomain Learning. It differs from con-
ventional transfer learning approach in handling different
domains/tasks simultaneously. Early researchers focus on mul-
titask learning in a single domain, wherein different tasks are
formulated in a unified framework [13], [14]. Others employed
domain adaptation schemes to construct a transferable model
on the combined multidomain dataset, including the adver-
sarial network [15]–[18], domain alignment [19]–[23], and
weight sharing [24]–[26], etc. Recently, inspired by advantages
of deep learning in addressing large-scale and multisource
datasets, there is an increasing number of learning of multitask
and multidomain deep learning (MTMDD) methods [27]–[29].
In MTMDD, a combined dataset from several domains was
utilized to optimize multiple tasks simultaneously. Note that in
existing MTMDD methods, different domains share the same
input modals, but differ in feature distribution or annotation
degree (well-labeled data in the source while partially labeled
in the target). However, in our problem, datasets are all well-
labeled in different domains but with different input modals,
i.e., one containing both visual and click features while another
being a click-free one.

To the best of our knowledge, this is the FIRST paper
to jointly use both the deep visual and predicted click feature
for image recognition, wherein a multitask multidomain deep
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(a) Click completion (b) Click generation

Fig. 4. Two kinds of click prediction models. The former predicts the zero items in an incomplete click feature vector, while the later predicts the whole
click feature vector without any prior information

neural network is constructed to learn both the deep visual
model and click predictor. Datasets with multiple domains and
multiple modals are combined in a unified learning framework.

III. IMAGE RECOGNITION WITH PREDICTED USER CLICKS

As aforementioned, we utilize the combined deep visual
and predicted user click feature for image recognition, wherein
a visual click correlation model is learned for click prediction
from the visual feature. Recently, Bai et al. utilized an assistant
dataset with user click data to learn this visual click correla-
tion, and adapted it to dataset construction tasks [7]. One can
consider this visual click correlation as a click predictor, and
customize it to the current click-free dataset for recognition.

It is worth noting that directly applying these predictors
in another dataset may be problematic. This occurs because
of the cross-domain and cross-task variance, where the pre-
dictor learned for prediction tasks on the source domain may
be inapplicable for recognition tasks on the target domain.
Additionally, the input from different domains is with different
modals, i.e., input for the source domain is image-click pairs,
while only images serve as the target domain input. To address
these problems, we propose a novel multidomain and multitask
deep learning framework to learn both the deep visual feature
and click predictor. In addition, to better learn the visual click
correlation, we design an improved word embedding model by
integrating a nonlinear transformation and position-sensitive
loss function. In this subsection, we first describe the user
click feature of images, then introduce image recognition with
conventional transfer deep learning, and finally introduce our
MTMDD-VM approach in detail. The major notations used in
this paper are listed in Table I.

A. User Click Feature of Images

The user click feature captures semantic content in im-
ages, and it is generated from user click data [5]. We describe
the generation of the click feature from click data below.

Similar to [5], we represent each image as a query click
feature vector based on query click frequency. To address
the high dimensionality and semantic redundancy in queries,
we follow [7] and generate the click feature of images using
keyword click frequency instead of query click frequency. The
user click feature helps to handle the subtle visual differences
among categories in fine-grained recognition tasks, which is
an important issue in traditional visual-based approaches.

In particular, we denote the query click matrix by Cs,
with each row as the query click frequency vector for one
image. Qs denotes all the clicked query sets in the source
domain. Inspired by [7], we construct the ground truth click

Word 

segmentation

Fig. 5. Generation of click feature from user click data via the TF-IDF
algorithm, wheree K′ denotes the number of all segmented words.

feature v for source images with Cs and Qs. It is generated
by following steps via the TF-IDF algorithm:

• Obtain the word set f(wi,ρ
′
i)ji = 1, 2,...,K′g1 by query

formation on Qs, and create a vocabulary Vs with K top
clicked words. Additionally, each query set ζj containing
word Vsj is obtained.

• Generate a word click matrix C′
s using Cs and ζj , with

its element c′si,j =
P
k∈ζj

csi,k.
• Compute the ground truth click feature v via the TF-IDF

algorithm [30]. The j-th element in the ground truth click
feature for image i, i.e., vji , is defined as follows:

vji =
c′

s
i,jP
j c
′s
i,j

log
1

ρj
, ρj =

P
i I(c′

s
i,j)

n
, (1)

where ρj denotes the percentage of images with a nonzero
click count on Vsj , I(x) is 1 (0) when x 6= 0 (x = 0), andP
i I(c′

s
i,j) is the number of images clicked under Vsj .

The generation of the click feature from user click data
is illustrated in Fig. 5, wherein a vocabulary Vs with the top
click frequencies is created.

B. The Conventional Transfer Deep Learning (TDL)

Given a target image dataset It with n′ images x and
their category labels y 2 Y , our task is to learn the deep visual
feature ϕϕϕ and the predicted click feature bv for image recog-
nition. We introduce an assistant dataset Is (source dataset)
with click information to learn the visual click correlation via a
word embedding [7] so that we can utilize it to predict the click
feature from the visual feature for target images. The transfer
deep learning-based recognition is divided into two successive
subproblems, i.e., click prediction and image recognition.

1ρ′i summarizes the click count under all queries containing wi.
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TABLE I
MAJOR NOTATIONS AND DEFINITIONS.

Notation Definition
Ys,Yt,Y Category label set for source, target, and the combined domain, respectively.

Is = {(xi, yi,ui)|1 ≤ i ≤ n} Source domain dataset containing n images x with labels y ∈ Y and query-click vector u ∈ Rm.
Qs = {(qi)|1 ≤ i ≤ m} Associated query set with m queries q in source domain.
Vs = {(wi)|1 ≤ i ≤ K} Vocabulary with K frequently clicked words generated from Qs by query formation.

Cs ∈ Rn×m,C′s ∈ Rn×K Click matrix in source domain, where csi,j (c′si,j ) is the click count of xi under query qj (word Vs
j ).

It = {(xi, yi)|1 ≤ i ≤ n′} Target domain dataset containing n′ images x with labels y ∈ Y .
θθθ1,E Visual feature functions and linear word embedding matrix trained on source domain with TDL.
θθθ2 Parameter for the whole deep network fine-tuned on the target domain with TDL.
θθθ The whole deep network parameter trained on combined source and target domains with MTMDD-VM.
α, λ Parameter for weight decay and tradeoff between prediction and recognition error.
τ Tradeoff between click count-based loss function and position-sensitive one.
µ Weight for loss functions on target domain with respect to source domain.

E1 Convolutional transformation in the nonlinear word embedding function.
E2,E3 Two fully connected mapping matrixes in the nonlinear word embedding function.

v, bv The ground truth and predicted click count feature vector.
vb, bvb The ground truth and predicted click position feature vector.
B, T Bandwidth and error threshold in converting the click count vector to a click position one.

`p(v, bv) Distance error of predicted click feature bv with respect to the ground truth one v.
`c(y,o) Softmax loss with output o when ground truth category is y.
ωωω,ϕϕϕ The final deep visual feature and deep visual feature output from “ConvNet” in Fig. 8.
φφφ The combined deep visual and click feature vector.
N ,N ′ Batch normalization and `2 normalization operator.

1) Learning the Click Predictor. As shown in Fig. 3(a),
using the source dataset Is, we learn a predictor with a deep
network and word embedding [7]:

fθθθ∗1,E∗g = argmin
θθθ1,E

fα
2

(kθθθ1k2
2 + kEkF ) +

1

n

X
xi∈Is

`p(vi, bvi)g,
s.t.

� bvi = E � θθθ1(xi),

`p(vi, bvi) = kN ′(vi)�N ′(bvi)k2
2 .

(2)
where `p is prediction loss computed by the `2 distance on `2-
normalized click count vector, θθθ1 are feature functions based
on the deep convolutional neural network, E is the matrix
encoding the word embedding function, and kEkF denotes the
Frobenius norm of E. In (2), the prediction error of predicted
click feature against the ground truth one is minimized.

Let h(�) be the click feature predictor composed of θθθ∗1 and
the word embedding matrix E∗. The predicted click feature bv
is obtained as follows:

bvi = h(xi) = E∗ � θθθ∗1(xi). (3)

Similar to [7], the word embedding layer E∗ can be designed
after convolutional layers of VGGNet [31] by performing a
linear transformation on visual features.

2) Learning Recognizer. With the learned click predictor
h(�), we learn a deep neural network-based classifier in target
domain It. The deep learning problem is formulated as
follows:

θθθ∗2 = argmin
θθθ2

fα
2
kθθθ2k2

2 +
1

n′

X
xi∈It

`c(yi,oi)g,

s.t. `c(yi,oi) = � log(
eoyiP
j∈Y e

oj
),

(4)

where θθθ2 encodes the whole deep network parameter fine-
tuned in the target domain, `c(yi,oi) is softmax loss for

image i, and oi is the output probability distribution over each
category computed on image representation φφφi. Note that φφφi
can be either the predicted click feature bvi or its combination
with deep visual feature ϕϕϕi as follows:

φφφi = [ϕϕϕi, bvi] = [ϕϕϕi,E
∗ � θθθ∗1(xi)]. (5)

Note that θθθ∗1 and E∗ are the learned click predictors on the
source dataset (refer to (2)).

C. The Proposed Model: MTMDD-VM

The TDL model presented in Section III-B has difficulties
addressing multitask problems with datasets that are multido-
main and multimodal; therefore, we propose the following
multidomain multitask deep model framework for our prob-
lem. Different from TDL, we integrate the training images in
both source Is and target It domains and learn a unified deep
neural network θθθ for both the click prediction (θθθ1 in (2)) and
the image recognition (θθθ2 in (4)) part.

We formulate our problem as follows:

θθθ∗ = argmin
θθθ

J(θθθ)

= argmin
θθθ
fα

2
kθθθk2

2 +
1

n+ n′

X
xi∈I

`(yi,oi,vi, bvi)g, (6)

where I is the union of the source Is and target It domain,
`(yi,oi,vi, bvi) is the loss value for image xi with output
oi and predicted click feature bvi, when the ground truth
category label and click feature are yi and vi, respectively.
θθθ encodes the whole network parameter, which summarizes
the deep convolutional neural network, the word embedding
functions, and the related layers in the feature combination,
e.g., normalization and RELU operators.

Note that the first term in (6) is the regularization term,
which trades an `2 penalty on the parameters of the whole
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Fig. 6. The proposed nonlinear word embedding model compared with the
traditional linear one. In nonlinear word embedding, the deep visual feature
φφφ is transformed to a click count feature bv by a convolutional transformation
E1, two word embedding matrixes E2, E3, and a nonlinear operator f(·).

network; the second term tries to minimize both the prediction
and recognition error. For x 2 Is, v is defined exactly as in
Section III-A, while for x 2 It, we define the ground truth
v = 0, since no ground truth click feature v is given.

The final image representation φφφ is generated by concate-
nating the deep visual feature ϕϕϕ and predicted click feature bv:

φφφ = [N (ϕϕϕ),N (bv)], (7)

where N (�) is the batch normalization operator to address the
scale variance between the visual feature and click one.

The main differences between our model and the tradi-
tional TDL (refer to Section III-B) lie in two aspects: the
multitask learning framework and the unified training with
cross-domain cross-modal datasets. In additional to the transfer
framework, we propose an improved click prediction model.

1) Improved Click Prediction Model. We propose an
improved click prediction model by integrating a nonlinear
word embedding structure and position-sensitive loss function.

a) Nonlinear Word Embedding. Note that the linear word
embedding function (refer to Fig. 6(a)) in (3) may have diffi-
culty addressing the isomerism of the image visual and click
feature spaces. To address this issue, we propose a nonlinear
word embedding by adding several nonlinear transformation
layers in the network. As shown in Fig. 6(b), we design an
additional “convolutional” transformation (CONV) and two
fully connected transformations (biFC) in the nonlinear word
embedding function, and the corresponding mapping matrixes
are denoted by E1, E2, and E3. In addition, a nonlinear
“RELU” operator f(�) is employed to filter out the negative
word frequencies. Using nonlinear word embedding functions,
the click feature bv is predicted as follows:

bv = E3 � f(E2 �ϕϕϕ′),ϕϕϕ′ = E1(ωωω), (8)

where ωωω denotes the output of the deep convolutional network
(“ConvNet” in Fig. 8). Note that E1 encodes the “convo-
lutional” transformation, which summarizes the convolution,
pooling, and “RELU” operator.

b) Position-sensitive Loss Function. Similar to (2), the
click prediction error can be evaluated by the Euclidean dis-
tance between the predicted and ground truth click feature in
terms of click count. However, for each image-query pair, the
click counts collected from the search engine often have too

much noise, making training the click predictor by minimizing
the prediction error in the click count sensitive to noise.
Additionally, in practice, predicting the word set for an image
with a nonzero click-count is sometimes more meaningful than
the actual click count vector. Therefore, in addition to the
distance error function on the click count, we propose a relaxed
loss function to measure the prediction error on the word set
with a nonzero click count, namely, the click position:

èp(vi, bvi) =
���fA [ bAgnfA \ bAg��� ,
s.t. A = fjj(vi)j 6= 0g, bA = fjj(bvi)j 6= 0g,

(9)
where jAj denotes the cardinal number for set A, and AnB
is the difference set of A to B. Since (9) measures the error
on the position of nonzero items in the predicted click count
vector, we call it the position-sensitive loss function.

By introducing an `2-normalized binarized function S(�),
we re-write (9) as the approximate click position loss function:

èp(vi, bvi) = kS(vi)� S(bvi)k2
2 ,

s.t. S(x) = N ′([xb1, ...,xbK ]),xbj =

�
1,xj 6= 0
0,xj = 0

,

(10)
let vbi = S(vi) and bvbi = S(bvi) be the click position feature
vectors corresponding to vi and bvi, respectively. Note that
S(�) in (10) is a piecewise discontinuous function (refer to
Fig. 7(a)), which is not differentiable everywhere. To facilitate
the backpropagation for èp, we replace S(�) in (10) by a
smooth normalized binarized function bS(�) using the following
sigmoid function (refer to Fig. 7(b)):

bS(x) = N ′( 1

1 + exp(�a(x� B
2 ))

), a =
2

B
ln(

1� T
T

). (11)

Compared with S(�), the differentiable function bS(�) not
only facilitates backpropagation during training but is also
robust to precision-related errors. Note that the predicted click
feature is obtained by word embedding, which involves many
multiplication operations on float values. Therefore, element
values in the predicted click vector may be extremely small but
not exactly zero. Such precision-related error can be handled
by the two slack variables B and T in (11).

Using the position-sensitive loss function èp, we replace
the count-based loss function `p in (2) with the following
combined loss function b̀p:b̀p(vi, bvi) = (1�τ) kN ′(vi)�N ′(bvi)k2

2+τ
bS(vi)� bS(bvi)2

2
,

(12)
where τ is the combination weight. In (12), prediction error on
both the click count (first term) and the click position (second
term) are minimized, whereas in (2), only the prediction error
on the click count is constrained.

To ensure that the gradient trend is unchanged after
integrating the position-sensitive loss function, τ should be
controlled so that gradient magnitude of the weighted count-
based loss function (first term in (12)) is similar to that of
the weighted position-sensitive one (second term in (12)).
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(a) Indicator (b) Sigmoid

Fig. 7. Indicator function and its approximated sigmoid function in position-
sensitive loss function. B and T , respectively, control the bandwidth and
truncation threshold in converting the click count vector to a click position
one.

To overcome the vanishing gradient problems, we perform
batch normalization on the input of the sigmoid transforma-
tion (“SIGMOID” in Fig. 8), since batch normalization helps
training a network with a sigmoid function efficiently [32].

2) Multitask Learning Framework. As aforementioned,
the predictor learned by minimizing the prediction error may
not be optimal for the recognition task; thus the prediction
and recognition tasks should be considered simultaneously in
learning click predictors. To address this issue, we employ
the multitask learning framework and design a multitask loss
function to minimize the prediction and recognition error
simultaneously. The loss function is designed specifically for
the source dataset with click information and is defined as the
combination of the `2 distance and softmax loss as follows:

`(yi,oi,vi, bvi) =�(1� λ) log(
eoyiP
j∈Y e

oj
) + λb̀p(vi, bvi),

s.t. xi 2 Is,
(13)

where λ is the tradeoff weight between prediction and recog-
nition error.

Note that the multitask learning framework can also be
introduced into (2). By slightly revising the loss function
`p(vi, bvi) in (2), we can construct an improved multitask
transfer deep learning (MTTDL) model as follows:

`p(vi, bvi) =� (1� λ) log(
eoyiP
j∈Y e

oj
)

+ λ kN ′(vi)�N ′(bvi)k2
2 .

(14)

3) Multidomain Multimodal Training. In our problem,
samples from the source Is and target domain It differ in
the input modal. The click data are contained only in Is, but
absent in It. We design a unified training framework with the
cross-domain and cross-modal samples, and the loss function
for samples in different domains is defined as:

`(yi,oi,vi, bvi) =

(
λb̀p � (1� λ) log( eoyiP

j2Y e
oj ), xi 2 Is

�µ log( eoyiP
j2Y e

oj ), xi 2 It.
(15)

D. The Proposed Model Structure

Using the improved click feature predictor and unified
training strategy, we design our multitask and multidomain
deep network as shown in Fig. 8 It learns a click prediction
model and deep visual feature simultaneously. Datasets from

multiple domains and modals are combined in the training. A
nonlinear word embedding with a position-sensitive loss func-
tion is integrated to better learn the visual click correlation.

In Fig. 8, “ConvNet”, “Nonlinear Word Embedding”, and
“FC” are particularly designed for visual feature extraction,
click prediction, and recognition tasks, respectively. As the
low-level feature space and visual click correlation are rel-
atively stable in different domains, we employ the shared
“ConvNet” and “Nonlinear Word Embedding” models across
different domains, i.e., the two word embedding modules
printed in red in Fig. 8 share the same parameters.

For “FC” layers, they can either have the same or
different parameters in the two domains. Intuitively, sharing
the “FC” layers seems to better capture the domain variance
in transferring. However, when the recognition tasks differ
considerably in multiple domains (the category sets differ
considerably), constructing the same “FC” layers across dif-
ferent domains may be improper. For a better explanation, we
denote the proposed model with different/shared “FC” layers
in multiple domains as MTMDD-VM/MTMDD-VM*.

E. Extension for Unseen Category Recognition

In practice, a click dataset that contains the same cate-
gories as target one may not exist. Therefore, we present an
extension of our method, namely, unseen category recognition.
In the unseen category recognition scenario, an assistant source
click dataset containing a different category set is employed
to learn the visual click relationship, then adapted to the
recognition task in the target one. For this task, we construct
a simple yet efficient loss function by replacing the softmax
function in (15) with the following one:

`(yi,oi,vi, bvi)
=

(
λb̀p(vi, bvi)� (1� λ) log( eoyiP

j2Ys e
oj ), xi 2 Is

�µ log( eoyiP
j2Yt e

oj ), xi 2 It,
(16)

where µ is the weight for loss functions on target domain
with respect to the source domain. Ys and Yt (Yt 6= Ys)
denote the category set in the source and target domain,
respectively. For unseen category recognition, the source and
target data can originate from the same (with different classes)
or different objects, and we call them out-of-class and cross-
object recognition, respectively.

IV. EXPERIMENT

We conduct extensive comparisons and validations in this
section2. First, we show the experimental settings, including
data preprocessing and feature generation. Second, we evaluate
three main components in MTMDD-VM, i.e., the improved
click prediction model, the multitask learning strategy, and
the multidomain multimodal training. Both the nonlinear word
embedding and position-sensitive loss function are evaluated.
Third, we compare MTMDD-VM with many state-of-the-art
methods. Finally, we demonstrate the scalability and one-shot
ability of the proposed method. Specifically, to better evaluate

2The code can be downloaded from https://github.com/GYxiaOH/caffe.
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Fig. 8. Pipeline of our image recognition with the deep visual and predicted click feature. With the help of an assistant dataset containing click information,
a deep visual model and click feature predictor are jointly learned. To address the cross-domain variance, datasets with (source) and without (target) click
information are combined in the training. The prediction and recognition errors are minimized simultaneously.

the scalability to unseen categories, source and target data that
originate from the same (out-of-class recognition) and different
objects (cross-object recognition) are both tested.

Similar to [33], we combine three frequently used dog
breed datasets, i.e., Stanford-Dog [34], the Columbia-Dog3,
and the ImageNet-Dog validation set [35] to evaluate the
proposed approach. The three datasets serve as target domain
dataset since none of them contain click data. We call the target
dataset a “click-free” dataset in the following part. Specifically,
we utilize the Clickture-Dog [4] as the source domain dataset,
which is used to learn the click predictor.

For image recognition tasks, the recognition accuracies on
the test set of both the source and target domains are evaluated,
which are denoted by “Acc-S” and “Acc-T”, respectively; for
click prediction task, we test the root-mean-square prediction
error (denoted as “RMSE-S”) on the test set of the source
dataset, which contains ground truth click information.

A. Experimental Settings

In this section, we introduce the used preprocessing for
datasets in both domains and the ground truth click feature
generation on the source dataset.

1) Data Preprocessing. The source Clickture-Dog
dataset consists of dog images of 344 categories. To ensure
a valid training/testing split, we filter out the categories that
contain less than 3 images, and obtain a dog breed dataset with
95, 041 dog images of 283 categories. For the collection of the
target dataset, we combine three frequently used dog dataset-
s, namely Stanford-Dog, Columbia-Dog, and ImageNet-Dog.
Finally, we collect 12, 358 dog images of 129 categories.

3http://faceserv.cs.columbia.edu/DogData/

We conduct data cleaning on the target Clickture-Dog
dataset to adress the heavy noises in its associated click data.
Additionally, with no publicly available training/testing split,
we split both the source and domain datasets ourselves.

The data cleaning procedure is similar to [33]. First, using
the original Clickture-Dog dataset, we train a dog classifier by
fine-tuning the VGGNet-19, which is pretrained on ImageNet.
Second, we filter out the noisy images based on both the click
count and the probability in the dog classifier. Due to the large
unbalance in data frequency among different categories, we
slightly adjust the probability threshold used in [33] in filtering
out noisy images. The used probability thresholds in different
categories are listed in Table II. Note that “First”/“Second”
in the table denotes the images with highest/lowest 50% click
count (refer to [33]). After image filtering, we obtain 32, 691
dog images for the source Clickture-Dog dataset.

In Clickture-Dog, we filter out the dog images in cat-
egories that are absent in the target data since: 1) category
differences in multiple domains may result in a large data
distribution difference, therefore, the visual feature and visual
click correlation models trained with all source categories may
be inapplicable for the target domain; and 2) utilizing all
categories in Clickture-Dog poses difficulties in generating a
word vocabulary suitable for both domains. The vocabulary
built in the source domain may be improper to describe target
images, while that built in the target domain makes the ground
truth click feature of some source images be zero vectors.

Furthermore, to ensure data balance, we randomly select
300 images for a category that contains more than 300
samples. Finally, we obtain 19, 833 dog images on source
dataset. With no available training/testing sets for the used
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TABLE II
PROBABILITY THRESHOLD USED IN FILTERING OUT NOISY IMAGES FOR

DIFFERENT CATEGORIES. n IS THE IMAGE NUMBER IN A CATEGORY.

Category size n < 8 8 ≤ n < 100 100 ≤ n < 300 n ≥ 300
Click count All First Second First Second First Second
Probability All < 0.2 < 0.4 < 0.3 < 0.5 < 0.4 < 0.6

dataset4, we randomly split both the source and target datasets
into three parts: 50% for training, 25% for validation, and 25%
for testing. The final reduced datasets and the corresponding
splits are publicly available5.

2) Click Feature Generation. Similar to [7], we generate
the ground truth click feature via the TF-IDF algorithm. First,
using all queries with a nonzero click count in the source
dataset, we obtain 39, 482 words by word segmentation on the
queries. Second, we select 1, 000 word items with the largest
click count to generate a word vocabulary. Finally, we generate
a 1, 000-D ground truth click feature for each image using its
clicked words and vocabulary with TF-IDF algorithm.

B. Components of MTMDD-VM

There are three important components in MTMDD-VM:
improved click predictor, multitask learning framework, and
the multidomain multimodal training. We evaluate the effect
of each component in this section.

1) Improved Click Predictor. Note that in MTMDD-
VM, the predicted click feature is combined with the deep
visual one in recognition. To better illustrate the benefit of the
improved click prediction model, we first test the recognition
accuracies only with predicted click feature. Two components
in the improved click predictor, i.e., the nonlinear word em-
bedding and the position-sensitive loss function, are evaluated.
Afterwards, we combine the predicted click feature with the
deep visual feature in the recognition task. In this subsection,
the conventional transferred deep learning framework (TDL in
Section III-B) is employed, wherein a click predictor is first
trained on source data and then applied on the target one.

a) Nonlinear Word Embedding. Compared to [7], in the
word embedding model, we add a convolutional layer and fully
connected layer before the original linear word embedding
layer to increase nonlinearity. We first investigate different
kernel sizes and numbers in the convolutional layer. The
recognition accuracies with varied convolutional kernels are
shown in Fig. 9, wherein both source and target domains
are tested. It can be observed that a larger kernel size often
yields better results. A reasonable explanation is that the
click feature captures high-level semantical information, which
should be better transformed from a visual feature with more
global information. Intuitively, a larger convolutional kernel
size often introduces relatively global features. To maximize
the performance, in the following experiments we set the
kernel size and number as 3� 3 and 1, 024, respectively.

4The training/testing split in [33] is not publicly available.
5The used dog dataset can be downloaded from https://pan.baidu.com/s/

1vUAvlpB-8ZcafN0Gh1scDw.
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Fig. 9. Recognition accuracies using different convolutional transformations
with varying kernel size and number. Both source and target domains are
tested.

TABLE III
RECOGNITION ACCURACIES USING TRANSFERRED DEEP NETWORKS
(REFER TO FIG. 3(A)) WITH DIFFERENT WORD EMBEDDING MODELS.

MULTIPLE NONLINEAR OPERATORS ARE EVALUATED. BOTH SOURCE AND
TARGET DOMAINS ARE TESTED.

Model Linear Nonlinear
FC biFC CONV+FC CONV+biFC

Acc-S (%) 63.0 68.7 68.9 70.3
Acc-T (%) 44.2 54.0 51.6 57.3

In addition, we also test the performance of the biFC
structure (two fully connected layers with the RELU operator)
in nonlinear word embedding. The result is shown in Table III.
It is found that both the convolutional and biFC layers improve
the performance of the traditional linear word embedding mod-
el, i.e., using a single “FC” layer. In the following experiments,
we employ the nonlinear word embedding with the combined
convolutional and biFC layers.

b) Position-sensitive Loss Function. There are three param-
eters in the position-sensitive loss function (12): bandwidth
B, truncated threshold T , and the combination weight τ . It is
found that T have little impact on recognition accuracy.

With fixed τ = 0.1 and T = 0.1, we investigate the effect
of B, and the result is shown in Table IV. In addition to the
recognition accuracies in both domains, we also list the ratio
of input elements to the sigmoid transformation that falls into
range [0,B] (denoted by “Ratio” in Table IV). Note that the
optimal B “seems” small, and the reason is twofold: 1) a large
B easily brings in a click position vector far away from the
ideal one. Note that elements of an ideal click position vector
should be 0 or 1, which can be converted from the click count
one with an indicator function shown in Fig. 7(a). The sigmoid
transformation is designed to replace the indicator function in
order to address its discontinuity. Therefore, to generate an
ideal click position vector, B should be controlled to be small
so that the sigmoid transformation can better approximate the
distribution of the indicator function; and 2) the value of B
should be set based on the input distribution of the sigmoid
transformation. Owing to the batch normalization operation,
the input elements of the sigmoid function have already been
scaled to a small value. Compared with the input of the
sigmoid function, B is not very small when B = 0.01, and
the recognition accuracy is damaged if B further decreases. As
shown in Table IV, the recognition accuracy decreases when
reducing B to 0.001, and it is unacceptable when B is reduced
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to 0.0001. In addition, due to these small input elements, a
large B brings in more input elements falling into the range
[0,B], resulting in an undesirable click position vector (refer
to “Ratio” in Table IV). To maximize the performance in both
domains, we set B = 0.01 and T = 0.16, respectively.

With the optimal B and T , we test different τ and the
result is shown in Table V. It shows that: 1) though the single
position-sensitive loss function performs badly (τ = 1), inte-
grating the position-sensitive loss function into the count-based
one (0 < τ < 1) performs better than using a single count-
based loss function (τ = 0), implying that position-sensitive
loss provides valuable complementary information for the
count-based one; and 2) a small τ often results in better result.
A reasonable explanation is that compared with the count-
based loss function, the position-sensitive one may introduce
vanishing gradient problems due to the sigmoid function; a
large τ makes the position-sensitive loss function dominate
the gradient of the combined loss. Therefore, to restrain the
gradient influence of the position-sensitive loss function on
the combined loss function, we employ a relatively small τ .
As shown in Table V, when τ = 0.1, the gradient magnitude
ratio7 of the weighted position-sensitive loss function (second
term in (12)) with respect to weighted count-based one (first
term in (12)), i.e., “gd-ratio”, is close to 1. It ensures that
the backpropagating trend is unchanged after integrating the
position-sensitive loss function. In the following experiments,
we use the optimal τ = 0.1 for both higher recognition
accuracy and a safer backpropagating gradient.

We also show the backpropagation of the gradient mag-
nitude for different layers in the click prediction model using
loss functions based on the click count (first item in (12)),
the click position (second item in (12)), and their combination
(both items in (12)). They are denoted as “Count”, “Position”,
and “Combined” in Fig. 11, respectively. It demonstrates
that, compared with the original count-based loss function,
integrating the position-sensitive loss function does not change
the gradient trend during training. As shown in Fig. 11, though
the gradient of the position-sensitive loss function fluctuates
more wildly than that of the count-based loss function in early
iterations, the gradient magnitudes of the count-based loss,
the position-sensitive loss, and their combination are prone to
become the same in the late iterations (after 3, 000th iteration).
The noticeable fluctuation of gradient of the position-sensitive
loss function in early iterations is mainly caused by the
sigmoid function, resulting in a gradient fluctuation.

In addition, to better demonstrate the advantage of the
position-sensitive loss function in click prediction, we visu-
alize the predicted click features for some samples. Both the
ground truth and click features predicted from models with
and without position-sensitive loss functions are illustrated.
As shown in Fig. 10, compared with models without position-
sensitive loss functions, models with a position-sensitive loss
function generate a better click feature that is much closer
to the ground truth click feature, owing to the additional
penalty on click position constraints. Those feature items that

6B is selected from the range exponentially growing from 0.0001 to 1.
7The gradient magnitude is computed as the `2 norm of the gradient vector

of the loss functions to all parameters at iteration 1, 500.

TABLE IV
RECOGNITION ACCURACIES USING THE POSITION-SENSITIVE LOSS

FUNCTION WITH DIFFERENT B. “RATIO” DENOTES THE AVERAGE RATIO
OF FEATURE ELEMENTS FALLING INTO THE RANGE [0,B]. BOTH SOURCE

AND TARGET DOMAINS ARE TESTED.

B 10 1 0.1 0.01 0.001 0.0001
Acc-S (%) 59.7 70.7 71.4 71.5 69.5 0.7
Acc-T (%) 43.6 58.3 58.4 58.9 57.3 1.5
Ratio (%) 57.53 34.36 3.90 0.27 0.04 0.01

TABLE V
COMPARISON OF MODELS WITH COUNT-BASED LOSS FUNCTION (τ = 0),
POSITION-SENSITIVE LOSS FUNCTION (τ = 1), AND THEIR COMBINATION

(0 < τ < 1). RECOGNITION ACCURACIES ON BOTH DOMAINS ARE
TESTED. “GD-RATIO” DENOTES GRADIENT-MAGNITUDE-RATIO OF

WEIGHTED POSITION-SENSITIVE LOSS (SECOND TERM IN (12)) WITH
RESPECT TO WEIGHTED COUNT-BASED ONE (FIRST TERM IN (12)).

τ
Count Combined Position

0 0.05 0.1 0.15 0.2 0.4 1
Acc-S (%) 70.3 71.5 71.5 70.5 69.0 38.6 11.8
Acc-T (%) 57.3 58.8 58.9 57.9 56.3 29.3 7.9

gd-ratio - 0.31 0.99 2.21 3.63 19.84 -

are mispredicted by models without position-sensitive loss
functions can be corrected by the position loss in the proposed
model (plotted in the red circle in Fig. 10).

c) Combination with the Visual Feature. Recognition ac-
curacies with the combined visual and predicted click feature
are illustrated in Table VI. It can be found that: 1) the
combined feature performs better than the single deep visual
or click feature; and 2) the click feature generated from the
proposed click prediction model (C) performs better than the
traditional linear one (C [7]), and both the nonlinear word
embedding and position-sensitive loss function are beneficial
to performance. Note that CE and C performs better than
C [7] and CE , respectively, regardless of whether the visual
feature is integrated.

2) Multitask Learning Framework. As aforementioned,
in the multitask learning framework, both the recognition and
prediction errors are minimized simultaneously. We evaluate
the multitask learning framework by comparing the perfor-
mances on deep transfer models using multiple loss with those
using single loss. The performance is evaluated by both the
image recognition and click prediction accuracies. The root
mean square error on the source click data (“RMSE-S” in
Table VII) is employed to measure the prediction error.

The multitask learning is tested on models with both
unshared/shared “FC” layers (refer to Section III-D), i.e.,
MTMDD-VM/MTMDD-VM*, wherein µ is set to be 1. D-
ifferent λ in (14) that balance the recognition and prediction
loss are tested. To make a more comprehensive comparison,
for the single-task learning framework, we test both the models
with only prediction (λ = 1) and recognition (λ = 0) error.
The result is shown in Table VII, and it can be found that: 1) λ
seems to have little impact on the performance, implying the
high correlation between the prediction and recognition tasks;
2) both the improvements of MTMDD-VM and MTMDD-
VM* over MDD-VM and MDD-VM* demonstrate the benefit
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Fig. 11. Backpropagating the gradient-magnitude for different layers in the click prediction model with loss functions based on click count (first item in
(12)), click position (second item in (12)), and their combination (both items in (12)). For each layer, the gradient magnitude is computed as the `2 norm of
the gradient vector of the loss function with respect to all parameters.
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Fig. 10. The predicted click features for some image samples. The click
feature vector predicted by models without and with the position-sensitive
loss function are denoted as “Predicted” and “Predicted*”, respectively. 20
words are randomly selected as the basis.

TABLE VI
RECOGNITION ACCURACIES WITH THE IMPROVED CLICK PREDICTION

MODEL COMPARED WITH THE TRADITIONAL ONE (C [7]). THE
PREDICTED CLICK FEATURE C AND ITS COMBINATION WITH DEEP VISUAL
FEATURE V ARE TESTED. BESIDES, THE NONLINEAR WORD EMBEDDING

(CE ) AND POSITION-SENSITIVE LOSS FUNCTION (C) ARE TESTED.

Features V C [7] CE C V + C [7] V + CE V + C
Acc-S (%) 76.5 63.0 70.3 71.5 76.4 76.6 77.5
Acc-T (%) 70.7 44.2 57.3 58.9 71.3 71.6 72.2

of the multitask learning framework. Though the click fea-
ture seems to be predicted more accurately (smaller RMSE)
when only using the prediction loss function (λ = 1), it
fails in recognition tasks (with lower recognition accuracies
in both source and target domains); and 3) the accuracy
improvement of the multitask loss model over single loss
(denoted by “∆Acc-T” in Table VII) is more noticeable for the
shared model MTMDD-VM* compared with un-shared one
MTMDD-VM. To maximize the performance, we set λ = 0.4
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Fig. 12. Comparison between MTMDD-VM (denoted by “OURS”) and
MTTDL under different softmax loss weight µ. Both domains are tested.

in the following experiments.

3) Multidomain Multimodal Training. We demonstrate
the advantage of the unified training scheme by testing the
accuracy improvement of the multidomain multimodal training
(MTMDD-VM/MTMDD-VM*) over the individual training
(MTTDL) strategy. Note that MTTDL is the multitask transfer
learning framework that trains datasets of different domains
separately (refer to Section III-B).

We test different µ, controlling the softmax loss weight
for loss functions in the target domain respect to the source
domain, and the result is shown in Fig. 12. Models with
both the un-shared/shared “FC” layers (refer to Section III-D)
are tested. It can be found that: 1) training a unified net-
work with the combined dataset of both domains (MTMDD-
VM/MTMDD-VM*) performs much better than that with a
single-domain dataset (MTTDL); 2) smaller µ may result in
better performance8, indicating the source dataset may be
more reliable than the target one for training. A reasonable
explanation is that the predicted click feature is more accurate
in the source dataset compared with that in the target one,
since the ground truth click for constraining the prediction
error is provided only in the source domain; and 3) MTMDD-
VM* performs slightly better than MTMDD-VM, implying
that sharing the “FC” layers better captures the cross-domain
variance during transferring. To maximize the performance on
the target dataset, in the following parts we set µ = 0.1 and
µ = 0.9 for MTMDD-VM and MTMDD-VM*, respectively.

8The recognition accuracy is very low when µ > 1.
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TABLE VII
COMPARISON BETWEEN MULTITASK LOSS AND SINGLE-LOSS DEEP LEARNING MODELS. DIFFERENT λ IN THE LOSS COMBINATIONS ARE TESTED.

“∆ACC-T” DENOTES THE ACCURACY GAP OF MTMDD-VM (MTMDD-VM*) WITH RESPECT TO MDD-VM (MDD-VM*) WITH ONLY PREDICTION
LOSS (λ = 1). BOTH SOURCE AND TARGET DOMAINS ARE TESTED.

Model MTMDD-VM MDD-VM MTMDD-VM* MDD-VM*
λ 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 1

Acc-S (%) 77.0 77.2 77.1 76.7 77.0 0.1 73.9 75.5 76.6 76.4 77.5 40.1
RMSE-S (10−2) 81.8 81.9 81.9 82.2 100.0 81.7 82.0 84.0 87.0 85.0 101.0 81.0

Acc-T (%) 73.1 73.1 73.3 72.3 71.9 71.5 75.2 75.2 75.6 74.4 75.4 63.5
∆Acc-T (%) 1.6 1.6 1.8 0.6 0.4 - 11.7 11.7 12.1 10.9 11.9 -

C. Comparison with State-of-the-art Methods

We compare MTMDD-VM with some state-of-the-art
methods. Note that in existing works, only visual features are
used for the recognition task on these click-free dog datasets,
and this is the first paper to use the predicted click feature
for image recognition. Therefore, we compare MTMDD-VM
with several recent visual feature-based models. In addition,
as a word embedding model is adopted in the proposed model,
we also compare other word embedding approaches for click
prediction. For each algorithm, we use the optimal parameter.
The compared methods can be categorized as follows:

1) Visual Feature-based Approaches. We compare two
visual features with different multidomain training strategies:
1) combining source and target images in the training, i.e., uni-
fied training. They are the domain adaptation network (DAN)
[36] and one domain-adversarial neural network (DANN)9

[19]; 2) for training on the source data and adapting to target
data, i.e., fine-tuning. Two VGGNet-based models10 and two
state-of-the-art fine-grained image recognition models, namely
the recurrent attention convolutional neural network (RACNN)
[37]11 and the selective convolutional descriptor aggregation
(SCDA) model [38]12, are tested.

2) Approaches based on Combined Visual and Predicted
Click Feature. Two schemes are tested: 1) score fusing (de-
noted by “SF” in Table VIII) on two pre-trained recognizers,
e.g., the visual feature-based and predicted click feature-based
one. Specifically, we employ a weighted combination13 for
the two recognizers. 2) training a unified recognizer with a
combined visual and predicted click feature. We customize
two word embedding models for click feature prediction, and
they are the transferred deep model (TDL) proposed in [7] and
the multimodal embedding model with a hard mining strategy
VSE++ [39]. For TDL and VSE++14, using word embedding
models learned on source click data, we predict click features
of images in the target data, which are integrated with their

9For DAN and DANN, the moment, and weight-decay are set to be 0.9
and 0.0005, and the initial learning rate is set to be 0.001 (0.0001) for DAN
(DANN), respectively.

10For both VGGimg and VGGsrc, the moment and weight-decay are set
to be 0.9 and 0.0005, respectively, and the initial learning rate is set to be 0.1
(0.01) for VGGimg (VGGsrc).

11For RACNN, the initial learning rate, moment and weight-decay are set
to be 0.1, 0.9 and 0.0005, respectively.

12The penalty parameter in the linear SVM classifier is set to 1.
13The weight of the predicted click feature-based recognizer is selected

from [0.2, 0.4, 0.5, 0.6, 0.8], and the optimal weight is set to be 0.2.
14For VSE++, we use the optimal parameters as employed in constructing

the word embedding model.

original visual features. A softmax loss-based network is
trained with the combined features on target data15. For TDL,
we also test its multitask (MTTDL) and multidomain (the
proposed MTMDD-VM/MTMDD-VM*) versions.

The results are reported in Table VIII. Note that “TDL
[7]” and “TDL” in Table VIII differ in the click prediction
model structure. In “TDL [7]”, the traditional linear word
embedding proposed in [7] is used, while in “TDL”, the
proposed nonlinear word embedding with position-sensitive
loss function is employed. It can be found that:

• Integrating the predicted click feature into the visual one
enhances the performance, implying that the predicted
click feature provides complementary semantical infor-
mation for visual features in recognition tasks.

• For visual feature-based approaches, employing domain
adaptation or designing powerful fine-grained image fea-
tures results in satisfactory performances. The improve-
ment of VGGsrc over VGGimg indicates the importance
of model initialization in learning deep networks.

• For recognition with the predicted click feature: 1) train-
ing a recognizer with the combined visual and predicted
click feature outperforms the direct score fusion on mul-
tiple pre-trained recognizers since it can better discover
inter-domain feature correlation; 2) when transferring
the predictor from the source click data to a click-free
target one, both multitask (MTTDL) and unified training
(MTMDD-VM/MTMDD-VM*) are helpful in learning
a domain-invariant click feature. The improvements of
MTTDL and MTMDD-VM over TDL and MTTDL
demonstrate the benefit of the multitask and multidomain
learning framework, respectively; and 3) MTMDD-VM
performs better than TDL/MTTDL and VSE++ since it
learns a better visual semantic embedding model.

• MTMDD-VM outperforms other state-of-the-art method-
s in recognition on the target click-free dataset, even
compared with the recent sophisticated feature proposed
in RACNN/SCDA. The improvements of MTMDD-VM
over some visual feature-based methods are not no-
ticeable, since in MTMDD-VM, the click feature is
predicted from the visual feature learned by VGGNet-
19. We believe that if we construct a word embedding
model based on RACNN, SCDA, or other state-of-the-
art visual models, we can achieve a further improvement

15For training the softmax-loss-based network, we set the moment and
weight-decay as 0.9 and 0.0005, and the initial learning weight as 0.3 (0.1)
for the visual (click) feature.
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in recognition accuracy.

D. Additional Advantages of MTMDD-VM

In this section, we show two Additional Advantages of
MTMDD-VM, i.e., the scalability to unseen categories and
one-shot learning ability.

1) Unseen Categories. We show the scalability to un-
seen categories of MTMDD-VM by testing the recognition
accuracies on the target dataset with some categories absent
in the source dataset. Both the out-of-class and cross-domain
scenarios are evaluated.

a) Out-of-class Recognition. We show the scalability of
out-of-class recognition, i.e., using limited source data to
learn knowledge and recognizing on target dataset with new
categories that are absent in the source data. We test the
performance with increasing category numbers in the source
domain16. More specifically, we randomly select a subset
of 30 categories and then increase the dataset by randomly
selecting subsets from the remaining categories. Finally, we
obtain a set of datasets with 30, 60, 90, 120, and 129 categories
successively. In addition, we have also tested recognition
accuracies when using dog images in all source categories (283
categories in total), including those categories absent in the
target domain. Note that when using all 283 categories in the
source Clickture-Dog, we did not test MTMDD-VM* since the
dimension of matrix encoding the FC layers in source domain
differs from that in target domain, making it impossible to
train a shared FC layer in the two domains.

The out-of-class recognition of the proposed method is
shown in Fig. 13, wherein each curve denotes the recognition
accuracies on the target dataset by transferring from the source
data with different category numbers. We compare the scalabil-
ity of the proposed method with “VGGimg”, “VGGsrc”, and
“TDL”. Note that only the deep visual model is transferred
for “VGGimg” and “VGGsrc”, while for “TDL” and our
method, both the visual feature and click prediction models
are transferred across domains simultaneously.

It can be found that: 1) the performance decreases as the
category number is reduced in the source domain for each
algorithm, indicating that the transfer is more difficult when
more unseen categories need to be recognized in the target
data; 2) the proposed method still performs better than others
with reduced categories, implying its powerful scalability to
unseen categories. A reasonable explanation is that with the
unified training using samples from different domains, the
cross-domain correlation can be better learned. Note that the
performance is still satisfactory for testing on all 129 target
categories when only samples of 30 source categories are
available in the source domain; 3) compared with MTMDD-
VM, MTMDD-VM* decreases more sharply with reducing the
category numbers, implying that constructing the same “FC”
layers across domains with large differences in the category
set may be improper; and 4) when using dog images in all
source categories (283 categories in total), the top-1 accuracies

16The categories are randomly selected from the whole dataset (129
categories in total).
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Fig. 13. Comparison of scalability between the proposed MTMDD-VM
(denoted by “OURS”) and other methods. It is shown by the accuracy
comparison using subsets of source data with increasing categories. The
accuracies are tested on the target domain.

are even slightly worse than the accuracies when using dog
images in shared categories (129 categories) in both domains.
The performance decrease is mainly caused by both the data
distribution gap of multiple domains and the difficulty in
generating word vocabulary as mentioned Section IV-A1.

b) Cross-object Recognition. We show the cross-object
recognition ability of MTMDD-VM by testing the recognition
accuracy in the dog (bird) target data using the source bird
(dog) data with click information. A comparison between the
cross-object recognition and the single-object one is conduct-
ed. In the single-object recognition scenario, both source and
target data are of the same object, i.e., dog or bird data.

The source and target dog data are exactly the same as
those used in previous experiments. For bird breed recognition,
we use CUB-200-2011 [40] as the target “click-free” dataset,
and employ a recent “Clickture-Bird” dataset established in
[5] as the source domain dataset. Clickture-Bird is denoised
using a data cleaning procedure similar to [33]. Similar to
Section IV-A1, we only select images of categories that are
present in both the source and target bird data to make the
source and target bird data share the same category set; thus,
we obtain a subset of bird datasets with 71 subcategories.
In addition, categories that contain less than 3 images are
discarded to ensure a valid training/testing split17. Similar to
Section IV-A2, we generate a 1, 000-D ground truth click
feature vector for each image in Clickture-Bird via the TF-
IDF algorithm, wherein a bird word vocabulary with 1, 000
items is created.

The result is shown in Table IX, wherein “Single” and
“Cross” denote single-object and cross-object recognition ac-
curacies, respectively. It can be found that: 1) when adapting
the visual click correlation from the source data to the target
one, the recognition accuracies are similar in both single- and
cross-object scenarios. It is because the visual click correlation
is relatively stable and universal for different objects, which
is the major rationale behind the proposed approach; 2)
compared with other approaches, the proposed MTMDD-VM

17The final used bird data can be downloaded from https://pan.baidu.com/
s/1Znn3q3wHyL-PnQY4m_Ec2Q.
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TABLE VIII
COMPARISON BETWEEN MTMDD-VM (DENOTED BY “OURS”) AND SOME STATE-OF-THE-ART METHODS. THE CLICK FEATURE IS PREDICTED BY

DIFFERENT TRANSFER METHODS. BOTH SOURCE AND TARGET DOMAINS ARE TESTED.

Feature Visual Combined Visual and Click
Method DAN DANN VGGimg VGGsrc RACNN SCDA SF VSE++ TDL [7] TDL MTTDL OURS OURS*

Acc-S (%) 77.1 67.9 76.5 76.5 75.9 79.0 75.2 76.5 76.4 77.5 77.1 77.3 77.7
Acc-T (%) 74.9 45.8 70.7 72.2 71.6 74.8 70.7 74.3 71.3 72.2 73.3 74.7 76.0

TABLE IX
CROSS-OBJECT RECOGNITION OF MTMDD-VM COMPARED WITH OTHER

METHODS. IN THE CROSS-OBJECT SCENARIO, CLICKTURE-BIRD
(CLICKTURE-DOG) IS USED AS SOURCE DATA FOR RECOGNITION IN THE
DOG (BIRD) TARGET DATASET. RECOGNITION ACCURACIES (%) ON THE

TARGET CLICK-FREE DATA ARE TESTED.

Dataset VGGsrc TDL MTMDD-VM
Single Cross Single Cross Single Cross

Dog 72.2 71.4 71.3 70.2 74.7 73.5
Bird 71.7 70.3 66.9 66.9 73.8 70.7
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Fig. 14. Comparison of one-shot learning capability between the proposed
method MTMDD-VM (denoted by “OURS”) and some state-of-the-art meth-
ods. It is shown by the comparison of different methods with decreasing
samples on both domains. The accuracies are tested on the target domain.

always preforms better under both single- and cross-object
scenarios, showing its advantages in cross-object recognition.

2) One-shot Learning. We evaluate the one-shot capabil-
ity by testing the performances via decreasing the proportion
of training samples α in both source and target domains18.

The results with reduction of source and target training
samples are shown in Fig. 14(a) and Fig. 14(b), respectively. It
can be found that: 1) the performance decreases when reducing
training samples either in the source or target domain. The
reason lies in that reducing source and target samples, re-
spectively, affects the click prediction and recognizer learning
procedure; 2) with reduced training samples, the performance
of “TDL”/“VGG” exhibits a sharper decrease compared with
ours. A reasonable explanation is that “TDL”/“VGG” are
trained individually in different domains, and reducing samples
on one domain largely affects the model initialization or
training procedure; in our method, data in both domains are
trained simultaneously, resulting in a smaller effect when
decreasing samples in one domain.

18For a specific proportion α, we select dα×nke training samples for each
category k (nk is the number of samples in category k ∈ [1, 2, . . . , 129]) in
source and target domains. We set α = [1, 0.9, . . . , 0.4].

V. CONCLUSIONS AND DISCUSSIONS

A. Conclusion

We address the problem of image recognition with user
click data, a kind of feedback information. As click data
are absent in many image datasets, we employ word em-
bedding to learn a click predictor from an assistant dataset
containing click information (source dataset), then adapt it to
the target click-free dataset. Specifically, we present a novel
multitask multidomain transfer learning framework for the
adaptation, wherein the predictor and recognizer are simul-
taneously learned. A nonlinear word embedding and position-
sensitive loss function are integrated to handle the isomerism
of the visual click spaces and the sparsity in the click feature.
Additionally, a multitask deep learning framework is designed
to ensure that the predicted click achieves higher accuracy
in both prediction and recognition tasks, and datasets from
multiple domains are combined during training.

We evaluate our approach on three public dog datasets
(target dataset), and employ the Clickture-Dog dataset as the
source dataset. It shows that both the nonlinear embedding
structure and position-sensitive loss function can improve
recognition accuracy in both domains. Moreover, the multitask
learning framework helps to learn a better click feature with
higher accuracy in both click prediction and image recognition
tasks, and the unified training strategy with different domains
can further improve the performance. The proposed model
outperforms many state-of-the-art approaches. In addition,
we show the scalability and one-shot learning ability of our
method, which are demonstrated by the stable improvement
of our method over others as unseen categories are increased
and training samples are decreased.

B. Limitations

Despite the promising results, our current system suffers
from some limitations in several domain transfer settings.

First, the proposed method still has some difficulties
addressing adapting across multiple domains originated from
different objects. As shown in Table IX, adapting the visual
click correlation across domains in cross-object scenarios
performs worse than that in single-object scenarios. Fig. 15
shows some samples mis-classified in cross-object scenario
but corrected classified in single-object scenario. It can be
observed that most of the mis-classified dog images are with
complex background or huge appearance differences from
birds, implying the vocabulary built on a specific object is
somewhat inapplicable for images of a different object.

Second, in the proposed method, both domains are well-
labeled, such that we can design softmax loss on both domains
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Fig. 15. Some dog samples mis-classified in cross-object scenario but
corrected classified in single-object scenario.

to bridge the cross-domain gaps. However, our current system
may suffer from several problems when different domains are
with different annotation degree, i.e., well-labeled data in the
source domain while partially labeled/unlabeled in the target
domain.

C. Future Work

Future work will concentrate on several open problems:
1) building a larger image recognition dataset containing
click data to compressively evaluate the robustness of the
proposed method for general transfer learning settings. These
datasets are required to cover more object categories (e.g.,
cars, plants); 2) constructing a hierarchical click prediction
model to generate the click feature with structured semantics;
3) integrating Maximum Mean Discrepancy (MMD) loss [36]
into the transfer framework to address multiple domains with
vast differences, i.e., transferring from a dog to a plant dataset;
4) extending the model to conduct adaptation across more
than two domains; and 5) integrating a weakly supervised
training procedure [41], [42] to deal with different domains
with varied annotation degrees. Also, integrating this technique
to automatically select better samples and learn recognition
models simultaneously.

VI. ACKNOWLEDGMENTS

This work was supported by Zhejiang Provincial Natural
Science Foundation of China (No.LY19F020038), National
Natural Science Foundation of China (No.61602136,
No.61622205, No.61472110, No.61702143, and
No.61601158), Australian Research Council Projects
(FL-170100117, DP-180103424, and IH-180100002), and
Zhejiang Provincial Key Science and Technology Project
Foundation (No.2018C01012).

REFERENCES

[1] T. Berg, J. Liu, S. W. Lee, M. L. Alexander, D. W. Jacobs, and P. N.
Belhumeur, “Birdsnap: Large-scale fine-grained visual categorization of
birds,” in Proc. CVPR, 2014, pp. 2019–2026.

[2] A. Iscen, G. Tolias, P. H. Gosselin, and H. Jegou, “A comparison of dense
region detectors for image search and fine-grained classification,” IEEE
Trans. Image Processing, vol. 24, no. 8, pp. 2369–81, 2015.

[3] G. Zheng, M. Tan, J. Yu, Q. Wu, and J. Fan, “Fine-grained image
recognition via weakly supervised click data guided bilinear cnn model,”
in Proc. ICME, 2017, pp. 661–666.

[4] X.-S. Hua, L. Yang, J. Wang, J. Wang, M. Ye, K. Wang, Y. Rui, and J. Li,
“Clickage: Towards bridging semantic and intent gaps via mining click
logs of search engines,” in Proc. ACMMM. ACM, 2013, pp. 243–252.

[5] M. Tan, J. Yu, Z. Yu, F. Gao, Y. Rui, and D. Tao, “User-click-data-based
fine-grained image recognition via weakly supervised metric learning,”
ACM Trans. Multimedia Computing, Communications, and Applications,
vol. 14, no. 3, p. 70, 2018.

[6] M. Tan, J. Yu, Q. Huang, and W. Wu, “Click data guided query
modeling with click propagation and sparse coding,” Multimedia Tools
and Applications, vol. 77, no. 17, pp. 22 145–22 158, 2018.

[7] Y. Bai, K. Yang, W. Yu, C. Xu, W.-Y. Ma, and T. Zhao, “Automatic
image dataset construction from click-through logs using deep neural
network,” in Proc. ACMMM. ACM, 2015, pp. 441–450.

[8] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev, “Panda:
Pose aligned networks for deep attribute modeling,” in Proc. CVPR,
2014, pp. 1637–1644.

[9] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. Girshick, J. Kan-
nala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss, B. Taskar, K.
Simonyan, N. Saphra, and S. Mohamed, “Understanding objects in detail
with fine-grained attributes,” in Proc. CVPR, 2014, pp. 3622–3629.

[10] J. Yu, Y. Rui, and D. Tao, “Click prediction for web image reranking
using multimodal sparse coding,” IEEE Trans. Image Processing, vol.
23, no. 5, pp. 2019–2032, 2014.

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[12] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. NIPS, 2014, pp. 3320–3328.

[13] X. Yin and X. Liu, “Multi-task convolutional neural network for pose-
invariant face recognition,” IEEE Trans. Image Processing, vol. 27, no.
2, pp. 964–975, 2018.

[14] N. Sarafianos, T. Giannakopoulos, C. Nikou, and I. A. Kakadiaris, “Cur-
riculum learning of visual attribute clusters for multi-task classification,”
Pattern Recognition, vol. 80, pp. 94–108, 2018.

[15] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and adversarial
network for unsupervised domain adaptation,” in Proc. CVPR, 2018, pp.
3801–3809.

[16] W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional generative
adversarial network for structured domain adaptation,” in Proc. CVPR,
2018, pp. 1335–1344.

[17] L. Hu, M. Kan, S. Shan, and X. Chen, “Duplex generative adversarial
network for unsupervised domain adaptation,” in Proc. CVPR, 2018, pp.
1498–1507.

[18] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa, “Gen-
erate to adapt: Aligning domains using generative adversarial networks,”
in Proc. CVPR, 2018, pp. 8503–8512.

[19] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” arXiv preprint arXiv:1409.7495, 2014.

[20] X. Zhang, F. X. Yu, S. F. Chang, and S. Wang, “Deep transfer network:
Unsupervised domain adaptation,” arXiv preprint arXiv:1503.00591,
2015.

[21] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable fea-
tures with deep adaptation networks,” arXiv preprint arXiv:1502.02791,
2015.

[22] M. Long, J. Wang, Y. Cao, J. Sun, and P. S. Yu, “Deep learning of
transferable representation for scalable domain adaptation,” IEEE Trans.
Knowledge and Data Engineering, vol. 28, no. 8, pp. 2027–2040, 2016.

[23] T. Gebru, J. Hoffman, and F. F. Li, “Fine-grained recognition in the
wild: A multi-task domain adaptation approach,” in Proc. ICCV, 2017,
pp. 1358–1367.

[24] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for
deep domain adaptation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 41, no. 4, pp. 801–814, 2019.

[25] ——, “Residual parameter transfer for deep domain adaptation,” in Proc.
CVPR, 2018, pp. 4339–4348.

[26] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient parametrization of
multi-domain deep neural networks,” in Proc. CVPR, 2018, pp. 8119–
8127.

[27] N. Peng and M. Dredze, “Multi-task multi-domain representation
learning for sequence tagging,” CoRR, vol. abs/1608.02689, 2016.
[Online]. Available: http://arxiv.org/abs/1608.02689

[28] Y. Luo, Y. Wen, and D. Tao, “Heterogeneous multitask metric learning
across multiple domains,” IEEE Trans. Neural Networks and Learning
Systems, vol. PP, no. 99, pp. 1–14, 2018.

[29] G. Pons and D. Masip, “Multi-task, multi-label and multi-domain learn-
ing with residual convolutional networks for emotion recognition,” arXiv
preprint arXiv:1802.06664, 2018.

[30] C. H. Chen, “Improved tfidf in big news retrieval: An empirical study,”
Pattern Recognition Letters, vol. 93, 2016.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.



1057-7149 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2921861, IEEE
Transactions on Image Processing

16

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[33] W. Feng and D. Liu, “Fine-grained image recognition from click-through
logs using deep siamese network,” in International Conference on
Multimedia Modeling, 2017, pp. 127–138.

[34] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in First Workshop on Proc.
CVPR, June 2011.

[35] C. Goring, A. Freytag, E. Rodner, and J. Denzler, “Fine-grained catego-
rization – short summary of our entry for the imagenet challenge 2012,”
Computer Science, 2013.

[36] M. Long and J. Wang, “Learning transferable features with deep
adaptation networks,” CoRR, vol. abs/1502.02791, 2015. [Online].
Available: http://arxiv.org/abs/1502.02791

[37] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent atten-
tion convolutional neural network for fine-grained image recognition,”
in Proc. CVPR, 2017, pp. 4476–4484.

[38] X. S. Wei, J. H. Luo, J. Wu, and Z. H. Zhou, “Selective convolutional
descriptor aggregation for fine-grained image retrieval,” IEEE Trans.
Image Processing, vol. PP, no. 99, pp. 1–1, 2017.

[39] F. Faghri, D. J. Fleet, R. Kiros, and S. Fidler, “VSE++: improved visual-
semantic embeddings,” CoRR, vol. abs/1707.05612, 2017. [Online].
Available: http://arxiv.org/abs/1707.05612

[40] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds200-2011 dataset,” California Institute of Technology,
2011.

[41] M. Tan, B. Wang, Z. Wu, J. Wang, and G. Pan, “Weakly supervised metric
learning for traffic sign recognition in a lidar-equipped vehicle,” IEEE
Trans. Intelligent Transportation Systems, vol. 17, no. 5, pp. 1415–1427,
2016.

[42] M. Tan, Z. Hu, B. Wang, J. Zhao, and Y. Wang, “Robust object recog-
nition via weakly supervised metric and template learning,” Neurocom-
puting, vol. 101, pp. 96–107, 2016.

Min Tan is currently an Associate Professor with
the School of Computer Science and Technology,
Hangzhou Dianzi University. She received the B.S.
Degree in School of Mathematical Science and
Computing Technology from Central South Univer-
sity, Changsha, China, in 2009, and received Ph.D.
Degree in College of Compute Science and Tech-
nology from Zhejiang University, Hangzhou, China,
in 2015. From Jun. 2013 to Feb. 2014, she was an
Intern in Visual Computing group in MSRA. Her
research interests include computer vision, pattern

recognition and machine learning.

Jun Yu received his BEng and PhD from Zhejiang
University, Zhejiang, China. He is currently a Pro-
fessor with the School of Computer Science and
Technology, Hangzhou Dianzi University. He was
an Associate Professor with School of Information
Science and Technology, Xiamen University. From
2009 to 2011, he worked in Singapore Nanyang
Technological University. From 2012-2013, he was
a visiting researcher in Microsoft Research Asia
(MSRA). Over the past years, his research interests
include multimedia analysis, machine learning and

image processing. He has authored and co-authored more than 70 scientific
articles. He has (co-)chaired for several special sessions, invited sessions,
and workshops. He served as a program committee member or reviewer top
conferences and prestigious journals. He is a Professional Member of the
IEEE, ACM and CCF.

 

Hongyuan Zhang received the B.E. Degree is a S-
tudent from Hangzhou Dianzi University, Hangzhou,
China�in 2016. He is currently a master student in
computer science from Hangzhou Dianzi University,
Hangzhou, China. His research interests include
computer vision, image recognition and machine
learning (deep learning).

Yong Rui is currently Deputy Managing Director
of Microsoft Research Asia (MSRA). A Fellow of
IEEE, IAPR and SPIE, and a Distinguished Scientist
of ACM, Rui is recognized as a leading expert
in his research areas. He is the recipient of the
IEEE Computer Society 2016 Technical Achieve-
ment Award, IEEE Trans. Multimedia 2015 Best
Paper Award, and ACM Multimedia 2009 Best Paper
Award. He holds 60 US and international patents.
He has published 16 books and book chapters, and
200+ referred journal and conference papers. Rui�s

publications are among the most cited �17,000+ citations and his h-Index
= 55. Dr. Rui is the Editor-in-Chief of IEEE Multimedia Magazine, an
Associate Editor of ACM Trans. on Multimedia Computing, Communication
and Applications (TOMM), and a founding Editor of International Journal
of Multimedia Information Retrieval (IJMIR). He was an Associate Editor
of IEEE Trans. on Multimedia (2004-2008), IEEE Trans. on Circuits and
Systems for Video Technologies (2006-2010), ACM/Springer Multimedia
Systems Journal (2004-2006), and International Journal of Multimedia Tools
and Applications (2004-2006). He also serves on the Advisory Board of IEEE
Trans. on Automation Science and Engineering. He is an Executive Member of
ACM SIGMM, and the founding Chair of its China Chapter. Dr. Rui received
his BS from Southeast University, his MS from Tsinghua University, and his
PhD from University of Illinois at Urbana-Champaign (UIUC).

Dacheng Tao (F’15) is Professor of Computer Sci-
ence and ARC Laureate Fellow in the School of
Computer Science and the Faculty of Engineering
and Information Technologies, and the Inaugural
Director of the UBTECH Sydney Artificial Intelli-
gence Centre, at the University of Sydney. He mainly
applies statistics and mathematics to Artificial Intel-
ligence and Data Science. His research results have
expounded in one monograph and 200+ publications
at prestigious journals and prominent conferences,
such as IEEE T-PAMI, T-IP, T-NNLS,T-CYB, IJCV,

JMLR, NIPS, ICML, CVPR, ICCV, ECCV, ICDM; and ACM SIGKDD, with
several best paper awards, such as the best theory/algorithm paper runner up
award in IEEE ICDM�07, the best student paper award in IEEE ICDM’13,
the 2014 ICDM 10-year highest-impact paper award, the 2017 IEEE Signal
Processing Society Best Paper Award, and the distinguished paper award in
the 2018 IJCAI. He received the 2015 Austrlian Scopus-Eureka Prize and
the 2018 IEEE ICDM Research Contributions Award. He is a Fellow of the
Australian Academy of Science, AAAS, IEEE, IAPR, OSA and SPIE.


