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Abstract—1In this letter, we propose a change detection
method based on Gabor wavelet features for very high res-
olution (VHR) remote sensing images. First, Gabor wavelet
features are extracted from two temporal VHR images to obtain
spatial and contextual information. Then, the Gabor-wavelet-
based difference measure (GWDM) is designed to generate the
difference image. In GWDM, a new local similarity measure is
defined, in which the Markov random field neighborhood system
is incorporated to obtain a local relationship, and the coefficient
of variation method is applied to discriminate contributions from
different features. Finally, the fuzzy c-means cluster algorithm is
employed to obtain the final change map. Experiments employing
QuickBird and SPOTS5 images demonstrate the effectiveness of
the proposed approach.

Index Terms— Change detection, coefficient of variation, fuzzy
c-means (FCM), Gabor wavelet, Markov random field (MRF),
remote sensing, very high resolution (VHR).

I. INTRODUCTION

EMOTE sensing change detection identifies changes

occurring on the earth’s surface by jointly processing
multitemporal images acquired from the same geographical
area at different times [1]-[3]. This technique has become
an increasingly popular research topic due to its relevant
and practical applications, including deforestation, damage
assessment, disaster monitoring, and urban expansion [4]. In
the past decades, a variety of change detection approaches
have been developed. Generally, these approaches can be
divided into two steps: difference generation and analysis.
The difference generation methods include image differencing,
image ratio and change vector analysis (CVA) [5], while the
analysis step adopts threshold-based methods [6], [7] and
clustering-based methods [8], [9]. With the emergence of very
high resolution (VHR) remote sensing images, more detailed
ground information can be obtained. However, increasing
spatial resolution always leads to a reduction in the ability
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to distinguish spectral statistics between different classes.
The conventional change detection methods only utilize spec-
tral information regardless of spatial information, which is
inadequate for VHR remote sensing image change detection.
Nonetheless, VHR remote sensing images contain abundant
spatial and contextual information, which can aid in accurate
change detection.

In order to take full advantage of the spatial information in
remote sensing images, many feature based methods have been
developed, such as line feature [10], shape feature [11], gray
level co-occurrence matrix (GLCM) textures [12], and Gabor
wavelet features [13]-[15]. Among them, Gabor wavelet fea-
tures have strong discriminating power and can achieve com-
parable performance at very low computation cost for change
detection [13]. Gong et al. [13] performed a robust principal
component analysis technique to separate irrelevant and noisy
elements from Gabor responses for change detection. In [14],
a Gabor filter was utilized to extract spatial and contextual
features at different scales and orientations, and a novel post-
classification change detection method was proposed using
this information. In [15], a simple yet effective unsupervised
change detection approach was designed for multitemporal
synthetic aperture radar images by jointly exploiting the
robust Gabor wavelet representation and advanced cascade
clustering.

Although effort has been made to improve Gabor feature
based methods, practical and effective method needs to be
developed. In [15], the Gabor features were extracted from the
difference image, which can be obtained using CVA applied
to two temporal images. However, a significant quantity of
spatial and contextual information contained in VHR images
cannot be extracted this way, due to loss of information in
the differencing process. In addition, the pixelwise difference
measure (i.e., CVA) is not suitable for Gabor wavelet features
due to lack of spatial correlation. Therefore, an effective
difference measure based on Gabor features is proposed based
on extracted Gabor features from original images.

In this letter, a change detection method based on Gabor
wavelet features is proposed for VHR images. The main
contributions consist of two parts. First, a new Gabor-based
change detection procedure is designed based on the Gabor
wavelet features, which were extracted from the two original
temporally different VHR images. Second, a Gabor-wavelet-
based difference measure (GWDM) is proposed, in which the
spatial correlation of the Gabor features is fully considered
using a Markov random field (MRF) [16] neighborhood sys-
tem. Weights between different features are also taken into
account using coefficient of variation method (CVM) [17]
according to their contributions.

This letter is organized as follows. Section II describes
the proposed change detection approach. Section III presents
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(a) Simulated image chip at time #;. (b) Simulated image chip at time #,. (c) Difference image generated by subtracting the two image chips.

Fig. 1.

the experiments and analysis, and Section IV provides the
conclusions.

II. CHANGE DETECTION BASED ON GABOR WAVELET
FEATURES FOR VHR IMAGES

A. Problem Formulation

Supposing two co-registered and radiometrically corrected
VHR remote sensing images acquired over the same geo-
graphical area at times #; and 7. Let X1 and X, be the
two images, which have the same size, M x N. As shown
in Fig. 1(a) and (b), two corresponding simulated image
chips were acquired from the original images X; and X»,
respectively. The difference image generated by subtracting
the two images chips is shown in Fig. 1(c).

To demonstrate the necessity of Gabor feature extraction
prior to the differencing process, a theoretical analysis is
provided as follows. As seen in Fig. 1, the two temporally
different original image chips have abundant spatial and con-
textual information, but the difference image has little, i.e.,
the area inside the dotted line in Fig. 1. A significant amount
of structural information was lost in the differencing process.
As a result, many features included in the original images
cannot be extracted and applied for change detection.

After Gabor feature extraction from the original images, a
difference measure is needed to detect the changes based on
multiple features in the two images. The pixelwise difference
measure (i.e., CVA) is not suitable for images including the
strong spatial correlation inside the features. As shown in
Fig. 2(a) and (b), two corresponding Gabor feature image chips
were obtained and the difference image generated by CVA is
shown in Fig. 2(c). Focusing on the image regions highlighted
by white boxes in Fig. 2 reveals the problem with this method.
According to traditional methods, this region will be directly
classified into an unchanged class. However, this result is not
completely correct because the two temporal feature image
chips were not coincident.

To address the aforementioned problems, a novel change
detection method based on Gabor wavelet features is proposed
for VHR remote sensing images in this letter. As shown in
Fig. 3, the proposed approach consists of three blocks as
follows. First, Gabor wavelet features were extracted from
two temporal VHR remote sensing images, respectively. Then,
a GWDM was designed to generate the difference image.
Finally, the fuzzy c-means (FCM) cluster algorithm [9] was
implemented to generate the final change map. Detailed
descriptions are provided in Sections II-B-II-D.

(b)
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Fig. 2. (a) Gabor feature of simulated image chip at time #;. (b) Gabor
feature of simulated image chip at time fp. (c) Difference image generated
by CVA.

B. Gabor Wavelet Features Extraction

The Gabor wavelet can be considered a wavelet transform,
in which the Gabor function is utilized as the mother wavelet.
The 2-D Gabor function g(x, y) is written as

1 1 (x> 2 .
g(x,y) = exp|—5 | 3+ | +27jWx
2w o0y 2\o¢ oy
ey

where o, and o, denote the standard deviation of the primary
Gabor function of Gabor along the x and y axis, respectively,
and j = +/—1 and W denote the frequency bandwidth of the
Gabor wavelet. Its Fourier transform G(u, v) is expressed as

w2 2
G(u,v):exp{—l {wﬁ-v—}} 2)
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where 0, = 1/2n0yx and o, = 1/270y. Let g(x, y) be the
mother Gabor wavelet, then a set of self-similar Gabor filter
can be generated by proper scale and rotation transformation
for g(x, y). The filters can be denoted as
gmn(x,y) =a "G, y"), a>1,mn=integer (3)

where x' = a ™(xcos + ysin®), vy = a™(—xsinf +
ycosh), 8 =nn /K, and K is the total number of orientations,
ne€[0,K —1]. a—™ is the scale factor, m € [0, S — 1], and S
is the total number of scales.

In order to decrease the redundant information among the
Gabor features, the parameters of the Gabor wavelet are set
as follows:
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Fig. 3. Framework of the proposed change detection approach.

where U; and U, denote the lower and upper center frequen-
cies of interest.

Given an image I(x, y), its 2-D Gabor wavelet transform can
be defined as

Wi (x, y) = /I(x1, YD) &mn (x —x1,y — y1)dxidyr  (5)

where * denotes the complex conjugate. As such, the Gabor
wavelet features W, (x,y) are extracted from the VHR remote
sensing images.

C. Gabor-Wavelet-Based Difference Measure

After Gabor feature extraction, the GWDM is defined to
generate the difference image. In GWDM, based on the MRF
neighborhood system between two temporal Gabor features, a
local similarity measure S, (¢, t2) is designed and formulated
as

1
1+ dmn(tl, t2)

in which we have (7), as shown at the bottom of the page,
where dy,,(t1, 1) denotes the variation index between two
temporally corresponding Gabor feature regions at scale m
and orientation n. W}, (u,v) and W/2 (u,v) present Gabor
wavelet features at times #; and t,, respectively. (u,v) denotes
the position of the target pixel in the image. w defines the
MREF neighborhood system as centered at the target pixel, as
shown in Fig. 4(a). i denotes the distance between the target

Simn (tl, t2) = (6)

@1v-D)| @1y fu-tv1)] | 2 1 |2
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Fig. 4. (a) Neighborhood system centered at (u, v). (b) Distance between
the center pixel (#, v) and its neighborhoods.

(b)

Fig. 5. QuickBird data set. (a) QuickBird image from 2002. (b) QuickBird
image from 2009. (c) Ground truth image.

of different Gabor features, a weight determination method,
namely, CVM, is utilized in this letter. In CVM, the weights
of each feature can be calculated as

an

P Omn
m= RS Ky,

Zm El’l ﬂmn
where V,,, presents the coefficient of variation of the Gabor
feature at scale m and orientation n, and u,, and o,, are
the mean value and the standard deviation of this feature,
respectively. Then, the difference image can be generated as

Wmn

ZZ Smn(tla t2)

In this way, the difference image is obtained using GWDM.

and V,,, =

®)

D(t1,n) = 9

D. Segmentation of the Difference Image

Once the difference image has been generated, change
detection processing is needed to classify the changed pixels
and unchanged pixels by segmenting the difference image.
In this letter, the FCM cluster algorithm [9] is utilized to gen-
erate the final change map. FCM is one of the most important
fuzzy clustering algorithms [18], [19], and many studies have
improved it for difference images analysis [8], [20]. The FCM
cluster algorithm attempts to find fuzzy partitioning of a given
image by minimizing the objective functional

m g2
pixel and its neighboring pixels, as shown in Fig. 4(b). JWU,er, 02,5 00) = Z Z uijdi; (10)
Using the local similarity measure, the similarity images at
each scale and orientation are generated from the two temporal ~where U = [u;;] is the membership probability matrix of
Gabor wavelet features. In order to display the contributions X, and ¢; denotes the center of the ith cluster. d;; =|| ¢; —
1 15
2 Wit (4, 0) — Wik, (u, 0)
dpn(t112) = || [Woba e, 0) = Wik, 0)] "+ D0 | = @

(u,v)ew
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Fig. 6. SPOTS data set. (a) SPOTS image from 2008. (b) SPOTS image
from 2009. (c) Ground truth image.

(b) © (d

Difference images and corresponding histograms of QuickBird

Fig. 7.
data set. (a) Difference image based on GWDM with the QuickBird image.
(b) Difference image based on CVA with the QuickBird image. (c) Histogram
of the difference image based on GWDM. (d) Histogram of the difference
image based on CVA.

x;j || denotes the Euclidean distance between the ith cluster
and jth pixel. m € [1, oo] denotes the weighting exponent.
By minimizing this function, the membership probability can
be obtained and final change map is generated.

III. EXPERIMENTS AND ANALYSIS

In order to evaluate the performance of the proposed
approach, two temporal VHR remote sensing images were
used. Three indices in terms of experimental result and ground
truth were adopted for quantitative evaluation, such as the
false alarm rate Pr, missed detection rate Pjs and total error
rate Pr. Specifically, Pr = Ny/N,, where Ny is the number
of changed pixels in the change detection result that were
classified as the unchanged class in the ground truth image,
and N, is the total number of unchanged pixels counted in the
ground truth image. Py = N,,/N., where N,, is the number
of unchanged pixels in the change detection result that were
classified as the changed class in the ground truth image, and
N, is the total number of changed pixels counted in the ground
truth image. Pr = (N + Nf)/(Ne + Ny).

To demonstrate the performance of the proposed method,
comparisons between the proposed algorithm and traditional
change detection algorithms were implemented. Because CVA
is the most popular difference image generation method and
can provide more detailed change information [2], it was
selected to compare with the proposed GWDM in this letter.
For the difference image segmentation method, the expectation
maximization (EM) based algorithm was adopted to compare
with the FCM cluster algorithm.

A. Description of the Data Sets and Experimental Setup

The first data set contains two VHR images of size
470 x 548 pixels acquired by the QuickBird satellite covering
the city of Wuhan, China, on April 1, 2002 and July 16,
2009, as shown in Fig. 5(a) and (b). The image spatial
resolution is 2.4 m. The main land cover types are water,
grass, road, and building. The ground truth image of the data
set is shown in Fig. 5(c), which was generated by visual
interpretation. The second data set (600 x 600) was obtained
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Fig. 8. Difference images and corresponding histograms of SPOT5 data set.

(a) Difference image based on GWDM with the SPOTS image. (b) Difference
image based on CVA with the SPOTS5 image. (c) Histogram of the difference
image based on GWDM. (d) Histogram of the difference image based on CVA.

Fig. 9. Change detection results for the different methods with the QuickBird
imagery. (a) CVA-EM. (b) CVA-FCM. (¢) GWDM-EM. (d) GWDM-FCM.

Fig. 10. Change detection results for the different methods with the SPOT5
imagery. (a) CVA-EM. (b) CVA-FCM. (¢) GWDM-EM. (d) GWDM-FCM.

by Satellite Probatoire d’Observation de la Terre 5 (SPOTS)
covering the city of Tianjin, China, on April 24, 2008 and
February 23, 2009; the images were generated by fusing
panchromatic and multispectral images. The spatial resolution
of this data set is 2.5 m. the main land cover types are farm-
land, road and building. The ground truth for the change detec-
tion map shown in Fig. 6(c) was manually created based on
visual interpretation of the images shown in Fig. 6(a) and (b).

In the two experiments, the relevant parameters were set
as follows. In Gabor wavelet feature extraction, some para-
meters were implemented using default parameters, such as
U =005 U, =04, S = 4, and K = 6. The window
size of the Gabor filter was chosen based on experiences.
The window sizes in the QuickBird and SPOTS5 experiments
were 5 and 9, respectively. In the FCM cluster algorithm,
the initial membership probability was randomly generated
with uniformly distributed values in (0, 1), ¢ = 2, m = 2,
¢ = le — 5, and the maximum number of iterations was 200.

B. Experimental Results and Analysis

Figs. 7 and 8 show the difference image and corresponding
histograms generated from the QuickBird and SPOTS5 data
sets, respectively. Specifically, Figs. 7(c) and 8(c) present
histograms of the difference images produced using GWDM,
and Figs. 7(d) and 8(d) show the histograms of the difference
images produced using CVA. As shown in Figs. 7 and 8, the
GWDM histogram distributions are more balanced than those
using CVA. This observation indicates that more details in the
difference image are preserved utilizing GWDM.

Figs. 9(a)—(d) and 10(a)-(d) show the change detection
results using CVA-EM, CVA-FCM, GWDM-EM and the
proposed GWDM-FCM method for the QuickBird and SPOTS
images, respectively. Visual comparisons of the four change
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TABLE I

COMPARISIONS OF THE DIFFERENT CHANGE DETECTION
APPROACHES WITH THE QUICKBIRD IMAGE

False Alarms Missed Detections Total Errors
Method

pixels  Pr (%) | pixels  Pum (%) | pixels Pr (%)

CVA-EM 28598 12.63 4925 15.78 33523 13.02
CVA-FCM 32127 14.19 3465 11.11 35592 13.82
GWDM-EM 11295 4.99 8011 25.68 19306 7.5
GWDM-FCM 10780 4.76 6762 21.67 17542 6.81

TABLE II

COMPARISIONS OF THE DIFFERENT CHANGE DETECTION
APPROACHES WITH THE SPOTS5 IMAGE

False Alarms Miss Detections Total Errors
Method
pixels  Pr (%) | pixels Py (%) | pixels Pr (%)
CVA-EM 19400 7.24 19388 21.09 38788 10.77
CVA-FCM 17953 6.7 20155 21.92 38108 10.59
GWDM-EM 14666 547 13273 14.44 27939 7.76
GWDM-FCM 5520 2.06 17993 19.57 23513 6.53

detection approaches generally indicate the performance of
each change detection method. Compared with the ground
truth images in Figs. 5(c) and 6(c), GWDM-EM and our pro-
posed method GWDM-FCM have better visual change detec-
tion results and have fewer error pixels. Compared with tradi-
tional change detection methods shown in Figs. 9(a) and (b)
and 10(a) and (b), the Gabor-based approaches show signif-
icant improvements. These are highlighted by white boxes
in Figs. 9(c) and (d) and 10(c) and (d). The results indicate
that the spatial contextual information generated by the Gabor
wavelet features can effectively decrease the false alarm rate
and improve the final change detection results.

Tables I and II show the Pp, Py, and Pr values of the
four change detection approaches from the QuickBird and
SPOTS5 data sets. As shown in Tables I and II, the GWDM-
EM and our proposed GWDM-FCM method outperform the
CVA-EM and CVA-FCM methods in change detection perfor-
mance. Specifically, for the QuickBird data set, the total error
rates for GWDM-EM and GWDM-FCM improved 5.52%
and 7.01% over CVA-EM and CVA-FCM, respectively. For
the SPOTS5 data set, the total error rates for GWDM-EM
and GWDM-FCM were, respectively, improved by 3.01%
and 4.06% over CVA-EM and CVA-FCM. In addition, the
proposed GWDM-FCM method provides better performance
than GWDM-EM base on the two data sets. This indicates
that the proposed cascade scheme is helpful for discriminating
changed and unchanged pixels, and is more accurate than
traditional methods. In addition, the quantitative comparison
results are corroborated by the visual comparison results.

IV. CONCLUSION

A novel change detection technique based on Gabor wavelet
features is proposed and implemented for VHR remote sensing
images in this letter. The proposed algorithm extracts Gabor
wavelet features from two temporal VHR images before the
differencing process to obtain spatial and contextual informa-
tion. A GWDM based on MRF and CVM is then proposed

and used to generate the difference image. Finally, the FCM
cluster algorithm is applied to obtain the final change map.
The effectiveness of the proposed approach is evaluated using
QuickBird and SPOTS images and the results show that the
proposed method has the ability to provide better change
detection results for VHR images than traditional methods.
Future work will be devoted to feature selection and automatic
determination of parameters.
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