
 

A Wireless IoT System Towards Gait Detection in 

Stroke Patients 
AKM Jahangir A. Majumder†, Yosuf ElSaadany†, Mohammed ElSaadany†, Donald R. Ucci†, Farzana Rahman ɸ 

†Department of Electrical and Computer Engineering, Miami University, Oxford, OH, USA 

{majumdaa, elsaadya, elsaadma, uccidr }@miamiOH.edu 
ɸDepartment of Computer Science, James Madison University, Harrisonburg, Virginia, USA  

rahma2fx@jmu.edu 

Abstract- Gait monitoring through the Internet of Things 

(IoT) is able to provide an overall assessment of daily living. All 

existing systems for predicting abnormality in gait mainly 

consider the gait related parameters. Their accuracy is limited 

because consequences due to injuries are significantly affected 

by different events in the gait. The objective of this study is to 

present a multisensory system that investigates walking 

patterns to predict a cautious gait in stroke patient. For this 

study, a smartphone built-in sensor and an IoT-shoe with a Wi-

Fi communication module is used to discreetly monitor insole 

pressure and accelerations of the patient’s motion. To the best 

of our knowledge, we are the first to use the gait spatiotemporal 

parameters implemented in smartphones to predict a cautious 

gait in a stroke patient. The proposed system can warn the user 

about their abnormal gait and possibly save them from 

forthcoming injuries from fear of falling. 
Keywords- IoT, Stroke, Gait, Smartphone, Sensor. 

I. INTRODUCTION 

Injuries due to a heart attack are a major health problem 

all over the world [1]. More than 85% of heart attack patients 

regain the capacity to walk but their gait differs from that of 

healthy subjects [2]. Hemiplegic gait of a heart patient is 

characterized by alterations in spatio-temporal and kinematic 

parameters [3].  In older adults, the fear of falling after a 

stroke, named ‘‘cautious gait,’’ leads to a specific gait 

pattern with reduced stride length and gait velocity [4]. 

Therefore, it could be hypothesized that the adaptive phase 

observed by clinicians at the beginning of a gait analysis 

session in stroke patients could be related to cautious gait. 

Analysis of the human gait for predicting falls due to 

cautious gait is the subject of many current research projects. 

Accurate reliable knowledge of one’s gait characteristics at 

a given time and, even more importantly, monitoring and 

evaluating them over time, will enable early diagnosis of 

abnormality in gait to predict falls. This diagnosis will also 

help to predict and prevent users from an injury. Stroke is 

one of the leading causes of morbidity and mortality in 

adults, accounting for 17.3 million deaths per year. By 2030, 

it is estimated that more than 23.6 million stroke patients in 

United States will die from an indirect result of the stroke [5].  

So, the automatic detection of cautious gait in stroke patients 

would help reduce the arrival time of a medical caregiver 

and, accordingly decrease the mortality rate [6]. 

This high risk of stroke among the growing elderly 

population influenced scientific research on gait monitoring 

[3]. After completing standard rehabilitation, approximately 

50%-60% of stroke patients still experience some degree of 

motor impairment, and approximately 50% are partly 

dependent in Activities-of-Daily-Living (ADL) [7]. Strokes 

significantly contribute to reduced gait performance. The 

majority of stroke patients do not reach a walking level that 

enables them to perform all their daily activities [8]. Gait 

recovery is a major objective in the rehabilitation program 

for stroke patients. Therefore, for many decades, hemiplegic 

gait has been the object of study for the development of 

methods for gait analysis and rehabilitation [9]. 

Many previous studies have emphasized that fear of 

falling is frequent after a stroke and could influence gait 

parameters [10-11]. In a study by Verghese, et al., three 

phases have been introduced to characterize gait 

performance in elderly persons [6]: the first phase is best 

represented by cadence, swing time, and stance time. The 

second phase is best represented by gait speed and stride 

length.  The third phase is best represented by stride length 

variability. Variation within gait phases over time in stroke 

patient can lead to a fall.  Several clinical studies have 

demonstrated that most falls are affected by gait parameters. 

One criticism of the available risk indicators has been the 

lack of consideration of fall-related factors and loading 

conditions, which may considerably affect the predicted fall 

risk [12-13]. Thus, much attention has been directed towards 

gait prediction using smartphone and Internet of things (IoT) 

devices. To the best of our knowledge, we are the first to use 

subject-specific IoT-based gait evaluation implemented on 

smartphones to accurately detect abnormality in gait events 

in predicting injuries in a stroke patient. 

IoT has created an explosion of sensor data due to the 

increased number of devices with embedded sensors. With 

recent developments, smartphones have increased their 

processing capabilities and have been equipped with a 

number of built-in multimodal sensors. As self-contained 

devices, smartphones present a mature hardware and 

software environment for developing various health 

monitoring systems. Smartphone-based gait monitoring 

systems can function almost everywhere, because mobile 

phones are highly portable. Ideally, integrated sensors along 

with the pressure sensor shoes (IoT-shoe) can automatically 
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detect gait patterns. Researchers have already developed 

some smartphone-based gait detection systems, especially 

for stroke patients [14]. However, in all of these previous 

studies, the system detects a gait related injury only after it 

has already occurred. By preventing injuries from 

happening, the number of falls or other injuries and their 

consequences are reduced. We believe the best way to reduce 

the number of injuries is to alert users about their abnormal 

gait and the possibility of falling due to cautious gait.  

Therefore, our focus is on gait detection (followed by 

patient awareness) which will help to predict injuries due to 

cautious gait in stroke patients. To address the issue of gait 

detection, the aim of this study is to determine if the gait of 

stroke patients changes significantly over successive gait 

trials using smartphones. Data from a pressure-sensor 

embedded shoe and smartphone sensor were used to validate 

the proposed approach and to identify fear of falling with 

cautious gait. 

A. Major Contributions 

In this paper, we propose to use IoT systems for 

developing gait assistance systems for predicting cautious 

gait because they naturally combine the detection and 

communication components. Our major contributions are as 

follows:  we 

 developed subject-specific IoT systems for gait 

assistant. 

 proposed a smartphone-based gait assistance 

system with a wearable IoT-shoe for elderly people as a 

novel application for predicting cautious gait.  

 used built-in accelerometer and GPS of the 

smartphone and pressure distribution of IoT-shoe to identify 

abnormal gait pattern in users. 

 designed a system that monitors a stroke patient’s 

status in real time and sends the results to a caregiver or 

loved one. 

The rest of the paper is organized as follows: First, we 

discuss the relevant related work, and describe the difference 

between our system and the existing ones. Second, we 

discuss the details of the proposed IoT system. Third we 

evaluate our smartphone-based prototype system. Finally, 

we conclude with some future research directions. 

II. RELATED WORK 

Health-risk identification using gait patterns with 

embedded IoT sensors has been the subject of many studies 

over the past decade. Most of the previous approaches 

regarding gait recognition utilize accelerometers attached to 

the subject for gathering data. Therefore, they have very 

limited accuracy in predicting abnormal gait, like cautious 

gait for a specific individual. 

Past studies have shown that stroke patients exhibit great 

fatigability during gait [15]. These studies have established 

that, after a stroke, walking performance declines over 

relatively short periods of functionally-relevant ambulation 

[16]. In addition, there are several research projects within 

mobile ECG recording using Internet solutions, Bluetooth 

technology, cellular phones, and wireless local area 

networks, Wireless and WLAN Sensor Networks [17]. In 

[18], the author developed a wireless diagnosis system 

integrating digital telemetry, a homecare station and a remote 

clinical station. A gait monitoring system has been proposed 

based on mobile platform which transmits abnormal walking 

identified in a patient-worn unit [19]. 

In [20], the author developed a smartphone based gait 

detection system that can alert the users about their abnormal 

walking patterns. The authors validated their system using a 

decision tree with cross validation and found 99.8% accuracy 

in gait abnormality detection using smartphone sensors data. 

They also have developed the system [21] which equips an 

IoT-shoe with smartphone sensors to analyze the data using 

the same method to show the fall prediction accuracy. They 

did not consider predicting cautious gait that can lead to a 

fall. In [22], the author described how spatiotemporal and 

kinematic parameters changes in patients with stroke. They 

used a data base of a clinical gait analysis to validate their 

claim. 

To address the drawbacks of the above-mentioned research, 

in this paper, we propose a gait assistant system using IoT. 

Our system is designed to address directly some of the 

drawbacks of the existing systems and potentially yield good 

prediction results. To the best of our knowledge, our system 

is the first IoT-based gait assistance for predicting cautious 

gait, especially in stroke patients.  We illustrate the 

difference between our system and the other related works in 

Table I. 

 
TABLE I. COMPARISON OF EXISTING WORK BASED ON 

DIFFERENT FEATURES 

Approach 
Use IoT 

Device 
Mobility  

Support High 

Sampling Rate 

Cyber 

Physical 

System 

Cost 

Effective 

Alwan [14] No Yes No No No 

Duncan [23] No Yes No No No 

Iosa [15] No Yes Yes No No 

Hyngstrom [24] No Yes No No Yes 

Jonkers [25] No Yes No Yes Yes 

Mellone [26] No No No Yes No 

Mirelman [27] No Yes No Yes No 

B-Shoe  [28] Yes No No Yes No 

Lee [29] No No No Yes No 

Zhang [30] No No No Yes No 

Duschau [31] Yes No No Yes Yes 

Popescu [32] No No N0 Yes No 

Bourke [33] Yes No No Yes No 

Forrester [34] No No Yes Yes No 

Our Approach Yes Yes Yes Yes Yes 

III. SYSTEM ARCHITECTURE AND DATA 

COLLECTION 

The strength of our proposed IoT system is 

dependent on existing wireless communication technologies 

to provide a low cost solution with maximum freedom of 

movement. In addition, we have used a smartphone and a 

sensor embedded IoT-shoe that are user friendly. The 

architecture of the system is shown in Figure 1. The system 
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then generates gait assistive information based on gait 

spatiotemporal parameters while walking. 

To analyze the spatiotemporal parameters and 

kinematic motion of the gait, four piezo-resistive pressure 

sensors were placed at the bottom of the shoe to assess the 

pressure distribution. It is observed that more than 70% body 

pressure is measured from the front foot and back foot 

regions while walking. Considering this, we have placed two 

of our sensors in the forefoot region, and two in the rear foot 

region as described in Table II.  In this system, the piezo-

resistive force sensor is used to measure the foot pressure 

while walking. The accelerometer and GPS of the 

smartphone is used to measure the acceleration of the body 

and the user’s location information. Along with the four 

pressure sensors, the IoT-shoe includes a communication 

module. The module is comprised of an Arduino™ and a Wi-

fly module with a battery power supply. The Arduino is an 

open-source physical computing platform based on a simple 

I/O. The Wi-Fly Shield equips the Arduino with the ability 

to connect to 802.11b/g wireless networks. 

 
Fig. 1: Overview of proposed IoT sensing system 

In order to process the pressure data, the communication 

module has two different software tasks. One is for the 

Arduino and another is for the smartphone. In the Arduino, 

we read an analog signal from the shoe sensors and buffer 

the signal that is sent to the smartphone through a Wi-Fi 

network. Sensor data was collected over a period of time and, 

each time, a subject was tested with a simulated cautious gait. 
 

TABLE II. INSOLE SENSING POSITION  

Sensor Position  

FS 1 and FS 2 Rear foot  FS 1: Posterior Metatarsal 

 FS 2: Hind foot  

FS 3 and FS 4 Forefoot   FS 3: Great Ball  

 FS 4: Little Ball  
 

A. Experimental Setup 

To test the effectiveness of our proposed system, we 

collected data from the IoT-shoe sensor and the smartphone 

sensor using a smartphone. We used multiple subjects and 

collected data for different events of a gait cycle. Data for 

each subject was collected for 12 60-second trials from a 

smartphone placed in the subject’s wrist. 

B. Data Collection Process 

For the data collection, we have developed a prototype 

application of the system for smartphone. The screenshots of 

the prototype application with visualization of pressure 

variation in different sensors and variation of body 

acceleration are shown in Figure 2. In Figure 2(a), the 

interface is shown, which is used to visualize the 3-axis 

accelerations variations while walking for a period of time. 

We also have developed the interface for graphically 

picturing all four insole sensors, as shown in Figure 2(b). We 

have used our prototype application for data collection and 

for evaluating our system. 

Volunteers were recruited for the validation of the IoT 

system. The testing involved placing the IoT-shoe 

instrumentation on the subjects’ own walking shoes and 

attached the phone to his/her wrist. Each subject was asked 

to perform a series of walking tasks, while systems 

simultaneously collected data from the shoe and the 

smartphone sensors. 
TABLE III. SUMMARY OF SUBJECT CHARACTERISTICS. 

Gender Ages [yrs.] Height [cm] 

Female:  3 
Male:  7 

20-30: 6 
31-40: 4 

150-159: 2 
160-169: 1 

170-179: 4 

180-189: 3 

Since, we cannot test potential injuries due to fear of falling 

with a real stroke patient, we recruited 10 participants from 

both genders. Characteristics for each group are summarized 

in table III. Each subject first walked at his or her own self-

selected natural pace for 2 to 4 trials, termed “free gait.” Then 

we asked them to walk with cautious gait (shortening the step 

in a sort of drag motion and displaying a lateral deviation of 

the entire trunk).  

 
 

(a) Real-time 3-axis accelerations 

while walking  

(b) Real-time pressure variation 

while walking 

Fig. 2: Screenshots of IoT-based wireless  gait collector prototype  
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We first used these datasets for the training of our system. 

Later we used the trained system with real people to verify 

the gait detection accuracy of the system. We established a 

baseline walk period for each of the walking traces. This was 

achieved by manually finding the walk-start (tstart) and walk-

end (tend) events. 

We optimized the gait parameters using the manually-

determined ground truth walk periods. 

 
Fig. 3. Illustration of Walking Intervals 

For 𝑡0−𝑆𝑡𝑎𝑟𝑡 ≤ 𝑡𝑆𝑡𝑎𝑟𝑡  ≤  𝑡0−𝐸𝑛𝑑  and  𝑡𝑛−𝑆𝑡𝑎𝑟𝑡 ≤ 𝑡𝐸𝑛𝑑  ≤  
𝑡𝑛−𝐸𝑛𝑑  as shown in Figure 3, we define the false positive 

error, false negative error and total error as follows, 

∈𝑃 = (𝑡𝑆𝑡𝑎𝑟𝑡 − 𝑡0−𝑆𝑡𝑎𝑟𝑡) + (𝑡𝑛−𝐸𝑛𝑑 − 𝑡𝐸𝑛𝑑) 

∈𝑁 = ∑(𝑡𝑖:𝑠𝑡𝑎𝑟𝑡 − 𝑡(𝑖−1):𝐸𝑛𝑑)

𝑛

𝑖=1

 

                ∈𝑡𝑜𝑡𝑎𝑙=∈𝑝+∈𝑁                                  (1) 

To minimize the error in the sample data, we eliminated 

100 initial and end data samples in each interval of data 

collection. 

Currently, the collected data can fully or partially process 

on the IoT embedded device. The onboard data processing 

depends on the IoT application. Mainly, it includes novel 

Feature Extraction signal classification. However, due to the 

constraints on the capabilities of low-power IoT devices 

including computation and memory limitations, the on-board 

processing must be optimized. Hardware and software 

optimizations are needed to make the on-board processing 

efficient and affordable. To overcome the limitations, we 

used the smartphone as a platform, which has the capability 

of analyzing the data in real-time to detect the cautious gait 

in stroke patient.  The smartphone in the system is used for 

data acquisition, computation, and communication. An 

onboard sensors’ data process using embedded IoT 

components is shown in Figure 4. 

 

Fig. 4.  Sensor Data Processing using Embedded IoT Components  

IV. OVERVIEW OF SIGNAL CLASSIFICATION 

APPROACH 

We used the following approaches of signal classification 

to analyze the IoT-shoe and smartphone sensors data to 

identify cautious gait in stroke patient. 

 Phase Space Reconstruction  

The Phase Space Representation (RPS) is a 

transformation mapping a time series into a 

multidimensional space, where each dimension represents an 

independent variable describing the system under study. 

There are several variants of this transformation; however, 

the most famous is extracted from Takens' embedding 

theorem [35]. The works of Takens and Sauer, et al., [36] are 

used as a theoretical basis for our signal classification 

process. This work states that a time series of observations 

sampled from a single state variable of a system can be used 

to reconstruct a space topologically equivalent to the original 

system. 

Given a time series 𝑥 = 𝑥𝑛 ,    𝑛 = 1… … .𝑁, a sequence 

of state variable observations, a trajectory matrix X  of 

dimension d and time lag ζ is defined as, 

X = 

[
 
 
 
X1+(d−1)ζ

X2+(d−1)ζ
......

XN ]
 
 
 

=

[
 
 
 
 
 

x1+(d−1)ζ     … . .   x1+ζ  ….  x1

x2+(d−1)ζ     … . .   x2+ζ  ….  x2

.                  .                     
.                     .                   
.                        .               

xN     … . .   xN−(d−2)ζ  ….  xN−(d−1)ζ]
 
 
 
 
 

   (2)               

where each row vector in the matrix represents a single 

point in the space: 

         𝐗n = xn−(d−1)ζ      … . .       xn−ζ      xn                     (3)                                                     

where, 𝑛 = (1 + (𝑑 − 1)𝜁) …… … 𝑁.  a row vector 𝑥𝑛 is 

a point in the RPS. 

The dimension, d, is greater than twice the box counting 

dimension of the original system which is a sufficient 

condition for topological equivalence [33]. In Takens’ 

original work, ζ=1. However, in practice it has been found 

that the appropriate selection of the time lag can reduce the 

required RPS dimension. 

The proposed classification approach is capable of 

distinguishing between signals generated by topologically 

different systems because of the representational capability 

of RPSs. This theoretical capability is demonstrated 

empirically across different complex real-world application 

domains.  

V. EVALUATION OF THE SYSTEM  

To evaluate our proposed system, we have developed a 

prototype application and investigated its performance. We 

evaluated the prototype with extensive experiments. In this 

section, we present how the data are analyzed and 

performance is measured. 

A. Result Analysis 

In this section, we discuss the performance of the IoT 

system. 
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Pressure Maps and Accelerations of Human Motion  

An example of pressure maps that can be extracted from 

the developed pressure-sensitive insoles is described in 

Figure 5a: the stated maps represent typical in-sole pressure 

patterns for a test subject during the walking. An interesting 

finding of this study is the gait insole variation. The variation 

of insole pressure with time varies from person to person. 

Several users have the distribution of pressure from forefoot 

to rearfoot and some users have the variation from rearfoot 

to forefoot. 

Observed acceleration from the smartphone sensor is 

described in Figure 5b. It is interesting to note that the 

observed acceleration for free gait is somewhat similar to 

that of simulated cautious gait. Explicitly, it is basically a 

short period of acceleration value followed by a small 

impact.  The average measured peak acceleration for free gait 

is greater than the average peak for acceleration with 

cautious gait. 

(a)                (b) 
Fig. 5. (a) Pressure maps under the IoT-shoe while walking with 

cautious gait. The weight is distributed on the heel region. (b) 3-axis 
acceleration of the user while walking with cautious gait. 

Spatiotemporal Parameters Analysis 

To test the validity and long term feasibility of our 

proposed system, we calculated cadence, stride length, stride 

time and speed of the participant’s trial for free gait and 

simulated cautious gait. The parameters measured from the 

insole pressure variation from an IoT-shoe and from the 

accelerometer of the smartphone was calculated to 

investigate common information between the parameters. 

Parameters with a higher coefficient were interpreted as 

being significant contributors to normal or abnormal walking 

detection. Table IV shows a spatiotemporal parameters for a 

sample test subject. 

TABLE IV. SPATIOTEMPORAL PARAMETERS FOR A SAMPLE 
TEST SUBJECT  

   Parameters 

 

Gait 

Cadence 

(steps/min) 

Stride 

length(cm) 

Stride 

time (sec) 

Speed 

(m/sec) 

Cautious Gait 127.463 101.85253 1.352.11 0.8405 

Free Gait 103.35 108 1.161 0.93 

We investigated the relative error of spatiotemporal gait 

parameters of free gait with respect to parameters from the 

simulated cautious gait. We observed that cadence and stride 

time for cautious gait is higher than free gait for each trial. 

However, the stride length and speed of cautious gait are 

smaller than free gait. For predictive analytics of the system, 

we used information of parameter variations for the above 

mentioned two different gaits. 

Signal classification for gait pattern recognition 

As discussed above, our approach to signal classification 

is to build a predictive model of signal trajectory densities in 

an RPS and differentiate between signals. First, we will 

analyze data from IoT-shoe sensors, which includes 

embedding the signals and estimating the time lag and 

dimension of the RPS. Then, learn the models for each signal 

class for signal classification, which is done with a 

Maximum Likelihood Estimator (MLE) technique. 

First, we applied our technique to the two data sets 

generated from free gait and simulated cautious gait events.  

It was observed that the pressure variation with one or two 

sensors during cautious gait was much higher than free gait 

with respect to subject’s gender age, height and weight. We 

used the average pressure variation of these pressure values 

while determining spatiotemporal parameters for each 

subject. We can also see the variations of different walking 

patterns for different subjects. 

Next, we modeled the dynamics using Gaussian Mixture 

Models (GMM). The particular models used here are 

statistical distributions that can be learned over RPSs and 

then used to classify signals. Our experimental results do not 

show the desired accuracy with the predictive model for 

walking, as our analysis is for simulated data. However, for 

the model prediction, there is still room for classification 

accuracy improvement to greater satisfaction. We expect our 

accuracy to improve when data is collected from a real 

subjects with chronic heart problems. 

VI. CONCLUSIONS 

In this paper, we presented a wireless system to analyze 

gait using IoT-shoe and smartphone sensors through a real-

time detection of abnormality in users’ gait patterns. The 

proposed IoT system can detect and predict cautious gait that 

can lead to a fall.  We presented preliminary results from a 

patient using the embedded IoT system and showed that the 

data can be used to analyze the cautious gait. The system may 

also find multiple applications in gait behavior detection for 

people with various disabilities who are at a high risk of falls 

related injuries with location information. 

To test the chronological permanence and long-term 

feasibility of our approach in the future, we plan start testing 

our system with data from elderly people who suffer from 

chronic heart problems. Also, we plan to compare healthy 

and stroke patients' data where the pairs are closely 

comparable based on weight, height, age, and gender. 

Additionally, the system can be used in the smart home 

monitoring system to connect gait to digital worlds for future 

wireless technology. 
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