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Abstract—The Internet of Things (IoT) has brought increased
sensing, monitoring and actuation capabilities to several domains
including residential buildings. Residential energy management
methods can leverage these capabilities and devise smarter
solutions. This requires processing and reasoning data con-
stantly generated by various IoT devices. In this paper, we use
a hierarchical system model for IoT-based residential energy
management, that includes a general purpose functional unit to
drive data processing and reasoning. We apply this hierarchy
to represent the electricity delivery structure from the utilities
to individual residences. Our system captures additional data
generated by various devices as user context and uses this context
to determine user flexibility towards energy management. Our
experiments show that modeling user context brings over 14 %
improvement in energy flexibility prediction accuracy and 12%
reduction in annual grid energy cost.

I. INTRODUCTION

Residential energy automation has gained significant at-
tention over the last years due to potential savings applied
over millions of houses. Previous studies leverage reschedula-
ble appliances, energy storage devices and renewable energy
sources (e.g. solar, wind) to increase the energy efficiency
of residential domain. Although actual instrumentation is
very important to demonstrate the real applicability of the
automation solutions, high-level models are also essential for
testing different scenarios and scaling up the results to several
hundreds/thousands of houses before real deployment [1].
Most existing studies use static models and over-optimistic
improvements - using the additionally available data as ground
truth. However, this data is 1) not always readily available, and
2) strongly tied to the behavior and preferences of users [2]
[3]. The advent of the Internet of Things (IoT)—a collection
of sensors and actuators backed by the existing and growing
Internet infrastructure [4]—can provide the context needed for
user-driven residential energy automation. In this work, we
aim to use this additional user context to determine individual
appliance and house energy flexibility. Our approach includes
modeling, training, and generating this context information in
an efficient and accessible way.

Pre-IoT work in ubiquitous sensing still envisioned a level
of compatibility and control over the sensors in the systems
[5] and applications that used a manageable amount of raw
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sensor data. The number of available sensing and actuation
devices has grown rapidly in the last few years [6], promising
a truly pervasive sensing and actuating environment. In addi-
tion, ubiquitous connectivity and cloud storage have largely
mitigated the primary research issues in the pervasive sensing
fields. Reliability of communication and storage allows us to
focus on the application layer: IoT applications operate in
a world of changing inputs and available compute nodes as
sensors and devices enter and exit an application’s domain.
The raw data in these applications will go through several
levels of abstraction, combination, or distillation to produce a
high-level description of the environment (and its users) with
discrete, semantic states called context. Discrete, high-level
context facilitates intuitive reasoning at the cost of raw data
precision, and can be reused across applications.

These context-aware Internet of Things applications are
ideally suited for determining user behavior for the residen-
tial smart grid: their main goal is to leverage the available
data to drive automated actuation, such as in smart envi-
ronments, distributed microgrids, or user-centric automation.
They operate on dynamically changing, ontologically-defined
data called context data whose type, range, and sources are
specified in an interface. Current context-aware applications
are still end-to-end implementations tightly coupled to the
initial infrastructure and platforms, where each application
maintains its own data and user interactions. As the number
and heterogeneity of sensing devices and compute nodes
available to each application changes, these implementations
adapt poorly without complete redesign. Smaller, simpler func-
tional units that provide intermediate steps towards an overall
application can alleviate scalability issues. Additionally, the
state of the art [7] [8] places the burden of processing in
black-box applications. This is particularly inefficient when
multiple applications need to process the same data using
similar computation (e.g. both workplace automation and
home security can infer a user’s location and occupancy
from various data sources in the same way). Furthermore,
reliance on application-specific code squanders the potential
for designing and reusing general-purpose machine learning
for multiple context-aware applications.

This paper identifies a novel approach to context-aware res-
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idential energy management problem using a general-purpose
functional unit (context engine), which drives data processing
for a given output context variable. We apply this idea towards
the residential smart grid as a distributed, hierarchical context-
aware application. We use heterogeneous data from different
residences and user activities and scale the system up with
more individual compute nodes and grid elements, demonstrat-
ing the potential for complexity and overhead reduction. We
then demonstrate the impact of the addition of user context,
with over 14% improvement in energy flexibility prediction
accuracy and 12% reduction in annual grid energy cost.

II. RELATED WORK

There is a large body of work focusing on residential energy
management. These studies include data-set based studies [9],
[10], [11] [12], [13], [14], [15], physical space instrumentation
[16], [17] and simulation-based studies [1]. The dataset-based
studies leverage time of use datasets from different countries
to make a connection between daily activities of the users
and the energy consumption of different appliances. Example
data sets include American Time Use Survey (ATUS) [18] and
Residential Energy Consumption Survey (RECS) [19]. Kolter
et al. [16] and Barker et al.[17], on the other hand, instrument
some houses to collect this information from specific spaces.
Although this idea creates the perfect link between the users
and the energy consumption, the applicability is highly limited
due to scalability issues of instrumentation. Simulation-based
studies, e.g. [1], solve the scalability problem but they face
with validation and verification issues since the models used
in simulation studies should be verified to make sure that they
represent the actual living environment.

Most studies employing residential energy management
have a big assumption: reschedulable appliances. With this
assumption, the appliance usage instances can be treated as
computer workloads and shifted to time intervals with lower
electricity price to minimize the total energy cost. When
rescheduling these appliances, it is important to account for
user satisfaction. Previous studies account for this by having
deadlines for the reschedulable appliances. Previous studies
use predetermined, fix deadlines to represent these deadlines
[1], [20], [21]. Other studies [22], [23] determine these dead-
lines randomly, but this process cannot accurately represent
the actual human constraints. In this paper, we show that such
fixed assumptions on user requirements can lead to deviations
from actual user requirements, and thus negatively affect the
potential savings of residential energy management solutions.

III. CONTEXT-AWARE SYSTEM MODELING

This section shows our system design to automate resi-
dential energy using context aware modeling. We first briefly
overview our context engine architecture to organize complex
systems as modular, functional units and then present how we
set up multiple context engines to control residential energy.

A. Context Engine Framework

We first briefly introduce our context engine design, which
designs and implements an alternate view of IoT applications:
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Fig. 1. Context engine framework: hierarchical and modular representation
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a hierarchy of multiple-input-single-output (MISO) functional
units called context engines to improve reasoning and scalabil-
ity while reducing the data redundancy across applications, and
accomplishing the same functionality as the previous mono-
lithic multi-input multi-output (MIMO) units. In exposing
intermediate data, we reduce the complexity and improve the
scalability of other applications in the larger infrastructure. The
improvement in scalability may come at the cost of accuracy,
but we both quantify the additional error and illustrate how
it can be minimized. We exploit the unique opportunity in
IoT where reasoning and data is often replicated between
different applications. Modularization generates intermediate
context that can be shared among applications. Furthermore,
as the smaller, hierarchical functional units represent a simpler
data translation compared to the overall computation of an
application, we can implement a general machine learning
algorithm to perform data transformation - from the input
context to the output - and reduce application-specific code.
IoT applications consume data about both physical and
virtual system entities. This data, from heterogeneous sources
including sensors, social media, and even manually submitted
by users is raw and noisy requires processing by applications
to be filtered and distilled into usable information. Addi-
tionally, from the input data, applications need to extract
context: high-level abstracted data. In the IoT, context tends
to be human-centric classifications (e.g. location, activity) that
are important to many different applications [4]. Black-box
implementations of applications from raw data to output mask
both types of processing output (preprocessing and common
intermediate context) from other applications, which leads
to redundancy in computation. Our proposal of a hierarchy
of functional units in place of monolithic implementations
trades off compactness for versatility. A hierarchical approach
breaks down a single application into multiple functional units,
increasing organizational complexity. Although serializing the
process can increase latency if a highly compact algorithm was
expanded, it can also expose intermediate output for reuse by
other applications, thus reducing compute redundancy in the
system. We will prove that it also decreases overall compute
complexity and enables system scalability, in terms of reduced
input processing and reduced functional order when certain
conditions are met . Additionally, splitting single-step appli-
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Fig. 2. A context engine approach to residential energy management,
with individual homes providing higher-level context in place of raw data,
aggregated and passed . The outputs per house can vary depending on the
types of sensors and actuators available to each unit.
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cations into small functional units (each with fewer inputs,
simpler logic) facilitates a generalized data transformation
through machine learning. In the rest of our system design,
we are going to leverage the context engine as the founding
block of our residential energy management application. More
details about this work can be found in [24].

We use multiple context engines to automate residences by
predicting the energy flexibility of end-use elements in the res-
idential smart grid. We then use this flexibility information and
usage prediction to reschedule appliances to save energy costs.
Currently, utilities gather energy consumption from end-users
through smart metering single-stage data processing system.
User behavior can be used to further improve the accuracy of
energy prediction [3]. This additional context, obtained from
wearable and house sensors, vary in source, data, accuracy,
format, etc. among the different users. In the current smart grid
system, all this heterogeneous, additional data would need to
be passed in directly to the utility, which in turn would use
a redesigned application to provide energy prediction. This
represents a significant increase in both communication and
processing overhead. However, the context engine approach
can be used to provide only the high-level context that the
utility requires: energy prediction and the flexibility of the next
interval (potential energy savings in kWh by shutting down
loads). Furthermore, as the smart grid is naturally distributed,
we can further break down data aggregation along the existing
lines of power distribution: waystations, junction boxes, and
substations, which already have some level of computation
ability (see Figure 2). The result is a multi-tier context-aware
application that uses available residential data to determine the
flexibility of the loads of a house, and further uses this gener-
ated context to determine the energy flexibility of a group of
houses, a neighborhood, and ultimately, the residential sector.
We demonstrate the feasibility of this approach by contrasting
it with the current state-of-the-art: sending all the raw data
back to the utility for processing. Finally, we connect our
predictions back to our initial study, using HomeSim [1], using
the Flexible Interval context engine to provide reschedulable

time frames for different appliances and the Energy Prediction
context engine to generate individual appliance traces. We then
simulate the houses to quantify the cost savings of appliance
flexibility, taking into account more realistic, personalized
deadlines and exploiting variable time-of-use pricing.

B. Context Engine Setup

In our approach, we begin at the level of each individual
end-use appliance in a house. Some appliances are less flexible
(e.g. HVAC systems, refrigerators, and always-on devices)
than others whose energy is dominated by direct user in-
teraction (kitchen and laundry appliances, lighting, etc.). We
exploit the advent of smart appliances with onboard embedded
systems as potential nodes of computation. The goal in this
stage is to identify 1) user interaction with the appliance, if
applicable, and 2) whether this usage is flexible at a given
time. These intermediate outputs are further used to predict
the energy usage of the appliance in the next interval, and
consequently, the predicted energy flexibility. The intermediate
and final outputs are trained with ground truth as following:

« User interaction and activities are boolean values derived
from analyzing the energy and/or water traces to find how
appliances are used.

o Binary energy flexibility for appliances is derived from
the distribution of use over time (see Figure 3. This is
unique to each house due to differences in user behavior.

These first-stage context engines’ outputs are further used to
predict the appliance usage. While the energy usage alone
was previously used in time-series to predict future intervals’
output, we can better learn the profiles of user-triggered
appliances by leveraging user context. An individual house can
aggregate its flexibility prediction, passing it up to the next tier:
junction boxes or substations, which in turn feed aggregated
flexibility prediction to the utility. While aggregated flexibility
is useful for identifying the energy that can be saved, our
approach takes the next step and determines the individual
loads that combine to provide this flexibility. This granularity
is an innovation enabling the smart grid to perform automated
residential demand-response: feedback control signals to au-
tomate individual loads in a scalable manner.

C. Input/Intermediate Data

Our data is sourced from the Pecan Street database [25], a
dataset that aggregates individual energy and water loads. In
addition, a subset of houses provides basic information about
the number and type of occupants. We selected and replicated
houses that fall into one of the house types in Table I to
represent a neighborhood with disparate amounts and types of
data. The first-stage context engines need to be trained with
ground truth for user interaction and binary flexibility of each
interval. As Pecan Street does not provide this information
directly, we define flexibility based on historical data about
the appliances - each house show different usage patterns for
each appliance, with each cluster having a range of start times.
For each new appliance event, we assume its flexibility to
meet that of the historical operation of that appliance instance.
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TABLE I
THE FOUR DIFFERENT HOUSE TYPES RETRIEVED FOR THE CASE STUDY,
WITH THEIR CONSTITUENT COMPONENTS.

House | Flex. Inflex. Add’l room- Electric Water Water
Type Appl. Appl. spec. appl. Vehicle  appl. flow
A X X X

B X X X X

C X X X X

D X X X X X X

000
7:30

900

3 flexibility regions of varying duration

Fig. 3. The aggregated instances of washing machine usage on Mondays in
House B, illustrating 3 clusters of varying flexibility.

For example, Figure 3 illustrates the usage pattern of washing
machines for House B, highlighting the aggregate number of
instances at each time interval. The resulting clusters identify
the windows of flexibility. A future appliance interval occur-
ring at noon will have a flexibility range between 9:30 AM
and 1:00 PM. Similarly, we record clusters for all appliances in
all tested houses, generating unique, heterogeneous flexibility
ranges that represent different user preferences. Similarly, we
associate flexibility of usage to other appliances based on
related research and the traces themselves. For example, the
electric vehicle has three states: not plugged in, plugged in
but not charging (nominal drain from charging circuit), and
charging. The second and third states represent a flexible time
frame for flexible use. Table II highlights the other flexible
appliances. Finally, to calculate grid energy cost, we use time-
of-use pricing obtained from independent system operators
across the United States: CAISO for California [28], NEISO
for New England [29], and ERCOT for Texas [30]. This
revealed the benefits of our prediction across different pricing
schemes: Boston (high mean price, high standard deviation),
San Diego (medium mean price, medium standard deviation),
and Houston (low mean price, low standard deviation). Figure

TABLE I
APPLIANCE FLEXIBILITY PARAMETERS

Justification

Flexible usage patterns [26]
Flexible usage patterns [27]
Observed flexible charging

in Pecan Street dataset
Variation in light intensity [1]

Flexible Appliance
Clothes Washer/Dryer
Dishwasher

Electric Vehicle

Lighting

Forecasted Hourly Time-of-Use Retail Prices

=}
n

Retail Energy Price [5/l0Wh)

* Ul L L

0 L Ly e = (R

2/1/2012  3/1/2012  4/1/2012  5/1/2012  6/1/2012
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Fig. 4. Wholesale electricity prices scaled up to retail residential pricing.

TABLE III
AVERAGE MEAN ABSOLUTE ERROR (MAE) FOR EACH CONTEXT ENGINE
IN SINGLE-STAGE AND SEQUENTIAL APPROACHES

Node Type Single-stage  Avg. Context Engine
(complexity) MAE (%) MAE (%)

A (3rd order) — 27.15

B (3rd order) — 14.23

C(3rd order) — 9.81

D (3rd order) — 6.16

Single-stage (3rd order) 26.94

Context Engine Aggregator 1434

(1st order)

4 highlights the differences among them, by scaling the ISO
wholesale prices to average retail levels.

D. Accuracy/Complexity

We first investigate the accuracy, comparing the sequential
context engine approach to the single-stage state-of-the-art:
a single node representing an aggregator receiving all the
raw traces from all houses and training over the aggregate
flexibility. Table III highlights the mean absolute error (MAE)
for both the context engines utilized by the two approaches.
We use the true appliance energy consumption from the Pecan
Street traces as ground truth. Each of the sequential context
engines within each house, providing per-appliance energy
flexibility, performed with less than 10% error for each appli-
ance, and reduces error as more user data is provided (# inputs
for A < B < C < D). Conversely, the single-stage application,
suffers more error due to the relative lack of training over
each appliance’s flexibility and user interaction. The single-
stage engine requires the more complex computations to be
performed by the aggregator, which scales poorly with more
inputs. We handle the complex-third order processing closer
to the edge by the embedded devices on the appliance-
specific context-engines with fewer inputs and lower overall
complexity. Thus, our approach at 1000 inputs performs 96x
faster than the current state of the art, significantly reducing
the output generation of the single-stage approach.

IV. GRID ENERGY SAVINGS

We expand upon our previous work [1] by connecting this
user activity and flexibility prediction. Our approach integrates
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TABLE IV
FLEXIBLE APPLIANCE SCHEDULING

Appliance [ Flexible Schedule

Washer Up to 12 hr before predicted deadline

Dryer Up to 12 hr before deadline, within 2 hr of washer
Dishwasher | Within 6 hr after predicted deadline

HomeSim, introduced by [1], with the context engine approach
to manage residential grid energy consumption and cost. In our
previous work, we quantify the ability for smart appliances
to be rescheduled through awareness of time-of-use retail
energy prices [1] . While we previously used static flexibility
information for each appliance (i.e. a fixed threshold for
each appliance instance), we now have the ability to generate
individual flexibility predictions using context engines (see
Figure 2). To restate, we use historical appliance start times
to generate a flexibility range for each appliance (see Table
IT). We use HomeSim’s reschedulable appliance scheduler, de-
scribed in [1], which allows us to use our predicted flexibility
and energy consumption to rescheduling flexible appliances.
The goal is to move appliances to intervals where they
can be more cheaply utilized. We use the outputs of our
context engines, the predictions of energy consumption and
flexibility, to generate new schedules for flexible appliances.
We compare the results against having full knowledge of the
appliance’s consumption data and the assumed flexibility that
was determined by historical usage.

Oracle schedule and
predicted schedule
flexibility interval start

Oracle schedule flexibility Predicted appliance start time
interval start (used by pr?dﬂcteischeduf?)
€ F—
- el
t t t

Static schedule flexibility
interval end

Static schedule flexibility

N Actual appliance starttime (used by
interval start

static schedule and oracle schedule)

Fig. 5. Appliance flexibility ranges for: static, oracle, and predicted.

Figure 5 illustrates the three cases we investigate:

o Static schedule: assumes a fixed schedule for each
appliance. This is derived from Table IV, which is pro-
vided by our previous work [1]. This case does not take
into account differences derived from historical appliance
traces. For example, the washer and dryer flexibility
ranges are 12 hours and dishwasher flexibility range is
6 hours. These ranges can also be seen as deadlines, i.e.
the appliance usage instances should be accommodated
before the end of the flexibility interval.

¢ Oracle schedule: uses the ground truth derived from his-
torical usage as the flexibility interval for each appliance.
This varies from appliance to appliance and from house to
house. Since we are using the actual energy and flexibility
traces, we also have the benefit of foresight: determining
the full range of the flexibility interval before and after
the actual appliance instance’s start time.

TABLE V
COST SAVINGS AND APPLIANCE DEADLINES OF ORACLE KNOWLEDGE,
STATIC FLEXIBILITY AND PREDICTED FLEXIBILITY

Case Static Oracle Predicted
Schedule Schedule Schedule

Base Appliance

Annual Grid Cost $594.98 $594.98 $532.31

Rescheduled Appliance

Annual Grid Cost $487.92 $514.23 $469.64

Cost Savings ($) $107.06 $80.75 $62.67

Cost Savings (%) 18% 14% 12%

Appliance

Deadlines Met (%) 0% 100% 100%

o Predicted schedule: This is the real-time schedule deter-
mined solely by the output of context engine predictions.
In addition to predicted flexibility, since our context
engine only predicts one interval in advance, we only
have the ability to use the remaining intervals of the
flexibility range after the predicted appliance start time.

To generate the energy and flexibility predictions for each
appliance, we obtain the output of the Flexible Interval and
Energy Prediction context engines (Figure 2), respectively, for
all subsequent intervals of the current day and pass this data
into HomeSim. We assume knowledge of 24-hour time-of-use
(TOU) pricing in order to facilitate rescheduling. This is data
that is typically available on the wholesale sector from various
ISOs [28] [29] [30]. As retail energy integrates TOU pricing
as well, we expect to see similar forecasts.

Table V has three schedules (as described above) and we
calculate the savings for each schedule individually as the
difference between the base cost (row 1) and the cost with
reschedulable appliances (row 2) of the respective schedule.
We obtain 12% annual cost savings for the rescheduled appli-
ances using individually predicted flexibility values for each
appliance. We further compare this to having oracle knowledge
of all appliances and their flexibilities, the ground truth that
we used earlier to train the context engines, which generates
14% cost savings. The static schedule presented in the previous
section (Table IV) demonstrates a further 4% savings, at 18%
electricity cost saved.

Our predicted schedule’s energy consumption is within 89%
and 96% of the oracle scheduler for the base energy cost and
rescheduled appliance energy cost respectively, and there is
only a 2% difference between our savings and that of the
oracle schedule. The error in energy cost is partly due to
energy prediction error, and partly because upon predicting
an appliance’s start time, we only have until the rest of the
flexibility interval from the predicted start time to schedule
the appliance (the red interval in Figure 5). The oracle,
however, has a priori knowledge of the day’s schedule, and can
reschedule an appliance anytime within the flexible interval,
even before the original start time (the green interval in Figure
5). Finally, the original static flexibility case study (see Table
IV) yields a further cost reduction primarily because of the
increased range of flexible intervals (the blue interval in Figure
5). The static flexibility interval for the clothes washer is
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12 hours (Table IV), but the flexibility interval generated by
historical appliance use was shown to be 9.25 hours, with
a median interval of 7.25 hours. This difference, observed
over all flexible appliances, provides heterogeneity in user
preferences at the expense of fewer opportunities to try to save
on electricity cost. Comparing the static flexibility interval to
the oracle’s, we find that although it improves cost reduction
by 29% (18% savings over 14% of the oracle scheduler), 10%
of the statically rescheduled appliances actually fall outside
their flexibility interval, missing users’ perceived flexibility
deadlines. In other words, the static scheduler overestimates
user flexibility and thus leads to appliance deadline violations.

V. CONCLUSION

Electricity delivery systems are being equipped with smart
devices (e.g. sensors, actuators, etc.) at all levels (e.g. junction
boxes, individual homes, etc.) as part of the IoT. In this work,
we propose a hierarchical, modular and context-aware system
architecture to leverage these smart devices in order to manage
residential energy. This approach significantly reduces com-
putational overhead, performing 96x faster than a traditional
black-box application, while sacrificing only 14% accuracy on
average. We further use this architecture to model user flexibil-
ity when rescheduling various appliances and exploit varying
time-of-use energy prices while maintaining user satisfaction.
Current static appliance schedulers consistently overestimate
the degree of freedom in terms of user flexibility, thus missing
real deadlines. Our predictive scheduler uses multiple context
engines to energy consumption and flexible intervals of each
appliance. By intelligently managing user context, we obtain
a 12% reduction in annual grid energy cost (with only 2%
difference in savings), while meeting all appliance deadlines.
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