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� explains in depth the scope of applications of WMS-
based systems,

� describes the architecture of a typical WMS-based
system and discusses constituent components, and
the limitations of these components,

� suggests an inclusive list of desirable design goals
and requirements that WMS-based systems should
satisfy,

� lists various closely related research directions and
discusses how previous research efforts have tried to
satisfy the desirable design goals while taking into
account the limitations of the system components,
and

� provides a blueprint for the future of WMS-based
systems and discusses how Fog computing can pro-
vide a promising alternative to Cloud computing for
such systems.

The remainder of this article is organized as follows. We
discuss the scope of applications of WMS-based systems
in Section 2. In Section 3, we describe the architecture of
a typical WMS-based system. Furthermore, we describe
the components that constitute such a system, and their
limitations. In Section 4, we provide a list of desirable design
goals that WMS-based systems should satisfy and how the
goals can be prioritized. In Section 5, we discuss several
emerging research topics and directions. In Section 6, we
discuss how the Cloud-based architecture is reaching its
limitation and how Fog computing can offer a promising
alternative. Finally, we conclude in Section 7.

2 SCOPE OF APPLICATIONS

In this section, we describe various applications of WMS-
based systems (a summary is shown in Fig. 1).

2.1 Health care
Rapid advances in WMS-based systems are transforming
and revolutionizing health care. Medical WMS-based sys-
tems are of two main types: (i) health monitoring systems
that monitor the patient to prevent the occurrence of a
medical condition or detect a disease at an early stage, and
(ii) medical automation systems, which offer continuous
treatment or rehabilitation services. Next, we describe each
type.

2.1.1 Health monitoring systems
Prevention and early detection of medical conditions are es-
sential for promoting wellness. Unfortunately, conventional
clinical diagnostic practices commonly fail to detect health
conditions in the early stages since diagnosis is typically
performed after the emergence of major health symptoms,
and previous medical data on the patient are often very
sketchy. Furthermore, clinical practices are difficult to carry
out in out-of-hospital environments.

In order to address the above-mentioned drawbacks of
traditional clinical practices, several research studies have
targeted WMS-based health monitoring systems. Such sys-
tems can be divided into two categories based on their main
task: (i) preventive systems that aim to provide an approach
to prevent diseases before the emergence of their symptoms,

and (ii) responsive systems that attempt to detect health
conditions at an early stage and provide health reports to
the patient or the physician.
Preventive systems: Preventive health monitoring systems
provide real-time feedback to the user in an attempt to
correct behaviors that might lead to adverse health condi-
tions in the future. They promote healthy behaviors and
lower the probability of serious illness by automatically
detecting/predicting unhealthy activities and warning the
user about them [11]. Posture correctors and fitness trackers
are two of the most widely-known types of preventive
health monitoring systems.

1. Posture corrector: A poor posture results in muscle
tightening, shortening, or weakening, causing several health
conditions, e.g., back pain and spinal deformity [12]. Pos-
ture correctors [13]–[15] monitor the user’s movements and
habits and offer real-time feedback upon the detection of
any posture abnormality, e.g., slouching when sitting in
front of a computer display. In fact, they help the user main-
tain a healthy posture while performing daily activities.

2. Fitness tracker: Such trackers are in widespread use
and their market is rapidly growing. Although they may
use different sensing technologies, they all have a common
characteristic: they non-invasively measure some types of
fitness-related parameters, e.g., calories burned, heart rate,
number of steps taken [16], and even sleep patterns [17].

State-of-the-art fitness trackers play a significant role in
the Internet of Things (IoT) paradigm by enabling object-
to-object communication, transmission of user’s data to the
Cloud, and remote monitoring of user’s activities [18]. For
example, a fitness tracker, which can communicate with
other objects, may be able to gather data from gymnasium
equipment to support aspects of fitness progress awareness,
such as shopping suggestions to support the user’s fitness
regime [19].
Responsive systems: Responsive health monitoring systems
aim to detect medical conditions at an early stage by moni-
toring and analyzing various biomedical signals, e.g., heart
rate, blood glucose, blood sugar, EEG, and ECG, over a
long time period. For example, the CodeBlue project [20]
examined the feasibility of using interconnected sensors for
transmitting vital health signs to health care providers. Nia
et al. [1] proposed an extremely energy-efficient personal
health monitoring system based on eight biomedical sen-
sors: (1) heart rate, (2) blood pressure, (3) oxygen saturation,
(4) body temperature, (5) blood glucose, (6) accelerometer,
(7) ECG, and (8) EEG. MobiHealth [21] offered an end-
to-end mobile health platform for continuous health care
monitoring.

2.1.2 Medical automation systems
Unlike health monitoring systems, medical automation sys-
tems enhance the user’s quality of life after/during the
emergence of health issues. They mitigate health issues or
minimize disease symptoms by actively providing essential
therapy. Based on their functionality, medical automation
systems can be divided into two main categories: drug
infusion and rehabilitating systems.
Drug infusion systems: Drug infusion systems enable safe
injection of pharmaceutical compounds, e.g., nutrients and
medications, into the body to achieve desired therapeutic
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Fig. 1. The scope of applications of WMS-based systems

effects. Automatic drug infusion systems control the drug
release profile, absorption, and distribution to enhance the
treatment efficacy and safety as well as patient convenience
and compliance [22]. Insulin delivery systems are one of
the most commonly-used drug infusion systems. They con-
tinuously monitor the patient’s blood glucose level using
wearable glucose sensing patches and inject a prescribed
amount of insulin into the blood stream when necessary.
Rehabilitation systems: Such systems have attracted a lot
of attention in the past two decades. They are currently
used by patients after a major operation, sensory loss,
stroke, severe accident, or brain injury [23]. They are also
used to help patients who suffer from serious neurological
conditions, e.g., Parkinson’s disease or post-stroke condition
[24]. Gait and/or motor abilities analysis is often used in
rehabilitation in hospitals and health care centers [25].

An example of WMS-based rehabilitation system is
Valedo [26], which is a medical back-training device de-
veloped by Hocoma AG to enhance patient compliance. It
gathers trunk movements using two WMSs, transfers them
to a game environment, and guides the patient through ex-
ercises targeted at low back pain therapy. Another example
is Stroke Rehabilitation Exerciser [27] developed by Philips
Research, which coaches the patient through a sequence of
exercises for motor retraining. Salarian et al. [28] proposed a
method for enhancing the gait of a patient with Parkinson’s
disease. Hester et al. [29] proposed a WMS-based system to
facilitate post-stroke rehabilitation.

2.2 HCI

In our daily conversations, the existence of common con-
texts, i.e., implicit information that characterizes the situa-
tion of a person or place that is relevant to the conversation,
helps us convey ideas to each other and react appropriately.
Unfortunately, the ability to share context-dependent ideas
does not transfer well to humans interacting with machines.
The design of WMS-based human-computer interfaces has
notably improved the richness of communications in HCI
[30]. In particular, various WMS-based gesture detection

and emotion recognition systems have been proposed in the
literature to enhance HCI.

2.2.1 Gesture detection systems
Several applications, such as sign-language recognition and
remote control of electronic devices, need to respond to
simple gestures made by humans. In the last decade, many
WMS-based gesture recognition mechanisms have been de-
veloped to process sensory data collected by WMSs, e.g.,
magnetometer [31], [32], accelerometer [3], [5], and gyro-
scopes [33], to recognize user gesture and enable gesture-
aware HCI.

Although gestures from any part of the body can be used
for interacting with a computing device, previous experi-
mental research efforts [34] have demonstrated that finger-
based gesture detection mechanisms are more successful in
practice since their information entropy is much larger than
that of interactions based on other human body parts. As a
result, several research studies [33], [35]–[37] have focused
on developing algorithms to detect hand gestures in real-
time. A promising example of WMS-based gesture detection
systems is Pingu [33], a smart wearable ring that is capable
of recognizing simple and tiny gestures from user’s ring
finger.

2.2.2 Emotion recognition systems
Wearable technology was first used to detect emo-
tions/feelings by Picard et al. [38]. Since then, several re-
searchers have used different sets of WMSs to detect differ-
ent emotions/feelings, e.g., stress [39], [40], depression [41],
and happiness [42]). However, we humans still cannot agree
on how we define certain emotions, even though we are
extremely good at expressing them. This fact has made emo-
tion recognition a technically challenging field. However,
emotion recognition is becoming increasingly important in
HCI studies as its advantages become more apparent.

2.3 Information security and forensics
Next, we discuss two well-known types of WMS-based
systems developed in the domain of information security
and forensics for deception detection and authentication.
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2.3.1 Deception detection systems

The examination of the truthfulness of statements made by
victims, suspects, and witnesses is of paramount importance
in legal settings. Real-time WMS-based deception detection
systems attempt to facilitate security screening and criminal
investigation, and also augment human judgment [43]. They
process sensory data collected by various types of WMSs,
commonly heart rate, blood pressure, and accelerometers,
to detect suspicious changes in the individual’s mental state
(for example, a rapid increase in stress level), behavior
(for example, involuntary facial movements), and physio-
logical signals (for example, an increase in the heart rate).
PokerMetrics [44] is a lie detection system that processes
heart rate, skin conductance, temperature, and body move-
ments to find out when the user is bluffing during a poker
tournament. FNIRS-based polygraph [45] is another fairly
accurate lie detection system that processes data collected
by a wearable near-infrared spectroscope.

2.3.2 Authentication systems

Authentication refers to the process of verifying a user’s
identity based on certain credentials [46]. A rapidly-growing
body of literature on the usage of behaviometrics (measur-
able behavior such as frequency of keystrokes) and biomet-
rics (strongly-reliable biological traits such as EEG signals)
for authentication has emerged in the last two decades [47]–
[49].

Design of WMS-based authentication is an emerging re-
search domain that is attracting increasing attention. Several
research efforts have investigated the feasibility of using
the data collected by WMSs as behaviometrics or biomet-
rics. In particular, various research studies [50], [51] have
demonstrated that the data collected by smart watches, e.g.,
acceleration, orientation, and magnetic field, can be used to
distinguish users from each other. Furthermore, the use of
EEG [52] and ECG [53] signals, as biomedical traits with
high discriminatory power for authentication, has received
widespread attention. Although EEG/ECG-based authen-
tication systems have shown promising results, they have
been unable to offer a convenient method for continuous
user authentication for two reasons. First, the size/position
requirements of the sensors that capture EEG/ECG signals
significantly limit their applicability [53], [54]. Second, pro-
cessing of EEG/ECG signals for authentication is resource-
hungry [55]. A recently-proposed WMS-based authentica-
tion system, called CABA [9], has attempted to effectively
address these drawbacks by using an ensemble of biomed-
ical signals that can be continuously and non-invasively
collected by WMSs.

2.4 Education

Next, we describe how technological advances in WMSs are
transforming education by opening up new opportunities
for employing smart tutoring and teaching assistant sys-
tems.

2.4.1 Smart tutoring

With the rapid development of online tutoring and ex-
ponential increase in the number of massive open online

course websites, many research projects have been con-
ducted on computer-based tutoring systems, which aim to
select suitable instructional strategies based on the learner’s
reactions, mental conditions, emotional states, and feedback
(see [56] for a survey). Moreover, there is a strong motivation
in the military community for designing adaptive computer-
based tutoring systems to provide effective training in en-
vironments where human tutors are unavailable [57], [58].
WMS-based tutoring systems can recognize the user’s emo-
tional condition, level of understanding, physical state, and
stress level by collecting and processing sensory data, e.g.,
user’s heart rate and blood pressure. They can also predict
learning outcomes, e.g., performance and skill acquisition,
and continuously adapt their teaching/training approaches
to optimize learning efficiency [56].

2.4.2 Teaching assistant
WMS-based teaching assistant systems can continuously
collect and process various forms of biomedical signals
from students, and analyze their voices, movements, and
behaviors in order to reach a conclusion about the lecturer’s
quality of presentation and listeners’ level of satisfaction.
They can facilitate the teaching process by continuously
assisting the lecturer in delivering and subsequently making
the learning process shorter, more efficient, more pleasant,
and even entertaining. For example, Grosshauser et al. [59]
have designed a WMS-based teaching assistant system that
monitors movements of dancers and provides feedback to
their teacher. Park et al. [8] have designed SmartKG that
relies on several wearable badges to provide valuable infor-
mation about kindergarten students to their teacher.

3 ARCHITECTURE OF TYPICAL WMS-BASED SYS-
TEMS

In this section, we describe the architecture of typical WMS-
based systems. As shown in Fig. 2, the architecture includes
three main layers: (i) WMSs, (ii) base stations, and (iii)
Cloud servers. In this architecture, the data typically flows
from left to right. Although modern WMS-based systems
commonly have all three layers, the last two layers may
not be necessary for some applications. For example, for
posture correction, the data can be processed in the first
two layers [60]. Based on the applications enabled by the
system and their requirements, each layer offers a variety of
services. Next, we describe the role of each layer along with
its limitations.

3.1 WMSs
The first layer of the architecture consists of different types
of WMSs that can sense electrical, thermal, chemical, and
other signals from the user’s body. The majority of these
sensors, e.g., EEG and ECG, directly sense and collect
biomedical signals. However, a few sensors, e.g., accelerom-
eters, gather raw data that can be used to extract health-
related information. With continuing performance and ef-
ficiency improvements in computing and real-time signal
processing, the number and variety of WMSs have increased
significantly, ranging from simple pedometers to sophisti-
cated heart-rate monitors. Table 1 lists various commonly-
used WMSs in an alphabetical order, along with a short
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Fig. 2. Architecture of state-of-the-art WMS-based systems

description for each sensor. Despite the variety of WMSs
available, they share two common limitations that must
be considered while designing a WMS-based system: small
storage capacity and limited energy.

Small storage: Storing a large amount of data in a WMS
is not feasible for two reasons. First, adding a large storage
to a WMS dramatically increases its energy consumption,
and as a result, significantly decreases its battery lifetime
[1]. Second, the size constraints of WMSs impose specific
storage constraints. The WMS size needs to be kept small to
ensure user convenience.

Limited energy: The small on-sensor battery with limited
energy capacity is one of the most significant factors that
limits the volume of data sampled and transmitted by
WMSs. It is still feasible to wirelessly transmit all raw data
without performing any on-sensor processing if devices are
charged regularly, e.g., on an hourly basis. However, forcing
the user to frequently recharge the WMSs would impose
severe inconvenience. As described later in Section 5.1.3,
on-sensor processing may significantly preserve battery life-
time by extracting salient information from the data and
transmitting it. The above-mentioned limitations of WMS-
based systems have three direct consequences. First, the
data generated by WMSs cannot be stored on them for a
long period of time and should be transmitted to other
devices/servers. Second, only extremely resource-efficient
algorithms can be implemented on WMSs. Third, WMSs
cannot usually support traditional cryptographic mecha-
nisms and are vulnerable to several security attacks, e.g.,
eavesdropping.

3.2 Base stations
Due to limited on-sensor resources (small storage and lim-
ited energy), the sensory data are frequently sent to external
devices with more computation power (the second layer
of the architecture). These devices are referred to as base
stations. They may range from smartphones to specialized
computing devices, known as central hubs [1]. They com-
monly have large data storage, and powerful network con-
nectivity through cellular, IEEE 802.11 wireless, and Blue-
tooth interfaces, and powerful processors [61]. Smartphones
have become the dominant form of base stations since
they are ubiquitous and powerful and provide all the tech-
nologies needed for numerous applications [62]. Moreover,
smartphones support highly-secure encrypted transmission,
which deters several potential attacks against the system [9].
The base station has its own resource constraints, though
much less severe, in terms of storage and battery lifetime.
Continuous processing along with wireless transmission to
the Cloud may drain the base station’s battery within a
few hours, and as a result, cause user inconvenience. Base
stations typically perform lightweight signal processing on
the raw data and re-transmit a fraction or a compressed
form of data to the next layer (Cloud servers) for further
analysis and long-term storage.

3.3 Cloud servers
Since both WMSs and base stations are resource-
constrained, sensory data are commonly sent to Cloud
servers for resource-hungry processing and long-term stor-
age. Depending on the wireless technology used, the data
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can be sent either directly or indirectly (through a base
station, such as a smartphone) to the Cloud. In addition
to the huge storage capacity and high computational power
that Cloud servers can provide for WMS-based applications,
they facilitate access to shared resources in a pervasive
manner, offering an ever-increasing number of online on-
demand services. Furthermore, Cloud-based systems sup-
port remote update of software, without requiring that
the patient install any software on the personal devices,
thus making system maintenance quick and cost-effective.
This makes Cloud-based systems a promising vehicle for
bringing health care services to rural areas [63]. Despite the
promise of Cloud servers in this context, utilizing them in
WMS-based systems has two drawbacks. First, Cloud-based
systems are dependent on the reliability of the Internet
connection. Outage of Internet service may have serious
consequences. For example, unavailability of a seizure pre-
diction system (that tries to detect the occurrence of a seizure
a few seconds before the patient’s body starts shaking) may
lead to a life-threatening situation. Second, the use of Cloud
servers increases the response time (the time required to
collect sensory data, process them, and provide a response
or decision). As a result, there may be a significant deterio-
ration in the quality of service in real-time applications.

4 DESIGN GOALS AND PRIORITIES

In this section, we first provide a wish list of design goals for
WMS-based systems. Second, we discuss potential conflicts
between two or multiple design goals and how designers
may prioritize these goals.

4.1 Design goals

Although the scope of applications of WMS-based systems
is quite wide, they share several common design goals.
Unfortunately, no standard inclusive list of desirable goals
has been presented in the literature. We have reviewed and
examined many recent research studies on the design and
development of different types of WMS-based systems to
develop a wish list of design goals for WMS-based systems.
Fig. 3 summarizes seven general design goals that should
be considered in designing WMS-based systems. Next, we
present the rationale behind each goal.

1. Accurate decisions: WMS-based systems process the
input data, e.g., an EEG signal, and return decisions as
output (for example, whether a seizure is occurring or not).
The quality of service provided by a WMS-based system de-
pends on the accuracy of decisions made by it. For instance,
a WMS-based authentication system must confidently de-
termine if the user is authorized to use restricted resources,
or a posture corrector must accurately decide whether the
user’s posture is healthy.
2. Fast response: A short response time is a desirable design
goal for the majority of systems. In order to ensure user
convenience, it is obviously desirable for the system to
quickly respond to user requests. Moreover, a short response
time is essential for an authentication system, in which the
system must quickly authenticate a legitimate user and re-
ject an impostor [9]. Furthermore, a long response time may
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Low cost

High-quality
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Fig. 3. Goal-heptagon: Desiderata for WMS-based systems.

endanger user safety in some scenarios. For example, if an
insulin pump fails to immediately detect an emergency, e.g.,
hyperglycemia or hypoglycemia, and provide a response
when it is necessary, the patient might suffer from life-
threatening conditions [64].
3. Long battery lifetime: To ensure a long battery lifetime,
all components embedded in a WMS and the signal process-
ing algorithms implemented on the device must be energy-
efficient. The battery used in a WMS is typically the greatest
contributor to both size and weight. As a result, WMSs
typically have very limited on-sensor energy [65]. Rapid
depletion of battery charge, necessitating frequent, e.g., on
an hourly basis, battery replacement/recharge would deter
wide adoption of the device [66]. Hence, long battery life-
time is a fundamental design goal for a variety of WMSs.
4. High security: The emergence of the IoT paradigm has
magnified the negative impact of security attacks on sensor-
based systems. Furthermore, the demonstration of several
attacks in recent research efforts (see [67] for a survey)
has led to serious security concerns and highlighted the
importance of considering security requirements. To ensure
system security, different security requirements must be
proactively addressed. Traditionally, security requirements
are broken down into three main categories: (i) confidential-
ity, (ii) integrity, and (iii) availability, referred to as the CIA-
triad [68]. Confidentiality entails using a set of policies to
limit unauthorized access to restricted resources. Integrity
ensures that the received commands and collected infor-
mation are legitimate. Availability guarantees the system is
fully functioning.
5. High-quality measurements: Undoubtedly, the quality of
the decisions offered by a WMS-based system depends on
the quality of sensory measurements provided by WMSs. It
has been shown that user’s activities may negatively impact
the quality of data obtained by the WMSs, e.g., running
significantly deteriorates the quality of the signal collected
by EEG sensors [69]. Hence, WMSs should be designed
to provide accurate and noise-robust measurements during
different daily activities, especially intensely physical ones.
6. Low cost: Low cost is one of the most important success
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TABLE 1
Common WMSs

Sensor Description
Accelerometer measures changes in the acceleration of the device caused by user’s movements
Blood pressure sensor measures systolic and diastolic blood pressures
Electrocardiogram sensor measures the electrical activity of the heart
Electroencephalogram sensor measures the electrical activity of the brain
Electromyogram sensor records electrical activity produced by skeletal muscles
Glucometer measures approximate blood glucose concentration
Galvanic skin response sensor measures continuous variation in the electrical characteristics of the skin
Gyroscope measures changes in device orientation caused by user’s movements
Heart rate sensor counts the number of heart contractions per minute
Magnetometer specifies user’s direction by examining the changes in the earth’s magnetic field around the user
Microphone records acoustic sounds generated by the human body (can be used for respiration analysis or emotion detection)
Near-infrared spectroscope provides neuroimaging technology to examine an aspect of brain function
Oximeter measures the fraction of oxygen-saturated hemoglobin relative to the total hemoglobin count in the blood
Pedometer counts each step a person takes by detecting the motion of the person’s hands or hips
Respiration rate sensor counts how many times the chest rises in a minute
Strain sensor measures strain on different body parts (can be used to detect when the user is slouching)
Thermometer measures an individual’s body temperature

factors for acceptance of WMSs in the market [70]. The
failure of Microsoft’s Smart Personal Object Technology [71]
due to inadequate cost analyses shows the importance of
considering cost of design and development.
7. Passiveness: Passiveness, i.e., minimal user involvement,
is a key consideration in designing a WMS-based system. It
is very desirable that WMSs be calibrated transparently to
the user and sensory data be measured independent of user
activities [72]. Obviously, if a wearable device (for example,
a smart watch) asks the user to calibrate internal sensors
(for example, accelerometers and magnetometers) manually,
it may be quite annoying to the user [73]. Furthermore, to
ensure user convenience, WMSs must be kept lightweight
and as small as possible.

4.2 Design priorities

Although the Goal-heptagon (Fig. 3) provides an inclusive
wish list, a conflict may arise between two or more of these
design goals in various application domains. Such a conflict
may be the result of application-specific requirements. For
example, in health care applications, the designers may will-
ingly sacrifice some security requirements to ensure a fast
response time in a life-threatening condition [74], whereas
high security may be preferred over a fast response time in
user authentication systems [9]. Furthermore, there may be
a natural trade-off between the design goals. For instance,
enhancing the security of a WMS (e.g., implementing strong
encryption mechanisms) may significantly increase the en-
ergy consumption of the WMS and decrease the device’s
battery lifetime. Hence, designers commonly prioritize these
design goals based on application-specific requirements and
limitations. Based on our examination of several survey and
technical research papers in different application domains,
we have constructed Table 2 that includes the two most
commonly-prioritized design goals in each application do-
main. As a general guideline, long battery lifetime, high-
quality measurements, and passiveness are usually given
the highest priority for systems that monitor the user or his
surroundings, whereas accurate decisions and fast response
time are very important considerations for systems that
actively interact with the user. The existing literature on

design goals of health care- and HCI-related WMS-based
systems is fairly mature, however, goals and requirements
of other application domains (security and education) are
not well-studied.

5 EMERGING RESEARCH DIRECTIONS

In this section, we describe several research directions that
are closely related to the domain of WMSs and discuss how
previous research studies have attempted to facilitate the
design and development of WMS-based systems.

5.1 Design of low-power sensors

The on-sensor energy has three major consumers: (i) sam-
pling, (ii) transmission, and (iii) on-sensor computation [1].
Thus, for each WMS, the energy consumption of one or
a combination of these consumers should be reduced to
enhance its battery lifetime. Next, we summarize what solu-
tions previous studies have proposed to reduce the energy
consumption of each of these energy consumers.

5.1.1 Sampling
The sampling energy is mainly the energy consumed by
the analog front-end (AFE) and analog-to-digital converter
(ADC). The analog front-end typically performs noise sup-
pression, signal conditioning, and amplification [75]. In re-
cent years, numerous AFE architectures have been proposed
for acquisition of various biomedical signals (see [76], [77]
for EEG and [75], [78] for ECG), which can be utilized in
WMSs to significantly reduce sampling energy.

In addition to AFE, the ADC consumes a significant
amount of energy. The total energy consumption of an ADC
can be divided into: (i) I/O energy, (ii) reference energy,
(iii) sample-and-hold energy, (iv) ADC core energy, and (v)
input energy [79]. However, separate calculations of these
values is difficult. Hence, the total on-chip ADC energy con-
sumption per sample is commonly reported in the literature.
In order to enhance ADC energy efficiency, several architec-
tures have been proposed in the last two decades, including
but not limited to, asynchronous [80], cyclic [81], and delta-
sigma [82] (see [79] for a survey). However, as discussed in
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TABLE 2
Commonly-prioritized design goals in different application domains

Application domain Prioritized design goals

Health care Accurate decisions and fast response (medical automation)
Long battery lifetime and high-quality measurements (health monitoring)

HCI Fast response time and passiveness
Security and forensics High security and accurate decisions
Education Long battery lifetime and passiveness

[1], with recent advances in the design and development of
ADCs, their energy consumption has become negligible in
comparison to the total energy consumption of WMSs.

In addition to reducing the energy consumption of AFEs
and ADCs, a novel efficient sampling technique, called com-
pressive sensing [83], has been proposed for acquiring and
reconstructing a continuous signal. Compressive sensing
exploits the sparsity of the signal to recover it from far fewer
samples than required by the Shannon-Nyquist sampling
theorem. Compressive sensing is recommended as a promis-
ing sampling technique in several recent research studies
on WMSs [84], [85]. It significantly reduces the number of
samples required to represent a signal and, at the same time,
enables energy-efficient feature extraction and classification
in the compressed domain [84].

5.1.2 Transmission protocols
A key consideration in the design of a WMS is the commu-
nication technology (radio and protocol) used to connect the
WMSs with the base station. Several transmission protocols
have been implemented on low-power wireless chipsets to
enable energy-efficient data transmission. These protocols
include, but are not limited to, ANT/ANT+ [86], ZigBee
[87], Bluetooth Low Energy (BLE) [88], and Nike+ [89].
Among them, three protocols have become dominant in
the market: ANT, ZigBee, and BLE. Dementyev et al. [90]
analyzed the power consumption of these protocols. They
found that BLE typically achieves the lowest power con-
sumption, followed by ZigBee and ANT. BLE has become a
promising solution for short-range transmissions between
WMSs and the base station since it benefits from the
widespread use of Bluetooth circuitry integrated in smart-
phones. In addition to energy-efficient transmission, new
protocols commonly offer lightweight strong encryption,
e.g., a modified form of Advanced Encryption Standard
[91], to provide confidentiality as well as per-packet au-
thentication and integrity. This prevents several security
attacks, e.g., eavesdropping and integrity attacks, against
WMS-based systems.

5.1.3 On-sensor computation
The required signal processing varies significantly from
one application to another. In most applications, sensors
perform lightweight signal processing (for example, com-
pression) on the data using on-sensor resources and then
transmit the processed data to the base station for further
processing, e.g., indexing and machine learning. Due to lim-
ited on-sensor resources, on-sensor computation, with the
attendant energy overhead, can be avoided for applications
in which the sampling rate of biomedical signals is low, e.g.,
monitoring the patient’s body temperature [1]. However, in

some applications, on-sensor computation may be beneficial
and preferred over off-sensor computation due to one of
the following reasons. First, on-sensor computation may
significantly reduce the transmission energy (and as a result
the total energy consumption of the device) even though
it imposes extra energy consumption for computation. For
example, if an EEG sensor can detect abnormal changes
in the data, it only needs to transmit a small fraction of
the data that includes those changes. Second, for some
applications, in particular mission-critical applications, the
communication delay or the possibility of unavailability of
the Cloud or Internet may not be tolerable.

Next, we briefly discuss three types of commonly-used
on-sensor algorithms.
1. Aggregation: In practice, a WMS does not usually need
to transmit data as fast as it collects them. Hence, it can first
aggregate multiple sensory measurements in one packet and
only then transmit the packet. In this scenario, the total
number of bits transmitted remains the same. However, the
average number of transmitted packets over a fixed time pe-
riod is reduced due to the aggregation. This can significantly
reduce the transmission energy of WMSs [92]. The number
of samples that can be aggregated in a single packet varies
from one device to another based on its resolution, and is
specified based on what is a tolerable response time [1].
2. Compression: Compression algorithms reduce the num-
ber of bits needed to represent data. On-sensor compression
is commonly used to decrease the transmission energy by
reducing the total number of transmitted bits [93]. It can
also reduce on-sensor storage by dropping non-essential
information from the raw data [94]. Several techniques have
been discussed in the literature to compress sensory data
collected by WMSs. Depending on the recoverability of
data, these techniques are divided into three categories:
(i) lossless, (ii) lossy, and (iii) unrecoverable. Lossless com-
pression ensures that the original signal can be completely
reconstructed from its compressed form without any error,
e.g., Huffman coding [95]. Lossy compression permanently
removes certain information from the signal, especially re-
dundant information and minor features, e.g., JPEG2000
used for EEG Compression [96]. Finally, in unrecoverable
compression, the compression operation is irreversible. For
example, one can compress a set of data values by taking
their average. However, none of the original values can be
extracted from this average [97]. Interested readers can refer
to [97] or [98] for a survey on compression techniques.
3. Lightweight classification: Classification is defined as
the problem of identifying to which category from a given
set a new observation belongs. In a typical classification
problem, a feature extraction procedure first extracts a set of
features from the raw data. Then, a learning algorithm (also
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called classifier) trains a model based on a training set of
data containing observations whose category membership
is known. After training, the classifier infers the category of
new observations using the trained model and the features
extracted from the new data samples. As a resource-limited
device, a WMS may consume a considerable percentage
of its energy to extract features and classify data samples.
In order to reduce the energy required for inference, both
feature extraction and classification must be energy-efficient.
Compressive sensing-based feature extraction and classifica-
tion [84] can significantly reduce the number of features that
need to be processed, while maintaining high accuracy. Sim-
ple classifiers (for example, decision trees [99] and percep-
trons [100]) enable lightweight classification when the use of
traditional classification methods (for example, Support Vec-
tor Machine [101]), which need more computational power
and storage, is not tolerable. A few recent research studies
have proposed application-specific classification algorithms,
e.g., seizure detection based on EEG signals [102], arrhyth-
mia detection based on ECG signals [103], and physical
activity classification based on acceleration data [5], [104].

5.2 Minimally-invasive capture methods
As mentioned in Section 4.1, passiveness is one of the
key design goals of a WMS-based system. In order to en-
sure passiveness, WMSs should exploit minimally-invasive
capture methods. Prior to the emergence of WMSs, such
methods were developed to enhance user convenience for
in-hospital settings. For example, EEG capture was invented
by Berger in 1924 [105]. The emergence of WMSs has
magnified the need for such methods. As a result, several
novel sensing approaches, e.g., for glucose sensing [106],
[107] and sweat analysis [6], [108], have been developed for
wearable watches and patches. They can non-invasively an-
alyze on-skin chemical substances and minimize/eliminate
the need for incisions or surgery. For example, Gao et
al. [6] have proposed a wearable sweat-analyzing patch
that selectively measures sweat metabolites (for example,
glucose and lactate) and electrolytes (for example, sodium
and potassium ions) from on-skin liquids. Designing novel
minimally-invasive methods for gathering biomedical data
using wearable technology is an ongoing research direction
that has attracted significant attention in recent years.

5.3 Security and privacy
The pervasive use of WMSs, along with the emergence of
the IoT paradigm during the last decade, has led to several
threats and attacks against the security of WMS-based sys-
tems and the privacy of individuals [67]. Security and pri-
vacy of WMS-based systems have garnered rapidly increas-
ing attention in recent years. We expect they will continue
to attract attention due to the existence of domain-specific
challenges, ubiquitous use of WMSs, and immaturity of
existing solutions. The domain-specific design challenges
are two-fold. First, as mentioned in Section 3, the WMS-
based systems typically cannot utilize strong cryptographic
mechanisms, which were mainly designed for computer
systems, due to limited on-sensor resources, in particular,
small storage and energy capacity. Second, they must ensure
that their security measures do not endanger user safety.

For example, in health care applications, physicians must be
able to access the data collected by WMSs and control the
devices without a notable delay in an emergency situation
in which the patient needs immediate medical assistance.

Unfortunately, the security/privacy threats against
WMS-based systems are not well-addressed. This has made
WMSs targets of a multitude of adversaries, such as cy-
bercriminals, occasional hackers, hacktivists, government,
and anyone interested in accessing the sensitive information
gathered, stored, or handled by WMS-based systems, e.g.,
health conditions or details of a prescribed therapy. Next, we
briefly discuss the most well-known threats/attacks against
WMS-based systems along with their known, but not yet
widely accepted, countermeasures.

5.3.1 Security threats and attacks
Potential vulnerabilities of WMS-based systems and attack-
ers’ abilities may differ significantly from one application
domain to another. However, only a few research studies
have taken the application domain into account while con-
sidering security issues (see [9] for attacks against a WMS-
based authentication system and [109] or [110] for concerns
in health-related applications), and the majority of research
efforts only focus on one of the three components of WMS-
based systems, as discussed earlier in Section 3: WMSs, base
station, and Cloud servers. Mosenia et al. [67] discuss 19
types of security attacks against the objects commonly used
in IoT-enabled systems and their countermeasures. Since
the majority of WMSs are connected to the Internet (either
directly or through a smartphone), almost all such attacks
are also applicable to WMS-based systems. Many survey
articles [111]–[113] summarize security attacks against wire-
less sensor networks (WSNs) that are also applicable to
WMS-based systems. Subashini et al. [114] describe various
security attacks against the Cloud. These attacks/challenges
include, but are not limited to, web application vulnerabili-
ties such as Structured Query Language (SQL) injection, au-
thorization/access control, integrity attacks, and eavesdrop-
ping. Among previously-proposed attacks against WMS-
based systems, the most well-known ones are: (i) eavesdrop-
ping on the communication channel to record unencrypted
packets (an attack against confidentiality), and (ii) injection
of illegitimate packets into the communication channel by
reverse engineering the communication protocol (an attack
against integrity). Encryption is the most effective approach
for preventing these attacks. However, traditional encryp-
tion mechanisms are not suitable for WMSs due to on-sensor
resource constraints. In order to reduce the resource over-
heads of encryption, several lightweight encryption mech-
anisms [115], [116] have been proposed in recent studies.
Unfortunately, finding a practical low-power key exchange
mechanism to securely share the encryption key is still a
challenge, but with some solutions on the horizon [117].

5.3.2 Privacy concerns
With the exponential increase in the number of WMS-based
systems, ensuring user privacy is becoming a significant
challenge. Smart wearable devices, e.g., smart watches, are
equipped with many compact built-in WMSs (for example,
accelerometers and heart rate sensors) and powerful com-
munication capabilities in order to offer a large number
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of services. They collect, process, and store several types
of private user-related data. Several recent research efforts
have demonstrated how WMS-based systems may inten-
tionally/unintentionally reveal the personal or corporate
secrets of the user [118]–[120]. For example, Wang et al. [118]
demonstrate the feasibility of extracting the user’s password
by processing data gathered by the smart watch. The use of
encryption may reduce leakage of private information by
protecting the communication channel. However, various
side channels leak information even when the system uses
encryption. For example, Nia et al. [121] propose a new
class of information security attacks that exploit physiologi-
cal information leakage, i.e., various forms of information
that naturally leak from the human body and WMSs, to
compromise privacy. Despite the existence of signal strength
reduction, information reduction, and noise addition tech-
niques [122], [123] that may partially address physiological
information leakage, providing a comprehensive solution
to address side channel information leakage in WMS-based
systems is currently a challenging research topic.

5.4 Calibration and noise cancellation
The negative impact of various disturbances on the data
collected by WMSs has been extensively discussed in recent
research. In particular, it has been shown that environmental
noise [124], [125], user movement [126], [127], and changes
in sensor locations [128]–[130] can impact sensory measure-
ments significantly. For example, Salehizadeh et al. [126]
discuss how sudden user movements can negatively impact
pulse oximetry measurements, thus leading to inaccurate
readings and even loss of signal. Alinia et al. [128] demon-
strate that a change in the location of an accelerometer can
impact the quality of sensory readings.

The above examples demonstrate that the various
sources of noise should be taken into account while design-
ing WMSs, and each sensor should be calibrated to ensure
reliability and validity of measurements [128]. Several noise
cancellation and filtering techniques, e.g., for ECG [131]
and EEG [132], have been proposed to mitigate the impact
of noise. Furthermore, various user-independent and user-
oriented calibration algorithms have been developed to
calibrate different sensors, e.g., accelerometer [73], [133],
magnetometer [134], and gyroscope [135]. Prior to a mea-
surement, a user-independent (user-oriented) calibration
algorithm calibrates the sensor without (with) the user’s
involvement based on the data gathered by the sensor
itself and other sensors embedded in the system. How-
ever, there is still a significant gap between the quality
of measurements provided by wearable sensors and that
of in-hospital monitoring devices. Unlike the in-hospital
environment in which the user remains almost stationary,
the user’s position frequently changes during various daily
activities. This makes the design of high-precision WMSs,
which can provide high-quality measurements comparable
to in-hospital equipment, a very complex task.

5.5 Big data
WMSs have the potential to generate big datasets over a
short period of time. For example, a typical wearable EEG
sensor generates over 120 MB of data per day [1]. With

improvements in battery, sensor, and storage technologies,
even more data might be generated by WMSs. Processing
such large datasets is a complex task due to the following
reasons.

1) Data heterogeneity: Different WMSs collect different
types of signals [136]. Moreover, due to on-sensor
resource constraints, the data may not necessarily be
acquired continuously or even at a fixed sampling
rate, adding to the heterogeneity of data [137].

2) Noisy measurements: As mentioned earlier, there
are numerous sources of noise and disturbances that
can corrupt the raw data or deteriorate their quality.
In addition, the dataset might have several hours of
data missing, when the user is not wearing one or
multiple WMSs [138].

3) Inconsistency in data representation: Two devices
containing the same sensors may offer very different
types of raw data, e.g., older activity monitors gen-
erate a proprietary measure called an activity count,
i.e., how often the acceleration magnitude exceeded
some preset threshold, whereas newer ones com-
monly provide raw acceleration data [137]. Often,
researchers and the industry use their own (often
proprietary) data types and standards to report raw
data.

Previous WMS-related research on big data has mainly
focused on either designing efficient software platforms for
processing big datasets or proposing new energy-efficient
high-performance architectures to perform computation on
big data. Next, we discuss each of these directions.

5.5.1 Efficient software platforms
In order to address the previously-mentioned challenges
associated with processing large datasets, two categories of
algorithms/platforms have garnered increasing attention in
recent years: data cleaning and data analytics platforms.
Data cleaning: One of the first steps in data processing
is data cleaning. This is the process of identifying and
fixing data errors [139]. Errors can be discovered in datasets
by: (i) detecting violations of predefined integrity rules,
(ii) finding inconsistent patterns in data, (iii) locating data
duplicates, and (iv) searching for outlier values (see [140]
for a survey). A few innovative systems, e.g., NADEEF [141]
and Bigdansing [142], provide end-to-end solutions to data
cleaning. However, there is still a lack of end-to-end off-the-
shelf efficient systems for data cleaning [139].
Data analytics: Sensory data encode aspects of human
movement, but simultaneously, and at a higher level of
abstraction, sleep patterns, physical strength, and mobil-
ity, and even complex aspects of physical/mental health
[143]. Data analytics entail developing new methods and
technologies to analyze big datasets, enabling a variety of
services. The aim is to provide efficient easy-to-use software
platforms to extract valuable information and trends embed-
ded in the large datasets generated by WMSs. During the
last decade, several platforms have been proposed for large
datasets. Among them, Google MapReduce [144], Microsoft
Dryad [145], Apache Hadoop [146], and Apache Spark [147]
have been widely used for large-scale data analysis and
mining in health-related applications. They offer scalable,
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reliable, and distributed computing, especially developed
to scale up from a single server to thousands of computing
devices. For more technical details, interested readers can
refer to above-cited references or see [148] for a survey.

5.5.2 New hardware architectures
In addition to efficient algorithms and software platforms,
several novel architectures and hardware implementations
have been proposed to address the computing requirements
of big data. In addition to traditional central processing
units (CPUs), they process data by using the inherent paral-
lelizing capability of graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs) (see [149] for a
survey). Such architectures enable effective distribution of
the workload among the processors.

For example, Chen et al. [150] have utilized multiple
GPUs, along with the MapReduce platform [144], to handle
large-scale data processing. Wang et al. [151] presented
SODA, a software defined FPGA-based accelerator for big
data that can reorganize the acceleration engines and man-
age the multicore system architecture based on the require-
ment of the various data-intensive applications. Karam et
al. [152] designed a reconfigurable hardware accelerator
to improve performance and reduce power consumption
of data analytics. By employing massively parallel kernel
execution in close proximity to the data, they could effec-
tively minimize required data transfers, thus reduce transfer
latency and energy requirements. Neshatpour et al. [153]
analyzed data mining and machine learning algorithms,
which are extensively utilized in big data applications, using
a heterogeneous CPU+FPGA platform. They proposed a
technique to offload the compute-intensive kernels to the
hardware accelerator to achieve the highest speed-up and
best energy efficiency.

5.6 Cloud computing
As discussed in Section 3, a large number of WMS-based
systems rely on Cloud servers. Despite the promise of
the Cloud in this context (access to shared resources in a
pervasive manner, large storage capacity, and high compu-
tational power), there are several challenges that need to
be addressed for on-Cloud WMS-based services (see [154]–
[157] for survey articles). We briefly summarize them next.

5.6.1 Availability/reliability
Many researchers have investigated the negative conse-
quences of Cloud failure [158], [159]. Frequent failures of
Cloud servers have serious consequences, e.g., increased
energy consumption [160], propagated service disruptions
[161], and, more importantly, adverse impact on the rep-
utation of the provider [162]. In order to offer a smooth
and continuous service, Cloud providers use redundancy
techniques [163] (that back up data and store them in mul-
tiple data centers geographically spread across the world).
As a result, the average system demand is several times
smaller than server capacity, imposing significant costs
on the provider. To alleviate this burden, an availability-
tuning mechanism [164] has been suggested. It allows the
customers to express their true availability needs and be
charged accordingly.

5.6.2 Access control
The Cloud environment introduces new challenges to ac-
cess control due to large scale, multi-tenancy (a software
architecture in which a single instance of an application
runs on a server and serves multiple groups of users), and
host variability within the Cloud [165]. In particular, multi-
tenancy imposes new requirements on access control as
intra-Cloud communication (provider-user and user-user)
becomes popular [166]. Recent research efforts have been
targeted at new access control techniques [166]–[168], specif-
ically designed for the Cloud. Masood et al. summarize
and compare the majority of newly-proposed Cloud-specific
access control methods [169].

5.6.3 Standardization and portability
Standardization of an efficient user interface is essential
for ensuring user convenience. Web interfaces enable the
user to access and analyze data on personal devices, e.g., a
smartphone. Unfortunately, such web interfaces commonly
impose a significant overhead because they are not specifi-
cally designed for smartphones or mobile devices [170]. In
addition to standardizing the user interface, standardization
of data formats is also essential to enable user-friendly ser-
vices. If a Cloud provider stores data in its own proprietary
format, users cannot easily move their data to other vendors
[171].

5.6.4 Bandwidth limitation
This is one of the fundamental challenges that needs to be
handled in on-Cloud WMS-based systems when the number
of users increases drastically, in particular for applications
that need frequent data upload/download. Managing band-
width allocation in a gigantic infrastructure, such as the
Cloud that consists of several heterogeneous entities and
millions of users, is very difficult. Some recent research
efforts [172], [173] propose efficient bandwidth allocation
methods for Cloud infrastructures. For example, Wei et
al. propose an allocation based on game theory [173].

6 A NOTABLE SHIFT FROM CLOUD TO FOG

Rapid advances in communication protocols and the minia-
turization of transceivers in 1990s, along with the emer-
gence of different WMSs in the early 2000s, transformed
the market of wearable technologies. Furthermore, in the
last decade, the emergence of Cloud computing and IoT-
enabled services has significantly extended the application
landscape of WMS-based systems.

Cloud computing offers on-demand and scalable storage
and processing services that can be used anytime from
anywhere. Since the introduction of Cloud computing, nu-
merous organizations worldwide and researchers have been
involved in the design and development of Cloud-enabled
WMS-based technologies and services (see [174] for a short
survey). Despite the benefits that Cloud computing pro-
vides, it cannot be used in latency-sensitive WMS-based
systems, such as real-time seizure detectors, due to the
following reasons: the delay caused by transferring data to
the cloud and back to the application may be intolerable or
even a short time of unavailability caused by Cloud failure
or lost Internet connection may be life-threatening.
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In order to enable reliable service delivery with low
response time and address several challenges associated
with the use of Cloud computing, such as network delay,
ensuring a reliable network connection, and extra costs, Fog
computing [175] has been recently suggested. Fog comput-
ing is a distributed paradigm, which offers Cloud-like ser-
vices by exploiting both edge-side and on-Cloud resources.
Indeed, it enables real-time data processing by utilizing
clients’ devices to carry out a substantial amount of storage,
communication, control, configuration, and management
[176]. Driven by the rising market of personal smart devices,
e.g., smartphones and tablets, that are powerful, ubiquitous,
and can offer a variety of resources for Fog computing,
Fog has emerged as an alternative to Cloud for WMS-based
systems.

A few recent studies have discussed the advantages
that Fog can offer for WMS-based systems. For example,
Cao et al. [177] have proposed a Fog-based system to
detect, predict, and prevent falls by stroke patients and
demonstrated that their system has various advantages
(significantly lower response time and energy consumption)
over Cloud-based systems. Stantchev et al. [178] have dis-
cussed how Fog computing can offer low latency, mobility
support, and privacy awareness for health care applica-
tions. To further boost the research on Fog computing, the
OpenFog Consortium [179], founded in November 2015, has
brought together several researchers and designers from the
industry, academia, and non-profit organizations. However,
it is still only taking its first research steps and several
design challenges and trade-offs associated with the use
of Fog computing in different WMS-based systems remain
unaddressed. However, the current trend shows that Fog
computing will become a very promising research direction
in the near future and will continue to grow in importance
and applications as IoT conquers new grounds [180].

7 CONCLUSION

With the pervasive use of Internet-connected WMSs, the
scope of applications of WMS-based systems has extended
far beyond what has been traditionally imagined. Unfortu-
nately, potential challenges associated with the design, de-
velopment, and implementation of such systems are not yet
well-investigated. This article has attempted to introduce
readers to applications offered by WMS-based systems,
components that constitute such systems, challenges asso-
ciated with their design and development, how/whether
previous research studies address such challenges, and how
Fog computing may transform the future of WMS-based
systems.
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