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Towards Detection of Bus Driver Fatigue Based
on Robust Visual Analysis of Eye State

Bappaditya Mandal, Liyuan Li, Gang Sam Wang, and Jie Lin

Abstract—Driver’s fatigue is one of the major causes of traffic
accidents, particularly for drivers of large vehicles (such as buses
and heavy trucks) due to prolonged driving periods and boredom
in working conditions. In this paper, we propose a vision-based
fatigue detection system for bus driver monitoring, which is easy
and flexible for deployment in buses and large vehicles. The system
consists of modules of head-shoulder detection, face detection, eye
detection, eye openness estimation, fusion, drowsiness measure
percentage of eyelid closure (PERCLOS) estimation, and fatigue
level classification. The core innovative techniques are as follows:
1) an approach to estimate the continuous level of eye openness
based on spectral regression; and 2) a fusion algorithm to estimate
the eye state based on adaptive integration on the multimodel
detections of both eyes. A robust measure of PERCLOS on the con-
tinuous level of eye openness is defined, and the driver states are
classified on it. In experiments, systematic evaluations and analysis
of proposed algorithms, as well as comparison with ground truth on
PERCLOS measurements, are performed. The experimental re-
sults show the advantages of the system on accuracy and robustness
for the challenging situations when a camera of an oblique viewing
angle to the driver’s face is used for driving state monitoring.

Index Terms—Driver monitoring, fatigue detection, fusion, ma-
chine learning, percentage of eyelid closure (PERCLOS), spectral
regression, video analytics.

I. INTRODUCTION

FATIGUE, drowsiness and sleepiness are often used syn-
onymously in driving state description [1]. Involving

multiple human factors, it is multidimensional in nature that
researchers have found difficult to define over past decades
[2]–[5]. Despite the ambiguity surrounding fatigue, it is a
critical factor for driving safety. Studies have shown that fatigue
is one of the leading contributing factors in traffic accidents
worldwide [6]. It is particularly critical for occupational drivers,
such as drivers of buses and heavy trucks, due to the fact that
they may have to work over a prolonged duration of the driving
task, during the peak drowsiness periods (i.e., 2:00 A.M. to
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6:00 A.M. and 2:00 P.M. to 4:00 P.M.), and under monotonous
or boredom working conditions [7], [8].

Research to detect driver drowsiness can be classified into
three categories: 1) vehicle-based approaches, 2) behavior-based
approaches, and 3) physiological-signal based approaches (see
[7], [9] for a good review). In physiological approaches, the
physiological signals from a body, such as electroencephalo-
gram (EEG) for brain activity, electrooculogram (EOG) for eye
movement, and electrocardiogram (ECG) for heart rate, are
evaluated to detect driver drowsiness [10]–[15]. Recent studies
show that the methods using physiological signals (specially the
EEG signal) can achieve better reliability and accuracy of driver
drowsiness detection compared to other methods [16]. However,
the intrusive nature of measuring physiological signals can hin-
der driving, especially for prolonged driving periods. Vehicle-
based approaches collect signal data from sensors in vehicles
to evaluate driver’s performance. These methods monitor the
variations of steering wheel angle, lane position, speed, ac-
celeration, and braking to predict the driver fatigue [17]–[21].
It is convenient to collect vehicle signals. However, these
approaches might be too slow to detect driver drowsiness [7].
Behavior-based approaches depend on vision analysis to mon-
itor driver’s behavior, including eye-closure, eye-blinking,
yawning, head pose, hand gesture, etc., through a camera
directed to driver’s face [22]–[27]. The driver is alerted if a
drowsiness symptom is detected. The vision-based systems on
behavior analysis are attractive to automobile industries since
they are non-intrusive to the driver and the measures are effec-
tive and reliable to predict driver fatigue [28].

A drowsy driver displays a number of symptoms, including
frequent eye-closure, rapid and constant blinking, nodding or
swinging head, and frequent yawning [29]. In the last decade,
numerous vision systems have been developed to detect such
behaviors of drowsiness for driving safety. Most of the existing
systems require the installation of a camera directly toward the
driver’s face to capture high-resolution face images, and some of
them employ specifically designed infra-red (IR) cameras [23],
[30] or stereo cameras [31], [32]. The vision algorithms are de-
signed for high-resolution front-view face and eye images (e.g.,
the height of the face is over 60% of image height in input images
over 640 × 480 pixels). This configuration is not applicable for
buses and large vehicles. A bus mostly has a large front glass win-
dow to let the driver have a wide-field-view of scene for safe driv-
ing since it is much wider than cars. Placing a camera on the front
glass window is not practical, and that also blocks the drivers’
view. If the camera is installed on the frame around the window,
the camera is not able to capture the frontal view of driver’s
face, so that existing vision algorithms are not applicable.
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Fig. 1. Existing dome camera in the bus and example images of bus drivers captured by the dome cameras in buses. Only an oblique view of low-resolution face
images can be captured by the existing dome cameras for normal driving poses. (Images came from open sources of bus service companies with face portions of
the drivers being pixelated for keeping anonymity.).

In this paper, we present a novel vision system for bus driver
monitoring. It is designed for easy and flexible deployment on
existing cameras in buses with no extra hardware cost required.
In most existing buses, there are already many dome cameras
installed for security purposes. One is mounted in the upper-
right or upper-left position with respect to the driver to record
the driver behavior on duty, as shown in the left image in Fig. 1.
Since this camera is first installed for recording of driving
behavior, a wide-view dome camera is used to capture the
visible upper body of the driver, as shown in the rest images
in Fig. 1. This configuration poses three challenges to vision-
based driver monitoring:

1) Oblique-view: In most normal driving poses, only
oblique-view face images can be captured by the cam-
era (e.g., 30◦∼40◦). In this case, the vision algorithms
designed for a frontal view of faces are not applicable.

2) Low-resolution: From the images which capture the full
visible part of the driver body by a wide-view dome
camera, only low-resolution face and eye images can be
obtained (in the raw input image, the height of the face is
of 80∼110 pixels). In such case, the feature-point based
approaches would often fail, and binary classification of
eye state is not reliable.

3) Pose variation: The bus driver has to move and turn his
upper body and head to look around when driving a
large vehicle. In this case, the approaches based on face
detection and tracking often fail to locate the head and
face in the image.

A novel vision system is proposed to deal with these chal-
lenges, which integrates upper-body detection, face detection,
eye detection, eye openness estimation, fusion, and symptom
measure estimation. The framework is illustrated in Fig. 2. The
core innovative algorithms are eye-openness estimation and
fusion. We propose a manifold learning algorithm which can
learn a mapping from a low-resolution eye image (e.g., 32 ×
24 pixels) to a 1-dimensional continuous level of eye-openness.
There are two advantages of this approach. First, there is no
need to detect eye feature points for symptom estimation that
often fails on low-resolution face images. Second, it avoids
classifying the ambiguous partially closed eyes into open or
close state for binary state (0/1) classification. This improves
the accuracy of identifying “drowsy” state between “normal”
and “sleepy” states. To obtain an accurate and robust estimate of
eye openness, a novel fusion algorithm is proposed which adap-
tively integrates the results of eye openness estimations on the

Fig. 2. Framework of the proposed system.

multi-model eye detections for both eyes. Based on the innova-
tive techniques, the system achieves robust performance on the
challenging scenarios where the existing approaches often fail.

The main contribution of this paper is a novel vision-based
system for bus driver fatigue detection which is applicable to
low-resolution face images captured from an oblique viewing
angle to the driver’s face, so that it can share a wide-view
camera mounted for driver’s full body behavior monitoring.
The technological contributions can be summarized as follows:

• A novel framework for vision-based driver fatigue detec-
tion which integrates head-shoulder detection, multi-pose
face detection, multi-model eye detection, eye openness
estimation, fusion, and PERCLOS estimation for driver
fatigue detection;

• A manifold learning algorithm to learn a mapping from
a low-resolution eye image to a continuous level of eye-
openness;

• A fusion algorithm to obtain an accurate and robust eye
openness estimate based on adaptive integration on multi-
model eye detections on both eyes;

• A refined approach to compute PERCLOS measure based
on the continuous levels of eye-openness.
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The next subsection discusses some related work. Section II
presents the proposed approach and system, including an
overview description and details of each module. Experimental
results and evaluations are presented in Section III and conclu-
sions are given in Section IV.

A. Related Work

Many vision-based systems have been developed for driver
fatigue detection based on driver face monitoring [9], [33], [34].
These systems employ a camera mounted on the dashboard
that points directly towards driver’s face and focus on detecting
the open eyes of the driver in high-resolution face images.
They can be categorized on the camera used and approach for
facial and eye feature computing. IR cameras and normal color
cameras have been employed. On the other hand, both feature-
point based approaches and binary classification approaches
have been investigated for eye state estimation. A review and
evaluation of emerging driver fatigue detection measures and
technologies can be found in [35] and testing of commercially
available fatigue monitors are reported in [36].

In [22], [23], a specific IR camera is designed to capture the
high reflection of eye, i.e., “red eye.” Multiple visual cues such
as eyelid, gaze, head movements and facial expressions are fed
to a trained Bayesian Network for estimating fatigue level of
the driver. IR cameras have also been used in several other
systems for open eye detection, gaze direction estimation, and
head pose tracking for driver fatigue detection [24], [26], [30],
[37]. The approaches on IR cameras exploit the high reflection
from pupil to detect eyes. They are not applicable if the camera
is not placed directly in front of the driver’s face.

Using visible light, numerous methods for fatigue detection
based on facial feature point detection are reported [32], [38],
[39]. These approaches detect facial feature points, e.g., the
corners of eye, the upper and lower positions of eyelids, etc., to
recognize closed eyes [40]. In [41], a number of facial features,
including those of the eyes, mouth, and gaze, are integrated
to measure the driver’s vigilance level. A robust approach not
depending on face detection is proposed in [42], which consists
of eye detection, validation, and open eye recognition. An
interesting scheme using eye index, pupil activity and head pose
is proposed in [25] for continuous monitoring of alertness of
a vehicle driver. Using support vector machine (SVM), video
segments are classified into alert or non-alert driving events.
Their classification results indicate that combining eye and head
information achieves a better classification accuracy.

The classification approaches train a binary classifier, e.g.,
SVM, Adaboost, nearest neighbor (NN), etc., to classify the
high-resolution eye image into open or close state. In [30], after
eye localization, the eye states are classified as open and close
by an SVM. Pradhan et al. proposed to learn feature subspaces
of eigen-eyes to classify eye states [43]. Various classifiers, such
as k-NN and SVM, are evaluated in [39]. A real time vision
system is proposed in [26] to monitor drivers during day and
night time. Face detection and tracking are performed using
Haar-like features and Kalman filtering respectively. Principal
Component Analysis (PCA) is used to detect eyes during day-
time whereas Local Binary Pattern (LBP) is used for nighttime.

Finally, eye state is classified as open or close using SVM.
Under binary eye state classification framework, the ambiguous
partially closed eyes may cause either too many false alarms or
a lower detection rate. To the best of our knowledge, there is
no literary on estimating a continuous level of eye openness
and applying it to compute PERCLOS measurement for driver
fatigue detection.

On the other hand, in computer vision, there are investiga-
tions on face detection [44], head pose estimation [45], [46],
and eye detection [47] in low-resolution images. However, no
work on eye state analysis on low-resolution image is reported,
due to the challenges of detecting tiny feature points around
the eyes in low-resolution images. Head-shoulder detection has
been investigated for video surveillance [48], [49]. However,
attempt to employ the technique for driver monitoring has not
been found since almost all vision-based driver monitoring start
from face detection or eye detection [9].

Most vision-based methods infer the states of fatigue and
sleepiness based on the symptoms extracted from the eye
regions [9]. Measurements estimated from eye regions include
percentage of eyelid closure (PERCLOS) [26], [30], [32], eyelid
distance [50], eye blink speed [51], eye blink rate [24] and gaze
direction [22]. Face tracking [52], head nodding [24] and head
orientation [51] are also used for driver fatigue detection. Based
on detailed investigations, PERCLOS is proven to be a reliable
measure of driver drowsiness from images [28], [53].

II. THE PROPOSED METHOD AND SYSTEM

In this Section, first, an overview of the system framework is
presented, and then, each module is described. The details are
focused on the innovative eye-openness estimation, fusion, and
PERCLOS computing.

A. System Overview

The system framework is illustrated in Fig. 2. There are six
main steps in the process. First, a head-shoulder detector is
applied to detect the presence of a driver and locate roughly the
position of the driver’s head. Then, two models of face detectors
are used to detect a front-view face or an oblique-view face
within the region of the head. Third, two eye detection methods
are employed to locate the potential eye positions and scales
in the image. In the fourth step, our proposed eye openness
estimation method is applied to the located eyes by the two
eye detectors. Next, a fusion operation is proposed to obtain
an accurate and robust estimate of driver’s eye openness based
on adaptive integration on multi-model eye detections for both
eyes. The score of driver’s fatigue, i.e., PERCLOS, is computed
on the recent records of eye openness over a specified period.
Details are described in the following subsections.

B. Head-Shoulder Detector for Driver Detection

Since the camera observes the driver’s face from an oblique
viewing point, and the bus driver may change his body pose
and head direction to check the surrounding situations when
approaching an intersection or a bus stop, a system starting
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Fig. 3. Examples of eye detections using the OpenCV eye detector (CV-ED) [54] and our previous eye detector (I2R-ED) [55]. The test images are captured
under the similar configuration in buses, as shown in Fig. 1. In each image, the large red box indicates head-shoulder detection, the pink box over face indicates
the detection by OpenCV face detector, and the blue box indicates the detection by the additional face detector. Around the eyes, the pink small boxes are the
detections by the OpenCV eye detector, the blue and red boxes are the pair of the detected left and right eyes by our eye detector [55]. (From left to right)
(a) CV-ED detected only one (left) eye and failed to detect the right eye, whereas I2R-ED succeeded for both eyes. (b) CV-ED failed to detect both eyes correctly,
whereas I2R-ED succeeded for both eyes. (c) CV-ED mislocated the right eye around the left eye, whereas I2R-ED succeeded for both eyes. (d) CV-ED succeeded
for closed eyes, but I2R-ED missed both closed eyes.

from face detection and tracking may fail to localize the driver’s
head in the input images. In this system, we build a head-
shoulder detector to detect the presence of a driver on seat and
locate the driver’s head position in the incoming image. A HOG
(histogram of oriented gradients) descriptor [56] is designed to
capture the appearance features of sitting drivers, and an SVM
classifier is trained for driver detection. In this application, the
scene (the seat of driver in buses) and object (sitting drivers) are
limited compared with pedestrian detection in natural scenes
[56]. Hence, a small training set, as long as that covers large
variation of drivers’ appearances and inner scenes in buses, can
generate a detector of very good performance. From the result
of head-shoulder detection, we can obtain roughly the position
and scale of the driver’s head in the image.

C. Face Detection

Over the region of head, face detectors are applied to find a
face looking towards the front of the bus. First, the OpenCV
face detector [54] is applied. It is very robust to find the
front-view faces since it is trained with a huge number of
samples. However, it mostly fails to detect the oblique-view
faces observed by the camera as shown in Fig. 1. In a ten-minute
video recording of a bus driver on duty, the OpenCV detector
can only detect about 40% of the driver’s faces in the normal
driving poses. Therefore, we train an additional face detector
specially for the oblique-view faces using the OpenCV face
detection algorithm, i.e., the algorithm based on Harr features
and Adaboost classifier [54]. This face detector will be applied
if the OpenCV face detector fails to find a face in the head
position. If both face detectors fail to find a face in the head
position, it means that the bus driver may have turned his face
away, which may indicate an abnormal driving state. Since the
face detectors are only applied to the head regions, much less
false positives are generated compared with the approach of
scanning the whole image for face detection.

D. Eye Detection

Two eye detectors are applied to the rectangular region of the
detected face. The OpenCV eye detector [54] performs well to
locate the eyes in the front-view faces, even with closed eyes.

But it often fails to locate the pair of eyes in the oblique-view
faces. Since the driver’s left eye is too close to the face boundary
in the image, the OpenCV eye detector may miss it, or locate the
driver’s left eye on the right eye or mouth, as shown in the first
3 examples in Fig. 3. The results of OpenCV eye detection in
this application situation can be summarized as: (a) no output,
i.e., both eyes are missed; (b) one output, i.e., only the left eye
is detected and the right eye closing to the face boundary is
missed; (c) two outputs, i.e., two eyes are correctly detected or
right eye is wrongly located on the left eye or mouth. We have
developed an eye detector for human-robot interaction [55].
It combines both sketch and graph patterns of eye for eye detec-
tion with a trained SVM, and employs a Maximum-Likelihood
algorithm to locate a pair of eyes on the multiple detections
of eyes on face. It was refined for detecting eyes in oblique-
view faces. It performs better to detect and locate a pair of
open eyes in oblique-view faces than the OpenCV eye detector.
But it might fail to find the correct locations of closed eyes,
as shown in the last example in Fig. 3. The outputs of our eye
detector can be summarized as: (a) no output, i.e., both eyes
are missed; (b) a pair of outputs, i.e., two eyes are correctly
detected or located at wrong positions due to closed eyes. The
two eye detectors perform complementary roles, so that fusion
on the two detectors results in a robust performance of eye state
estimation as described later in Section II-F. More examples can
be found in Fig. 8 in the Section III.

E. Eye Openness Estimation

Drowsy driver may not simply close his/her eyes frequently.
He/she may be struggling to keep his/her eyes partially open.
Hence, to accurately characterize driver drowsiness based on
eye images, it is desirable to measure the eye-openness con-
tinuously. As described above, in this application scenario,
we can only obtain small, low-resolution images of eyes in
images. Feature-based techniques for eye image analysis are
not applicable. We develop a novel method for eye-openness
estimation based on the full image of the eye so that there is
no need to detect feature points and curves around eyes. This
method is applicable for low-resolution images of eyes.

From the result of eye detection, we obtain a normalized
eye image of 32 × 24 pixels. We apply Spectral Regression
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Fig. 4. The block diagram of using Spectral Regression to learn a mapping
from raw image vector x to a continuous measure of eye-openness u, where
the upper right picture shows the measurement of eye openness (see text for
descriptions).

(SR) Embedding [57] to learn the eye shape model. The idea is
illustrated in Fig. 4. Let IE be a normalized eye image (left or
right eye). It can be expressed as a 1D feature vector x of 768
elements. From the manually labeled four marks as shown by
the upper-right picture in Fig. 4, i.e., the left and right corners
of the eye (xl and xr), and the central positions of the upper
and lower eyelids (yu and yl), the corresponding level of eye
openness can be computed as

u =
|yl − yu|
|xr − xl|

. (1)

Givenm training samples{xi, ui}mi=1 (xi⊂Rn andn=32×24),
we wish to find a transformation A to map x into a
d-dimensional manifold subspace z (d � n) with SR Embed-
ding (i.e., x → z = ATx), and then find a mapping z → u to
estimate the level of eye openness.

Let W be a m×m symmetric similarity matrix. Its element
Wij represents the similarity between samples xi and xj .
Different from existing SR approaches which define the sim-
ilarity weight based on either the distance between sample
points (i.e., unsupervised learning on a continuous similarity
weight) or sample class labels (i.e., supervised learning on a
binary similarity weight), we define the similarity weight based
on the ground truth of eye openness. The similarity weight is
defined as

Wij = exp
(
−|ui − uj |2/σ2

u

)
(2)

where, if the eye-openness levels of two images are close,
the similarity weight Wij is high. Hence, our approach can
be considered as a supervised SR learning on a continuous
similarity weight. Suppose y = [y1, y2, · · · , ym]T is the map
from the graph to the real line. The optimal y tries to minimize∑

i,j

(yi − yj)
2Wij = 2yTLy (3)

where L = D −W and D is a diagonal matrix with Dii =∑
j Wji. Formally, it can be expressed as

y∗=arg min
yTDy=1

yTLy = argmin
yTLy

yTDy
=argmax

yTWy

yTDy
.

This is equivalent to finding eigenvectors corresponding to
the maximum eigenvalues arranged in descending order of
eigen-problem Wy = λDy. Solving this problem, we obtain d
eigenvectors {yk} for top eigenvalues except the first one. For

mapping for all samples including new test ones, we choose a
linear function yi = f(xi) = aTx′

i, where x′
i = [xT

i , 1]T is the
augmented feature vector so that the linear mapping function
has not to be constrained to pass the center of the feature space.
The mapping vectors {ak}dk=1 can be obtained as the solution
of regularized least square problem

ak = argmin
a

(
m∑
i=1

(aTx′
i − yki )

2 + α‖a‖2
)

(4)

where k = 1, . . . , d and yki is the ith element of yk. Let A =
[a1, a2, . . . , ad] as a n× d transformation matrix. Expressed in
matrix form, one can denote

Y = [y1, . . . ,ym] and X = [x′
1, . . . ,x

′
m]. (5)

Then, the solution of A can be obtained as

AT = Y XT (XXT + αI)−1 (6)

where I is the identity matrix. The new input sample x can
be embedded into the d-dimensional manifold subspace by
x → z = ATx′.

Finally, a linear model u = bz′ with z′ = [zT , 1]T is used to
learn the mapping for eye openness measurement, which can be
obtained by least square fitting. The shape model maps the 2D
normalized eye image to a continuous 1D measurement of eye
openness of which a small value (e.g., 0) means a closed eye
while a large value (e.g., ≥ 0.5) indicates a wide open eye.

The similarity weight defined in (2) indicates the advantage
of using manifold learning for this problem. We want to evalu-
ate a continuous measure of eye openness from an eye image,
and to be robust to variations of inter-person differences, head
poses, and lightings. According to (2), the eye images of close
openness levels have high similarity weights, so that they would
be mapped to close positions in the learned manifold feature
subspace. However, if two eye images are similar on visual ap-
pearance (e.g., the brightness), but the eye-openness levels are
different significantly, they would be mapped to well separated
positions in the learned manifold feature subspace. Hence, due
to the advantage of spectral regression [57], the learned low-
dimensional manifold feature subspace of eye-openness repre-
sentation is smooth and reliable for continuous eye-openness
measurement and adaptive to the variations caused by inter-
person differences, such as age, gender, race, make-up, wearing
glasses, etc., and changes of head poses and lighting conditions.

In this application, due to the oblique viewing angle to the
driver’s face, the eye shapes of left and right eyes are quite
different. Hence, two models are trained separately for the left
and right eyes. A few examples of eye openness estimation for
left and right eyes are shown in Fig. 5. The openness levels
of closed eyes are close to 0 and wide open eyes have higher
openness level over 0.5. Fig. 5 shows some examples of eye
openness estimation for both left eyes (upper row) and right
eyes (lower row), along with ground truth and test values.
Detailed evaluation of this model will be reported in Section III.
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Fig. 5. Examples of eye-openness estimation. Left eyes (upper row) and
right eyes (lower row) with continuous openness levels (ground-truth values,
estimated values).

F. Fusion

Since two eye detectors (CV-ED and I2R-ED) are applied
and each detector generates a pair of detection windows for the
left and right eyes, four detection windows of eyes are obtained.
Eye openness estimation is very accurate if the eye center is
well localized. If the eye detector can locate the center of the
detection box at the center of the pupil closely, the computed
value of the eye openness level is very close to the ground
truth value. It is observed that for the open eyes on the normal
front-view and oblique-view faces, both OpenCV and I2R eye
detectors can locate the two eyes quite well, among them the
I2R eye detector performs slightly better to locate the centers
of pupils due to the design of the model [55]. If the eyes are
closed or face turns to one side, especially to the left side of the
driver (i.e., turn to the right side from the view of camera), the
detections of the two eye detectors would not match with each
other. Since the driver’s left eye is too close to the face boundary
in the image, the OpenCV eye detector may miss it, or locate
the driver’s left eye on the right eye or mouth. I2R eye detector
may miss the closed eyes or locate them at the wrong positions
on the faces. To obtain an accurate and robust result of eye-
openness estimation from the four eye detections, a novel fusion
method is proposed, which adaptively integrates the results of
eye-openness estimations obtained on the four eye detection
windows. The details of the algorithm are described below.

First, let us denote

• (xlc
I2R, y

lc
I2R): center of the left eye detected by I2R-ED;

• (xrc
I2R, y

rc
I2R): center of the right eye detected by I2R-ED;

• (xlc
CV , y

lc
CV ): center of the left eye detected by CV-ED;

• (xrc
CV , y

rc
CV ): center of the right eye detected by CV-ED;

where the detected left and right eyes in the face image corre-
spond to driver’s right and left eyes, respectively. We define the
agreement measures of the two eye detectors for the left and
right eyes as

al = exp

[
−
(∣∣xlc

I2R − xlc
CV

∣∣2
σ2
x

+

∣∣ylcI2R − ylcCV

∣∣2
σ2
y

)]
(7)

ar = exp

[
−
(
|xrc

I2R − xrc
CV|

2

σ2
x

+
|yrcI2R − yrcCV|

2

σ2
y

)]
(8)

where σx and σy are the scale parameters which are determined
by the scale of face window generated by the face detector.
Specifically, let HF be the height of the detected face window,
the parameters are set as σx = rWHF and σy = rHHF , where
rW and rH are selected empirically based on face biometrics.
Obviously, if an eye is accurately located by both eye detectors,

the agreement measure for the eye is high (i.e., close to 1), other-
wise, it is low (i.e., close to 0) which may be caused by poor head
pose or closed eye. If the eye is detected just by one eye detector
(i.e., CV-ED or I2R-ED), the agreement measure is set as 1.

In normal cases, we can obtain four eye detections from one
face. When applying the method of eye openness estimation,
one can obtain four estimates of the eye openness. Let us denote
them as

• ul
I2R: the estimate of eye openness level from the detec-

tion box of left eye generated by I2R eye detector;
• ur

I2R: the estimate of eye openness level from the detec-
tion box of right eye generated by I2R eye detector;

• ul
CV: the estimate of eye openness level from the detection

box of left eye generated by OpenCV eye detector;
• ur

CV: the estimate of eye openness level from the detection
box of right eye generated by OpenCV eye detector.

The value of the estimated eye openness level varies in the
range [0,1), where u = 0 indicates a closed eye. For a naturally
open eye, u is within 0.3 to 0.5. If I2R-ED missed the eyes,
mostly due to closed eyes or poor head poses, both ul

I2R and
ur
I2R are set as 0. Also, if CV-ED missed the two eyes, ul

CV

and ur
CV are set as 0. For an oblique-view face, the right eye

on the face image (i.e., the driver’s left eye) may be too close
to the face boundary. CV-ED may miss the right eye, or locate
both eyes overlapped on the left eye, or locate the right eye on
the mouth. In these cases, ur

CV is set to be 0. The latter two
cases can be expressed as

• IF (|xlc
CV − xrc

CV| < 2σx)(|ylcCV − yrcCV| < 2σy),
THEN ur

CV = 0;
• IF (|ylcCV − yrcCV| > 2σy), THEN ur

CV = 0.

The last condition means that the detected two eyes are largely
separated along vertical direction, mostly due to locating the
right eye on mouth.

Considering all the above situations, the final eye openness
measure (eye state) can be obtained by adaptively integrating
all the estimations on the eye detections. The fusion function is
defined as

ũ = f(ul
I2R, u

r
I2R, u

l
CV, u

r
CV) =

klal(βIu
l
I2R + βCu

l
CV) + krar(βIu

r
I2R + βCu

r
CV) (9)

where kl + kr = 1 and βI + βC = 1. These parameters are
determined according to the reliability of each detector. In this
work, the parameters are chosen empirically as kl = 0.67 and
βI = 0.6. This selection is consistent with the observation that
from the oblique viewing angle as shown in the two middle
images in Fig. 1 and images in Fig. 3, the detections and
estimations on the left eye in the image are more reliable than
those from the right eye.

G. Measurement of Fatigue

PERCLOS is an important symptom of driver fatigue de-
tection. PERCLOS is defined as the percentage of eyelid clo-
sure over the pupil over a specified time period. Specifically,
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PERCLOS calculates the proportion of time within a specified
time duration that the eyelid covers over 80% of the pupil [28]
(80% and more of eye closure may correspond to 0.1 level and
less of eye-openness). PERCLOS is still considered as the most
effective measurement of drivers’ drowsiness for vision-based
non-intrusive approaches [1], [7], [9], [28].

Existing measures of PERCLOS are defined on hard thresh-
olding on 80% of eye closure, which is an ambiguous mea-
surement [58]. This may miss some important characteristics of
driver drowsiness, such as slow roving eye movements between
open and close, named partially open or partially closed [58].
In this work, since we can obtain a continuous measure of
eye openness, we propose a refined definition of PERCLOS
measure on soft classification of eye openness. Let ũi denote
the eye openness level obtained from (9) at time step i, and Δti
be the time interval from time step i to i+ 1. At current time
step t, the record of the eye opennesses over the most recent
time period T can be expressed as {ũi}ti=t−Nt

, where Nt is

the minimum value to satisfy
∑t

i=t−Nt
Δti ≥ T . PERCLOS

is defined on the 80% of the eyelid closure. Obviously, this
is a fuzzy measurement. Human factor research suggest the
drowsiness metric on PERCLOS is around 70% to 80% of
eye closure [28]. Based on the continuous measure of eye
openness, we can characterize the 80% of eye closure for
PERCLOS much more naturally than existing methods on hard
classification of two eye states (i.e., open and close). The eye
openness level is defined as (1). For a fully opened eye, the eye
openness level u is around 0.5 according to the videos. Hence,
80% of the eyelid closure corresponds to u = 0.1. Based on
this, a weight for eyelid closure is defined as

wec(ũi) =

⎧⎪⎨
⎪⎩

1, when ũi < 0.07;

1 − ũi−0.07
0.06 , when 0.07 ≤ ũi ≤ 0.13;

0, when ũi > 0.13.

(10)

This weight measure indicates that if the eye openness level ũi

is less than 0.1 (80% eyelid closure), there is high chance that
the driver is fatigued. Now, the PERCLOS defined on eye open-
ness can be computed as

PERCLOSt =

∑t
i=t−Nt

wec(ũi)Δti∑t
i=t−Nt

Δti
. (11)

The driving states can be classified as Normal and Fatigue on
PERCLOS values as

St =

{
1, if PERCLOSt ≤ 0.2;

0, Otherwise;
(12)

where the threshold 0.2 corresponds to 80% of eye closures
[28], [58]–[60].

III. EXPERIMENTS AND EVALUATIONS

In this paper, we focus on bus driver fatigue detection from
an existing surveillance camera in a bus. The datasets used to
evaluate existing vision-based approaches to monitor a driver’s
facial and head behaviors from a camera directly pointing to

TABLE I
AVERAGE ERRORS OF EYE-OPENNESS ESTIMATION

the driver’s face in a car are not applicable for evaluation of
the proposed method and system. On the other hand, it is not
safe and ethical to make a drowsy person drive a bus on real
roads. We have obtained real-world videos of bus drivers on
duty from a local company, but it is not allowed to use them
for open report. To evaluate the performance of the proposed
techniques and system for bus driver fatigue detection under
real-world conditions, we capture dozens of simulated bus
driving videos using two wide-angle cameras from the viewing
point similar to the dome cameras mounted in existing buses.
The simulation scenarios of driving bus are performed by
23 people under varying lighting conditions. They are asked
to simulate both normal and drowsy driving over ten minutes.
The participants include young and middle aged male and
female persons, among them 6 people wear transparent glasses.
During the simulated bus driving periods, we switch on/off
a different number of lights and lower/raise curtains in the
lab to simulate lighting changes in real-world conditions. In
addition, to evaluate the performance of our system in real-
world conditions, we also captured 3 simulated driving videos
in moving car.

The system is developed and evaluated in two phases. In the
first phase, we collect individual images to train and validate
the eye openness estimation model. Images for training and
validation are randomly selected from simulated driving se-
quences by 8 participants. This set of experiments is performed
on individual images. In the second phase, we evaluate our
system for driver fatigue detection according to PERCLOS
measurement on novel sequences of simulated driving. This
set of experiments is performed on whole video sequences of
another 15 persons.

A. Experiments on Eye Openness Estimation

In the first phase, from 8 image sequences, we first randomly
select 1068 images to form a training set (TrainSet), and then,
from the rest of the images, we randomly select 337 frames
according to even distribution to form a test set (TestSet).
In both sets, the eye positions and the 4 marks for each eye
(as illustrated by the upper-right picture in Fig. 4) are manually
annotated, so that the ground truths of eye opennesses levels can
be obtained. We train our model for eye openness estimation
(i.e., the mapping matrices A and b in Section II-E) using the
TrainSet, and then evaluate our model on TestSet. The average
error is calculated as the average of the differences between
the estimated values and the ground truths of eye openness
levels. The average errors for left and right eyes in the images
are listed in Table I, where, as for comparison, the average
errors on both TrainSet and TestSet are included. We observe
from the table that our model learns the mapping from the eye
image to eye openness measure successfully on the TrainSet
with the average errors less than 0.03 for the left eye and
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Fig. 6. The distributions of error levels of eye-openness estimations for the
left eyes (left) and right eyes (right), where the vertical axis represents the
percentage of errors, and the horizontal axis denotes the error segments.

0.033 for the right eye. Considering the low resolution of the
eye images, this error level is close to the level of variations
of ground truths annotated by human beings. There is a clear
increase of errors when the learned model is applied to the novel
dataset (TestSet), but the performance is still quite good. If more
training samples are added, the performance can be improved
further. The performance for the right eye is slightly poorer than
that for the left eye because observing the face from the oblique
angle, the right eye is smaller than the left eye and the viewing
angle to the right eye differs largely from the face orientation
compared to the viewing angle to the left eye. Due to that fact a
few worse cases of estimations would result in a large increase
of average error. For a close examination, we also generate the
distributions of errors within 5 segments (i.e., [0, 0.1), [0.1, 0.2),
[0.2, 0.3), [0.3, 0.4), [0.4, ∞)) for both left and right eyes, as
shown in Fig. 6. It can be seen that about half of the errors are
less than 0.1.

When applying our model in the proposed system, the eye
openness estimation is performed on the eye boxes auto-
matically located by OpenCV and I2R eye detectors. There
are shifts of eye center positions and variations of eye box
scales. We also build a dataset (AutoSet) which consists of
402 eye samples successfully localized by either OpenCV
or I2R eye detectors. The samples are randomly collected
from the rest images of the 8 sequences. The average er-
rors of our model on this dataset are also listed in Table I.
It can be found that the performance of our model on the set
on automatic eye localization is very close to that obtained
on manual annotation. From these results, it can be observed
that in most cases the errors of eye openness estimations are
quite small. The performance is accurate enough to distinguish
the open and closed eyes and recognize eyes blinking. To
verify the stability of the trained model, we also evaluated it
on 150 samples randomly collected from the dataset used in
next phase in Section III-B (10 frames from each video of
each person). The results are shown in the rightmost column in
Table I (Phase B).

The model for eye openness estimation is trained for large
variations in lighting conditions. A few examples of training
eye images which cover a large range of brightness are shown
in Fig. 7. Our model succeeds to capture the distinctive features
from opened eyes to closed eyes under varying lighting con-
ditions, which can be observed from the low level of average
errors on TrainSet in Table I. However, when applied to novel
images, the error level will increase and it becomes worse due to
shifts of the eye centers and variations of scales (i.e., the sizes of
bounding boxes) automatically generated by two eye detectors.

The proposed fusion approach makes the final estimation much
more reliable and stable due to the fact that the final result
depends on more reliable eye detections. A few examples of
eye openness estimations after fusion with respect to good and
poor eye detections are shown in Fig. 8.

Under each image in Fig. 8, the ground truth, estimated
eye openness levels of both left and right eyes on the detec-
tions by I2R eye detector (I2R-ED) and OpenCV eye detec-
tor (CV-ED), as well as fusion results are listed. In the first
example (a), the detection windows of both eye detectors
match well. The next two examples (b)&(c) show the cases
with good eye localizations by both eye detectors, where the
fusion is a weighted average over four detections. In the fourth
example (d), it can be found that the estimation of eye openness
on the left eye detected by I2R-ED fails due to that the detection
window shifts up quite large, meanwhile, CV-ED fails to detect
the right eye. In the fifth example (e), the eye openness esti-
mation on the left eye detected by CV-ED fails due to that the
detection window is too large and the center shifts to the lower-
left side. In both of such cases (d)&(e), the fusion algorithm can
select the reliable ones and filter out failed estimations to gener-
ate the eye openness levels corresponding to normal open eyes.
In the next two examples (f)&(g), I2R-ED fails for both eyes
due to closed or nearly closed eyes, but the fusion algorithm
can generate good estimations based on succeeded detections
for closed and partially closed eyes. In the last example (h),
CV-ED fails on both closed eyes due to a large oblique viewing
angle, but I2R-ED succeeds to detect the two closed eyes.
The fusion algorithm generates an accurate estimation. From
these examples, it can be seen that the final estimations of eye
openness after fusion are much more stable, reliable, and robust
to failed or poor eye detections.

B. Experiments on Accuracy of PERCLOS Measurement

In the second phase, we evaluate the performance of our
system for driver fatigue detection on whole video sequences.
The test dataset consists of 15 long videos performed by another
15 different individuals. Each participant is told to simulate bus
driving from normal to drowsy and then sleepy states gradually.
Each video sequence lasts about 9 minutes.

To compare with state-of-the-art technologies, we implement
a baseline method. The baseline method consists of three steps.
In the first step, PCA is applied to the raw eye image to reduce
the feature dimensionality. In the second step, an SVM (Support
Vector Machine) classifier is trained to classify the eye image
into two states, i.e., open and closed eyes. The SVM classifier
is trained using all samples in TrainSet and TestSet (in which
the samples are obtained according to manual annotations).
Finally, PERCLOS measures are computed according to the
percentage of recognized closed eye within recent 1 minute.
This baseline method is similar to the approaches reported in
[26], [30], [39].

It is not safe and practical to collect data of drowsy bus
driving on real-world roads. To evaluate the effectiveness of
our system for drowsy driving detection, we compared the
PERCLOS generated by our method with that computed on
ground truths of eye openness levels, since the PERCLOS has
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Fig. 7. Left eyes (top row) and Right eyes (bottom row) with illumination variations.

Fig. 8. Some examples to show the stability of eye-openness estimation after fusion, where GT means ground truth. (Best viewed in color). (a) Eye openness
estimations: GT L: 0.55, R: 0.48; On I2R-ED L: 0.56, R: 0.49; On CV-ED L: 0.56, R: 0.49; Fusion: 0.53. (b) Eye openness estimations: GT L: 0.35, R: 0.18; On
I2R-ED L: 0.31, R: 0.17; On CV-ED L: 0.37, R: 0.17; Fusion: 0.27. (c) Eye openness estimations: GT L: 0.36, R: 0.42; On I2R-ED L: 0.36, R: 0.44; On CV-ED
L: 0.37, R: 0.44; Fusion: 0.37. (d) Eye openness estimations: GT L: 0.37, R: 0.28; On I2R-ED L: 0.02, R: 0.33; On CV-ED L: 0.48, R: 0.00; Fusion: 0.19. (e) Eye
openness estimations: GT L: 0.48, R: 0.33; On I2R-ED L: 0.56, R: 0.49; On CV-ED L: 0.16, R: 0.00; Fusion: 0.29. (f) Eye openness estimations: GT L: 0.00, R:
0.00; On I2R-ED L: 0.00, R: 0.00; On CV-ED L: 0.00, R: 0.09; Fusion: 0.01.(g) Eye openness estimations: GT L: 0.13, R: 0.10; On I2R-ED L: 0.00, R: 0.00; On
CV-ED L: 0.32, R: 0.11; Fusion: 0.10. (h) Eye openness estimations: GT L: 0.00, R: 0.00; On I2R-ED L: 0.00, R: 0.00; On CV-ED L: 0.00, R: 0.00; Fusion: 0.00.

been evaluated as an effective measure of driver fatigue on
visual signal [7], [9], [28]. The ground truths of eye openness
levels are annotated manually for the test videos.

The plots of the PERCLOS measurements against the num-
ber of frames and the corresponding classifications of driver
states based on the PERCLOS scores for 4 typical sequences
of the 15 test videos are shown in Fig. 9, where the odd plots
from top to bottom are the PERCLOS measurements and the
even plots are the corresponding classifications of driver states.
In a plot of PERCLOS measurements, the blue curve represents
the PERCLOS measures computed using the baseline method,
the red curve represents the PERCLOS measures by the pro-
posed system, and the green curve indicates the PERCLOS
values computed on ground truths. It is observed that differ-
ent persons may have different understandings and simulated
performance of different driving states, i.e., normal, drowsy
and sleepy driving states. The first person increases the times
of eye blinks very slowly for about 5.7 minutes (at about
#850 frame) and then increases the times and durations of eye
closures in the rest of time duration quickly like falling asleep
in a few minutes. Compared with the first person, the second
person blinks slightly more frequently in the first half duration
(about 4.5 minutes) and increases the eye blinks and eye closure
durations quickly (from #580 frame) as if feeling very tired. As
to the third and the fourth persons, they frequently blink their

eyes from the beginning like a drowsy driver and finally fall into
sleepy state after about 6 minutes (at about #900 frame).

The baseline method fails to detect drowsy and sleepy driving
states for the third and fourth persons due to a large number of
classification errors for eye states. For the second person, it is
too sensitive due to a large number of false detection errors of
closed eyes. The blue PERCLOS curve of the first person seems
to be able to capture the increases of eye closure durations,
but the difference of it with green curve of ground truth is still
quite large. The large error rate of SVM classification may be
caused by low-resolution of eye images, large oblique angle to
the faces, and ambiguity of partial open eyes, as well as the vari-
ations of center positions and scales of eye detection windows.
From the figure, one can observe that the red and green plots
match quite well, especially when the PERCLOS values are
small which is critical to distinct normal and fatigue drivers. If
we define a distance measure between the PERCLOS curves as

DPERCLOS =
1
N

N∑
i=1

|PM (i)− PG(i)|
(PG(i) + 0.2)

(13)

where N is the number of images in Set2, PM (i) is the
predicted PERCLOS value and PG(i) is the ground truth
PERCLOS value for the ith image. The denominator is used
for normalization (where the constant 0.2 corresponds to
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Fig. 9. PERCLOS estimations of four subjects using (10) and (11) (odd plots from top to bottom) and the corresponding state classifications (even plots from top
to bottom). Different people perform differently, but, for all the simulated sequences, we can observe the increase of PERCLOS values from the simulated state of
normal, drowsy, to sleepy. (Best viewed in color).

80% of eye closure) since a relative large difference for large
PG(i) value has less impact for state classification. Using this
measure, the average distance between our method and ground
truth is 0.1223 and that for the baseline approach is 0.5308.

In the plots of the corresponding classifications of driver
states based on PERCLOS scores, the “blue” plots represent
the driving states obtained by the baseline method, the “red”
plots represent the driving states generated by our method, and
the “green” plots represent the driving states obtained from
PERCLOS measures on ground truths. The state 1 represents

normal state and the state 2 indicates drowsy and sleepy state.
It can be observed that our method matches the ground truth
well. If we define a matching rate for kth state as

Mk =

∑N
i=1(B(Si = k) ∧B(Sg

i = k))∑N
i=1 B(Sg

i = k)
(14)

where Si is the predicted state and Sg
i is the ground truth

state for the ith image in Set2, and B() is a Boolean logic
function. The matching rates between our method and the
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Fig. 10. The comparison of performance on videos in the laboratory and in the car. (Left) Test images of the same person in the laboratory and in the car.
(Right) PERCLOS curves on the test videos captured in the laboratory and in a moving car.

ground truth for normal and fatigue states are 85.02% and
95.18%, respectively. The matching rates of baseline method
and ground truth are 63.50% and 59.52% for normal and fatigue
states, respectively.

The simulated drowsiness may not be same as true drowsi-
ness in driving. The participants were asked to perform eye
opening, blinking, and eye closure with different frequencies
and durations to simulate drowsiness and sleepy. From the
curves in Fig. 9, one can observe that our datasets cover a
wide range of eye states and movements from opening, blinking
slightly and frequently, and closed eyes for a while. The sta-
tistics on Set2 indicates that, the classified driver states based
on the computed PERCLOS measures using our method match
those based on the PERCLOS measures on ground truths in a
very high percentage, which shows that our method is effective
for bus driver fatigue detection when using existing monitoring
cameras in buses.

Our system detects the driver first using the head-shoulder
detector, and then face detection and eye localization are per-
formed on head regions. The head-shoulder detector is extended
from pedestrian detector [56] which is robust to background
and lighting changes. Later, our processing will focus on face
and eye regions which are separated from background in the
image. Hence, our approach is robust to background changes.
To validate this, we collected 3 more videos of simulated
driving in moving cars. The test images of the same person in
lab and in car are shown in Fig. 10. We make a comparison
of our methods performance on videos of same participant
in lab and in car. As an example for visual examination, the
PERCLOS curves on videos of one person in lab and car
are shown in Fig. 10. For the three participants, the average
distance between PERCLOS curves of our method and the
ground truth on the videos in lab is 0.1232, and that on videos
in car is 0.1190. It can be found that the performances are
similar for the compared videos of the same person in different
conditions.

C. Computational Complexity

We implemented the proposed system in C++ Visual Studio
2008 on a Windows 7. On a Dell desktop of Intel 2.80GHz CPU
(single core) with 4 GB of memory, head shoulder detection
takes about 20 ms, face detection takes about 49 ms, both
the eye detections takes about 110 ms, fusion, PERCLOS
measure estimation and fatigue state classification takes about
8 ms. Overall, the operation for a single frame takes about
0.19 second, that means our system can run at about 5 frames
per second (fps). Since no tracking is required in our system,

the computations on consecutive frames can be performed
in parallel. Hence, using a common quad-core machine, our
system can run at about 20fps. In addition, the delay of half
or one second will not affect the PERCLOS based fatigue
detection in real-world applications.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a vision-based method and sys-
tem towards bus driver fatigue detection using existing dome
cameras in buses. Our approach starts with the detection of
head-shoulders of the figure in the image, followed by face
and eye detections and eye openness estimation. Finally, a
multi-model fusion scheme is designed to infer eye state and a
PERCLOS measure on the continuous measure of eye openness
is computed to predict driver’s attention state, i.e., normal
or fatigue driving state. Experimental results show that our
proposed method is able to distinguish the simulated drowsy
and sleepy states from the normal state of driving on the low-
resolution images of faces and eyes observed from an oblique
viewing angle. Hence, our system might be able to effectively
monitor bus driver’s attention level without extra requirement
for cameras. Our approach could extend the capability and ap-
plicability of existing vision-based techniques for driver fatigue
detection. In the next work, we will investigate to apply it for
other vehicles like car, van, minibus and lorry for easy and
cheap deployment. One more issue for future work is how to
exploit the fatigue detection to improve driver safety in the
drowsiness situations [34]–[37].
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