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Portable Roadside Sensors for Vehicle Counting,
Classification, and Speed Measurement

Saber Taghvaeeyan and Rajesh Rajamani

Abstract—This paper focuses on the development of a portable
roadside magnetic sensor system for vehicle counting, classifi-
cation, and speed measurement. The sensor system consists of
wireless anisotropic magnetic devices that do not require to be
embedded in the roadway—the devices are placed next to the
roadway and measure traffic in the immediately adjacent lane. An
algorithm based on a magnetic field model is proposed to make
the system robust to the errors created by larger vehicles driving
in the nonadjacent lane. These false calls cause an 8% error
if uncorrected. The use of the proposed algorithm reduces this
error to only 1%. Speed measurement is based on the calculation
of the cross correlation between longitudinally spaced sensors.
Fast computation of the cross correlation is enabled by using
frequency-domain signal processing techniques. An algorithm for
automatically correcting for any small misalignment of the sensors
is utilized. A high-accuracy differential Global Positioning System
is used as a reference to measure vehicle speeds to evaluate the
accuracy of the speed measurement from the new sensor system.
The results show that the maximum error of the speed estimates
is less than 2.5% over the entire range of 5–27 m/s (11–60 mi/h).
Vehicle classification is done based on the magnetic length and an
estimate of the average vertical magnetic height of the vehicle.
Vehicle length is estimated from the product of occupancy and
estimated speed. The average vertical magnetic height is estimated
using two magnetic sensors that are vertically spaced by 0.25 m.
Finally, it is shown that the sensor system can be used to reliably
count the number of right turns at an intersection, with an ac-
curacy of 95%. The developed sensor system is compact, portable,
wireless, and inexpensive. Data are presented from a large number
of vehicles on a regular busy urban road in the Twin Cities, MN,
USA.

Index Terms—Magnetic sensors, portable traffic sensor, road-
side traffic sensor, vehicle classification, vehicle detection, vehicle
speed measurement.

I. INTRODUCTION

THIS paper describes a portable sensing system that can
be placed adjacent to a road and can be used for vehicle

counting, vehicle classification, and vehicle speed measure-
ments. The proposed system can make these traffic measure-
ments reliably for traffic in the lane adjacent to the sensors. The
developed signal processing algorithms enable the sensor to be
robust to the presence of traffic in other lanes of the road.

The sensor consists of magnetoresistive devices that measure
the magnetic field. Signal processing algorithms based on an
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analysis of the magnetic field around a car are used to enable
the sensor estimates. The developed sensing system is compact,
portable, wireless, and inexpensive (with an expected cost on
the order of $50).

Inductive loop detectors (ILDs) are a widespread technology
used by many transportation agencies for vehicle detection and
measurement of traffic flow rates. Single inductive loops, by
themselves, do not measure individual vehicle speed.

Vehicle classification into predefined classes such as cars,
trucks, and tractor trailers typically requires measuring the
size or length of a vehicle and/or counting the number of
axles of the vehicle. A vehicle classification model based on
feature extraction from piecewise slope rate values in single-
loop inductive signature data was pursued in [1] and classified
vehicles into 15 classes. However, the accuracy rate is not 100%
and can vary from 40% to 100%, depending on the amount of
“problematic” data present in the sensor readings and the class
of vehicle under consideration.

Vehicle detection and classification based on feature ex-
traction from camera systems have been developed by many
researchers [2], [3]. The research in [3] presented model-
based and fuzzy-logic approaches to improve the reliability of
such systems. An evaluation of three commercial camera-based
vehicle detection systems is presented in [4] under adverse
weather conditions of snow, fog, and rain. The results therein
show that the performance of such systems deteriorates under
adverse weather, particularly under snow conditions in both
daytime and nighttime. Increases in false activations by up to
90% and in missed calls by up to 50% were shown to occur in
adverse weather.

Magnetic sensors and anisotropic magnetoresistive (AMR)
sensors have also been evaluated for vehicle classification by
some research groups [5]–[11]. The main limitation of these
works is their inability to distinguish between sedans ver-
sus sport utility vehicles (SUVs), pickups, and vans. Mostly,
these two classes are combined, or poor classification rates
are obtained when these are considered as individual classes.
Furthermore, the magnetic sensors that have been evaluated are
based on devices that were directly embedded in the roadway
lanes.

Unlike inductive loops and magnetic sensors that have been
evaluated, the sensing system proposed in this paper does not
require devices to be embedded in the roadway. Instead, it
utilizes sensors that are placed on the side of the road, and
hence, there is no need to stop the traffic for their installation. In
addition, the sensor system used is very compact and wireless
and can provide very high accuracies in vehicle detection, speed
measurement, and classification.
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Fig. 1. Magnetic field readings for a Ford Ranger from a magnetic sensor
embedded in the road.

This paper is organized as follows. In Section II, the
signal strength and sensing system configuration is discussed.
In Section III, the detection performance of the system is
presented. The method that was developed to make the
system robust to traffic in the nonadjacent lane is described
in Section IV. In Section V, the speed estimation method is
described. Vehicle classification is discussed in Section VI. A
method of counting the number of vehicles that make a right
turn at an intersection is discussed in Section VII. Conclusions
are presented in Section VIII.

II. SIGNAL STRENGTH AND SENSING SYSTEM

CONFIGURATION

An AMR sensor has a silicon chip with a thick coating of
piezoresistive nickel–iron. The presence of an automobile in
close range causes a change in magnetic field, which changes
the resistance of the nickel–iron layer. The HMC2003 three-
axis magnetic sensor boards from Honeywell are utilized for
the system developed in this paper. Each sensor board contains
core HMC100x AMR sensing chips, which cost about $10.

First, magnetic field readings were obtained from a magnetic
sensor that was embedded on top of the road surface at the
center of a lane and compared with the magnetic field readings
when the sensor was placed adjacent to the road. Fig. 1 shows
the magnetic field readings of the x-, y-, and z-axes, with the
sensor placed at the center of the road lane. Here, the x-axis
is along the longitudinal direction of travel of the vehicles, the
y-axis is perpendicular to the direction of travel of the vehicles,
and the z-axis is perpendicular to the road surface and upward.
Fig. 2 shows magnetic field readings when the magnetic sensor
was placed adjacent to the road at a height of about 0.6 m. It is
clearly shown that the magnetic field readings due to the vehicle
are ten times stronger when the sensor was placed on the road.
The vehicle that was used for these two tests was a Ford Ranger
pickup truck.

It is also shown in Figs. 1 and 2 that, when the sensors are
placed on the side of the road, the signals are more uniform
compared to the case that the sensors are on the road. The main

Fig. 2. Magnetic field readings for a Ford Ranger from a magnetic sensor
adjacent to the road.

Fig. 3. Sensor configuration for data collection.

reason is that, with the sensors on the road, many different
ferromagnetic parts underneath the vehicle will pass over the
sensors at close proximity and create extra fluctuations in
the signal. Because the original signal levels are low when the
sensors are placed on the side of the road, it is necessary to use
higher amplification to get a better signal-to-noise ratio (SNR).
Hence, the sensor signals were amplified using instrumentation
amplifiers, with cutoff frequencies set to 100 Hz to reduce the
noise level.

Fig. 3 shows the configuration of the sensing system, which
includes four three-axis AMR sensors placed on the side of the
road. The objective of the system is to count the number of
vehicles, measure the speed, and classify the vehicles that pass
in the adjacent lane. Sensors 1 and 2 are laterally spaced from
each other by 0.1 m. Sensor 3 is placed 0.9 m longitudinally
downstream from sensor 1. Sensor 4 is placed 0.3 m vertically
above sensor 1. Sensors 1 and 2 are together used to obtain a
rough estimate of the lateral location of the vehicle and make
the sensing system robust to the traffic in the nonadjacent lane.
This method is described in Section IV. Sensors 1 and 3 are
together used to calculate the longitudinal speed of the vehicle.
The speed estimation algorithm is described in Section V.
Sensor 4 is used along with sensor 1 to get a rough estimate of
the average vertical magnetic height of passing vehicles. This is
used for vehicle classification, which is described in Section VI.

A single printed circuit board (PCB) contains sensors 1 and
2. Two other PCBs contain sensors 3 and 4. The PCBs include
Microchip dsPIC microcontrollers, which sample the sensors
output at 1 kHz with 12-bit analogue-to-digital converters
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Fig. 4. Developed PCB for data acquisition and wireless transmission.

(ADCs). The magnetic field is read in as arbitrary voltage units
(counts) as provided by the ADCs. The data is transferred from
the PCBs to a laptop, either wirelessly or through a serial
port. The XBee wireless module from Digi is used for wireless
communication. This module has an outdoor line-of-sight range
of 100 m, required power of 150 mW, and a radio-frequency
data rate of 250 kb/s. Fig. 4 shows the developed PCB.

III. VEHICLE DETECTION AND COUNTING

As mentioned in the previous section, the recorded signals
from the sensors placed adjacent to the road are more uniform
compared to the case that the sensors are on the road. This
behavior makes the detection more reliable, because large
oscillations in the signals can cause errors due to the double
detection of a single vehicle. In particular, it was observed that
the signals measured along the z-axis have very similar patterns
for a large variety of vehicles. Hence, magnetic readings of the
z-axis of sensor 1 are used for detecting and counting the
passing vehicles in the adjacent lane. A threshold of 30 counts
was used as the vehicle detection threshold. This threshold was
experimentally selected. If it is set very high, smaller vehicles
will not be detected, and if it is set very low, a higher percentage
of vehicles that pass in the nonadjacent lane will be detected.
Although a robust algorithm is developed to reduce the false
detections due to vehicles that pass in the nonadjacent lane
(described in Section IV), it is good to avoid false detections
at an early stage to have a minimized final false detection rate.
Signals from 188 vehicles driving in the adjacent lane were
recorded in two days during afternoon hours, with clear-sky
conditions. Out of the 188 vehicles, 186 vehicles created a
large-enough signal to be detected, resulting in a detection rate
of 99%. Fig. 5 shows a sample signal recorded from a jeep
SUV that passes in the adjacent lane, two unknown vehicles
that pass in the nonadjacent lane, and a Mazda sedan that passes
in the adjacent lane at lateral distances of 2, 5.3, 4.6, and 1.6 m
from the sensors, respectively. The lateral distance was mea-
sured only for reference purposes by a sonar sensor that faces
the road.

IV. ROBUSTNESS TO TRAFFIC ON THE

NONADJACENT LANE

While measuring traffic parameters on the lane adjacent to
the sensors, the signals from more than 216 vehicles that pass

Fig. 5. Recorded magnetic field from a jeep SUV and a Mazda sedan that pass
in the adjacent lane and two other vehicles that pass in the nonadjacent lane.

in the nonadjacent lane (the lane next to the closest lane to
the sensors) were also recorded. Analyzing the data, it was
observed that passenger sedans, SUVs, and pickups that travel
in the nonadjacent lane typically do not create errors in the
sensing system signals. However, larger vehicles (e.g., trucks
and buses) that pass in the nonadjacent lane may create large
enough signals to cause false detections and affect the accuracy
of the system. The false detections can significantly increase
the detection error. In our experiments, 15 out of 216 vehicles
created a large-enough signal to be miscounted as vehicles that
pass in the adjacent lane. If uncorrected, this will cause an
overdetection error of 8%. The results presented in [12] show
a similar error rate from the false detection of vehicles in the
adjacent lanes, ranging from 5.6% to 15.4% in different weather
conditions, even when the AMR sensors are embedded in the
middle of the lane in the road. Note that increasing the detection
threshold is not an effective solution to address this problem.
Although it may reduce the number of false calls, it will also
increase the number of missed calls due to smaller vehicles not
being detected because of the higher threshold, as experienced
in [13]. To correct for vehicle detection errors that can occur
due to vehicles in the nonadjacent lane, the following method is
proposed.

It is shown through analytical modeling and experimental
measurements that the magnetic field intensity around a vehicle
has a relation that approximately varies as 1/x with distance,
where x is the lateral distance from the vehicle [14]. Using
sensor 2, an estimate of the lateral distance of the vehicle can be
obtained by simply evaluating the ratio of the maximum of the
measured magnetic fields between sensors 2 and 1 B2/B1. As
the distance x increases, the two sensors read roughly the same
magnetic field intensity. The closer the ratio of magnetic fields
is to 1, the larger the lateral distance becomes. In addition, the
vehicles that pass in the nonadjacent lane have a much lower
peak value Bmax, on the average, compared to vehicles that
pass in the adjacent lane. These two metrics can be used to
reject the traffic passing in the nonadjacent lane, which affects
the sensors. Fig. 6 shows the result of applying the proposed
method to the data set. A support vector machine has been
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Fig. 6. Use of the ratio B2/B1 and B1−max to reject the traffic in the
nonadjacent lane.

used to come up with a classification boundary [15]. Using the
proposed method, the error reduces from 8% to 1%. Based on
the data of 216 vehicles shown in Fig. 6, it is shown that the pro-
posed classification boundary accurately classifies 99% of the
vehicles as correctly being in the adjacent or nonadjacent lane.
All of the nonadjacent vehicles are correctly rejected. Only 2
of the 201 adjacent lane vehicles are incorrectly classified as
nonadjacent.

V. SPEED ESTIMATION

Speed estimation of a passing vehicle is required to measure
the vehicle length, which is used for vehicle classification.
Speed estimation also has other applications; for example, it
has been used by researchers to estimate the queue length
for ramp-metering algorithms [16]. Transportation agencies
use estimated speed information for setting speed limits and
timing traffic signals [17]. There are some proposed methods
in the literature for speed measurement using a single magnetic
sensor [6]; however, those methods provide only an average
estimate of the speed over a number of passing vehicles. To
measure individual vehicle speed, two longitudinally spaced
sensors are required. The conventional method for estimating
speed with two magnetic sensors is based on the detection times
of the two sensors. If the detection times for sensors “a” and “b”
are ta,ON , ta,OFF , tb,ON , and tb,OFF , an estimate of the speed
can be calculated as

v =
da−b

((tb,ON − ta,ON ) + (tb,OFF − ta,OFF )) /2
(1)

where da−b is the distance between sensors “a” and “b”, and
ta,ON and tb,ON are the timestamps that the sensor signal
goes over the detection threshold, for sensors “a” and “b”,
respectively. ta,OFF and tb,OFF are the timestamps that the
sensor signal drops below the detection threshold for sensors
“a” and “b”, respectively. One of the primary factors that affect
the accuracy of the speed estimates is the distance between
the sensors; more accurate estimates are obtained by placing

sensors farther away from each other. For example, [18] rec-
ommends a separation of 4.9 m for speed estimation using
two inductive loops. As another example, [19] recommends
a separation of 3.1–3.7 m (10–12 ft) between the sensors for
arterial applications and 6.1–7.3 m (20–24 ft) for freeway
applications. However, none of the aforementioned references
specify what the accuracy of the estimates will be. On the other
hand, the problem with a large distance between the sensors
is that a vehicle may perform a maneuver that may only be
detected by one sensor [17]. This phenomenon will affect the
synchronization between the sensors, which is required for
speed estimation. Note that another factor in the accuracy of
the estimated speed is SNR; the higher the SNR is, the more
accurate the estimates become. As mentioned in the previous
section, signals of lower level are obtained when placing the
sensors on the side of the road compared to the case that the
sensors are placed on the surface of the road, in the middle of
the lane, and hence, the sensors outputs are amplified to get a
higher SNR.

In [17], a method for speed estimation is proposed based on
signals from two ILDs that are separated by a distance of 6 m
using detection times. Their method detects and drops the data
points from “irregular driving vehicles,” defined as vehicles that
do not perfectly travel in parallel with the line that connects
the center of the sensors. After dropping these data points, the
maximum absolute value of the errors was within 5%. However,
in their experiments, more than 8% of the detected vehicles
were categorized as “irregular driving vehicles,” and hence,
their speed was not estimated. This situation is not favorable for
vehicle classification based on the magnetic length of passing
vehicles.

In [20], a method for the estimation of speed is proposed,
which is based on using three magnetic sensor nodes. The
accuracy of the method is measured by driving a vehicle at a
constant speed of 5.5 m/s (12 mi/h) over the sensors multiple
times. The reported estimation error varies in the range of
5%–20%, underestimating the actual speed in all cases.

In [21], another method for speed estimation is proposed,
which is based on using four magnetic sensors nodes: two nodes
are placed on one side, and two nodes are placed on the other
side of a one-lane road. The distance between the nodes on each
side is 6 m. The results of the speed estimation method show
maximum errors of 13%, with test speeds ranging from 6 m/s
to 13 m/s (13.4–29 mi/h).

The goal of the proposed system in this paper is to reduce the
distance between the sensors to a minimum and still achieve
highly accurate speed estimates by using sophisticated signal
processing techniques to measure the time delay. In the de-
signed system, the speed of each passing vehicle is determined
by measuring the time delay between the signals of the two
magnetic sensors placed longitudinally apart, sensors 1 and 3.
The delay is calculated by taking the cross correlation between
the signals of the two sensors and then finding the time delay
by looking at the value where the resulting signal from the
cross correlation is maximized. Knowing the time delay and the
distance between the two sensors, the speed of the passing ve-
hicle is estimated. This algorithm is described in the following
section.
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A. Speed Estimation Algorithm

Consider the magnitude of the magnetic field signals from
sensors 1 and 3, B1mag and B3mag, respectively. We expect
that B3mag will have the same shape as B1mag but will be
shifted in time, because sensor 3 is longitudinally spaced apart
from sensor 1, downstream with respect to the vehicle. Ideally,
the delay in time between the signal waveforms will have the
following relation with the speed of the passing vehicle v:

δt =
d13
v

(2)

where d13 is the distance between sensors 1 and 3, and δt is
the time delay between the sensors signals to be calculated.
Denoting the sampling time by Ts, B3mag should be delayed
by nd = δt/Ts samples with respect to B1mag . One reliable
method of calculating the time delay is by using the cross
correlation between the two signals. The time delay in terms
of samples is given by

nd = argmax
n

f [n] (3)

where

f [n] =

N−1∑
m=0

B1mag[m]B3mag[m−n] & −(N−1)≤n≤N−1

(4)

and N is the total number of samples for which the cross
correlation is being computed. This computation is on the order
of N2 calculations [22]. The discrete Fourier transform (DFT)
can be adopted to compute f [n], which results in a significantly
less number of required calculations. The method is described
in the following paragraphs. Define

z1[n] =B1mag[n] & z2[n] = B3mag [(N − 1)− n]

0 ≤ n ≤ N − 1

g[n] = f [n− (N − 1)] 0 ≤ n ≤ 2N − 2. (5)

It is shown that z2[n] is simply the flipped version of
B3mag[n] and g[n] is the shifted version of f [n]. Now, we
rewrite (3) in terms of g[n] as

nd = argmax
n

f [n] =
(
argmax

n
g[n]

)
− (N − 1). (6)

We can also write g[n] as follows:

g[n] = f [n− (N − 1)]

=

N−1∑
m=0

B1mag[m]B3mag [m− (n− (N − 1))]

=

N−1∑
m=0

B1mag[m]B3mag [(N − 1)− (n−m)]

=

N−1∑
m=0

z1[m]z2[n−m] = z1[n] ∗ z2[n]. (7)

Therefore, we have written g[n] in terms of the linear con-
volution of z1[n] and z2[n]. The next step is to calculate this
convolution in an efficient way. Based on the properties of the
DFT [22], [23], we know that

x3[n] =
N−1∑
m=0

x1[m]x2 [(n−m)mod N ] = x1[n] � x2[n]

⇔X3[k] = X1[k]X2[k]

0 ≤ n, k ≤ N − 1 (8)

where � denotes the circular convolution, and X[k] is the DFT
of x[n], or

X[k]=DFT (x[n])=
N−1∑
m=0

x[m]e−j( 2πkn
N ) 0≤k≤N−1.

(9)

In general, a circular convolution differs from a linear con-
volution. In a circular convolution, the second sequence is
“circularly” shifted with respect to the first sequence. However,
we can use the relation in (8) to obtain g[n] if we pad the
original signals z1[n] and z2[n] with zeros to a length equal
to or greater than the expected length of the linear convolution
(2N − 1) [22], [23]. Thus, if we define

z̃1[n] =

{
z1[n] 0 ≤ n ≤ N − 1
0 N ≤ n ≤ 2N − 1

z̃2[n] =

{
z2[n] 0 ≤ n ≤ N − 1
0 N ≤ n ≤ 2N − 1

(10)

we have

g[n] = IDFT (DFT (z̃1[n])DFT (z̃2[n])) . (11)

Now that we have calculated g[n], we can obtain nd based
on (6) and calculate the speed based on (2). Note that using
fast Fourier transform and inverse fast Fourier transform algo-
rithms for the calculation of DFT and inverse discrete Fourier
transform (IDFT), we can calculate g[n] with computational
complexity on the order of N logN compared to the original
order of N2 [22]. As an example, if we originally have N =
10 000 datapoints (10 s of data sampled at 1 kHz), we will have
orders of 108 and 105 for the original and DFT methods, respec-
tively. This difference can be considerable when the system is
implemented in a processor for real-time classification.

The main benefit of using the conventional method of finding
the difference between the detection times to estimate the speed
is its simplicity, which allows for the design of a sensing
system with less complexity and reduced power consumption.
These requirements are helpful in increasing the battery life of
the sensors when the sensors are embedded in the pavement.
However, with the sensors on the side of the road, the power
can be provided by larger capacity batteries, power lines, solar
cells, or a combination of these. Hence, it is possible to utilize
more computational power and develop much more accurate
algorithms to achieve better performance in speed estima-
tion and consequently achieve better performance in vehicle
classification.
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Fig. 7. Speed measurements of the GPS.

B. Speed Estimation Experimental Results

To check the speed estimation accuracy of the sensing
system, the following experiment was conducted at the
Minnesota Road Research Facility (MnROAD). The sensing
system was placed adjacent to the lane, as shown in Fig. 3. A
carrier-phase Global Positioning System (GPS), GPS18 LVC,
was mounted on a test vehicle, and its data were captured using
a laptop inside the vehicle. The accuracy of the GPS is 0.05 m/s,
and its update rate is 1 Hz. A separate data acquisition system
was used to capture the roadside sensor data, as shown in the
previous experiments.

For each test, the driver started at a long distance away from
the sensors, reached the desired speed, passed in front of the
sensors with constant speed, and later stopped. One sample of
the speed plot that was obtained from the GPS during one test
is shown in Fig. 7.

Because the speed is almost constant during the time the
vehicle passes in front of the sensors, it is possible to take the
average of several data points before the vehicle decelerates
and use it as the reference speed that was obtained from the
GPS. In all the experiments, 11 satellites were in view for the
GPS. The test vehicle was also equipped with a cruise control
system, which was used for velocities above ∼13 m/s (30 mi/h)
to achieve a more consistent speed.

The error in speed estimates can be calculated as follows:

Error = 100
vGPS − vest

vGPS
(12)

where vGPS is the reference GPS speed, and vest is the esti-
mated speed from the magnetic sensors.

Fig. 8 shows the estimation error between the GPS measure-
ment and the sensor estimates when the sensor-based speed was
calculated using the simple difference in the detection times
described by (1). As shown in Fig. 8, the maximum error for
speed estimation is more than 12%. As a result, the magnetic
length estimates, being used for vehicle classification, have the
same percentage error, because speed estimate errors directly
propagate to magnetic length estimate errors. Fig. 8 also shows

Fig. 8. Speed estimation error using the conventional and cross-correlation
methods.

Fig. 9. Sensor configuration for data collection.

the estimation error when the cross-correlation method has been
applied for speed estimation.

As shown in Fig. 8, comparing the conventional and cross-
correlation methods, the error range has been reduced from
12% to only 3.5%. Considering the errors of the proposed
method, a negative offset is observed, which means that the
estimated speed is overestimating the actual speed. This over-
estimation of speed is because the sensors are not perfectly
aligned with the side of the road, as shown in Fig. 9, which
makes the actual measured distance between the sensors larger
than the effective distance between the sensors.

Multiplying the measured distance between the sensors in
this test by a constant factor of 0.98, we get an almost zero-
bias speed estimation error distribution, as shown in Fig. 10.

In a general test where there is no reference value for speed
calibration, we can use the following algorithm to automatically
compensate for misalignment problems.

Assume that sensors 1 and 3 are perfectly aligned with the
side of the road and a vehicle passes precisely parallel to the
sensors. Therefore, the signal readings of sensors 1 and 3 should
be exactly identical, except for a delay that is used for speed
estimation. Now, assume that the sensors are not perfectly
aligned. In this case, the signal levels at the two sensors will
slightly be different. For example, in the scenario depicted in
Fig. 9, where sensor 1 is closer to the road than sensor 3, we
expect to see slightly higher signal levels for sensor 1 than
sensor 3. We can use this difference and partially adjust for the
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Fig. 10. Speed estimation error. The offset is automatically adjusted.

misalignment. The method is described as follows and is based
on using the ratio of integrated values of the two signals. Define

Bint−j =

tj,2∫
tj,1

Bjdt j = 1, 3 (13)

where tj,1 and tj,2 are the detection times. Now, defining

c = min

(
Bint−1

Bint−3
,
Bint−3

Bint−1

)
(14)

we modify d13 as

d13−corrected = c ∗ d13 (15)

and estimate the speed as

v =
d13−corrected

δt
(16)

where δt is the time difference between the signals calculated
earlier. The result of this method is shown in Fig. 10. It is shown
that, using this method, we can get an almost-zero-bias error
(the mean error is −0.78%) distribution of speed estimations.

As shown in Fig. 10, the maximum error in speed estimation
is less than 2.5% over the entire range of speeds, 5–27 m/s
(11–60 mi/h).

VI. VEHICLE CLASSIFICATION

Vehicle classification is useful in a number of applications,
including road maintenance and management, roadway design,
emissions evaluation, multimode traffic model development, tra-
ffic control, traffic signal design, and toll systems development.
For example, the distribution of passing vehicles on a road is
used in the estimation of pavement life cycle [24]. There are
different vehicle classification methods proposed in the litera-
ture based on inductive loops and vision systems. In general,
the main drawbacks of using inductive loops are the high cost,
the long installation process, and the intrusive nature of sensor
installation. The main drawback of systems based on vision
is the high sensitivity to weather conditions, as mentioned in
Section I. The benefit of using magnetic sensors for vehicle

detection is that they are less expensive, more robust to weather
conditions, and easier to install. In addition to these benefits,
the sensing system proposed in this paper is portable and can
be placed adjacent to the road, and therefore, it is not necessary
to stop the traffic.

There are existing methods in the literature for vehicle
classification based on magnetic sensors. However, the main
limitation of these methods is the poor performance in differ-
entiating sedans versus SUVs, pickups, and vans; hence, these
two classes are usually combined, as shown in [9] and [10], or
only vans are classified as a separate class [8], [11], [25].

In [6], a vehicle classification method is proposed based
on the hill pattern of magnetic signatures that were obtained
from a single magnetic sensor. Vehicles are classified into
seven classes, including sedans, SUVs, and vans. However, the
classification accuracy that has been achieved is only 63%.

A classification method based on the average bar and hill
pattern recognition schemes is proposed in [26]. Vehicles are
classified into four classes, including sedans and SUVs/vans.
About 95% of the vehicles are correctly classified; however,
the number of SUVs/vans in the data set is only 5% of the total
vehicles compared to the total number of sedans, which is 84%.

The classification method proposed in this section is based
on using the magnetic length and an estimate of the average
vertical height of the passing vehicles. Vehicles are classified
into the following four classes.

• Class I: Sedans.
• Class II: SUVs, pickups, and vans.
• Class III: Buses, two- and three-axle trucks.
• Class IV: Articulated buses and four- to six-axle trucks.

Section V described how the speed of each passing vehi-
cle was calculated. In addition, the time duration for which
the passing vehicle’s magnetic field stays above a detection
threshold can be measured to calculate occupancy. The product
of the vehicle’s estimated speed and the time duration (occu-
pancy) provides the vehicle’s magnetic length. Note that the
vehicle’s magnetic length can slightly be different from its
actual physical length. This is because the vehicle magnetic
field extends beyond its physical boundaries. However, the
length can be calculated with sufficient accuracy for vehicle
classification. Of the three axes signals, the magnetic signals
along the z-axis were observed to have a very consistent pattern
for different types of vehicles. Therefore, magnetic readings of
the z-axis were used for measuring the magnetic length, and
a threshold of 30 counts was used for the vehicle detection
duration measurement. Examples of magnetic signatures are
provided in the Appendix.

Fig. 11 shows the measured magnetic length for various
vehicles in four classes. As shown in this figure, the magnetic
lengths of vehicles in classes III and IV are clearly distinguish-
able from those of vehicles in classes I and II. As a result, by
using only this single feature, it is possible to accurately classify
vehicles in these two classes. This is expected, because the
actual lengths of the vehicles in classes I and II and vehicles in
classes III and IV are very different. However, because vehicles
in classes I and II have similar lengths and, consequently,
similar magnetic lengths, it is not possible to classify them only
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Fig. 11. Magnetic length and classification for various types of vehicles.

Fig. 12. Classifying class-I and class-II vehicles.

by magnetic length. To improve the classification of vehicles
between classes I and II, the following additional signal pro-
cessing is adopted.

It is expected that higher vertical locations of magnetic
components in a vehicle in class II lead to a higher magnetic
height compared to vehicles in class I. Placing another sensor,
sensor 4, about 0.25 m vertically above sensor 1, it is expected
that the ratio B4−z/B1−z will distinctly be larger for vehicles
in class II. This ratio, along with the magnetic length, can be
used to create more separable boundaries to classify between
class-I and class-II vehicles. The result is shown in Fig. 12,
where a support vector machine has been used to come up with
a classification boundary [15]. Using these two features, 83% of
the vehicles are correctly classified into classes I and II. Note
that the two features proposed for classification are very easy to
implement and are based on the physical magnetic properties of
vehicles and not based on some heuristic features and methods
such as hill patterns or neural networks.

VII. RIGHT-TURN DETECTION

The objective of the system described in this section is to
count the number of right turns versus the number of straight-
driving vehicles at a traffic intersection. This portable system

Fig. 13. Right-turn detection and placement of the AMR sensors.

can be used to count the number of right turns at an intersec-
tion, replacing the current method, which is based on manual
counting. This information can be used for adjusting the traffic
lights. The sensors are placed at an intersection, as shown in
Fig. 13.

Our objective is to determine the percentage of the vehicles
that move in lane 1 and make a right turn to lane 2. Recall
that, for traffic measurement, when vehicles travel in a straight
line, the magnetic sensors could be placed on the side of the
road, and vehicles should typically pass within a distance of
2.5 m from the sensors to be detected. However, when the
sensors are placed at the corner of an intersection, half of the
turning radius (∼2–3 m) is added to the lateral distance from
the passing vehicles in lane 1 to the sensors. Thus, most of the
vehicles that pass straight in front of the sensors in lane 1 or 2
are not typically detected. The vehicles that are being detected
are the vehicles that make a right turn or larger vehicles that
move straight on lane 1 or 2.

By placing one magnetic sensor at the corner side of the road,
as shown in Fig. 13, the number of right turns at an intersection
can be counted. During the experiments, 56 out of 59 right
turns were correctly counted, resulting in a detection rate of
95%. As aforementioned, typically, straight-driving vehicles
are not detected, because they pass at a larger distance from the
sensor compared to vehicles that make a right turn. However,
larger straight-driving vehicles can create large enough signals
to be miscounted as vehicles that make right turns. During the
experiments, 18 straight-driving vehicles created large enough
signals to be miscounted as vehicles that make a right turn,
which results in a detection error of 31%.

Two methods, A and B, are proposed to identify and reject
the errors caused by straight-driving vehicles, using two and
four magnetic sensors, respectively. Considering the sensor
configuration shown in Fig. 14, in method A, signals from
magnetic sensors 2 and 3 are used. In method B, signals
from all the four magnetic sensors are used. The two methods
are presented in the following sections. Note that the sensor
configuration used for right-turn detection, as shown in Fig. 14,
is different from the sensor configuration shown in Fig. 3.

A. Method A

As mentioned in Section III, it can be shown through both
analytical modeling and experimental measurements that the
magnetic field intensity around a vehicle has a relation that
approximately varies as 1/x with distance, where x is the lateral
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Fig. 14. Magnetic-sensor configuration for the right-turn detection system.

distance from the vehicle [14]. This phenomenon is used in
that case to reject the traffic in the nonadjacent lane, which
creates large enough signals to affect the sensors. In a right-turn
detection system, generally, the traffic going straight in lanes 1
and 2 will pass at a larger lateral distance from the sensors than
a vehicle that makes a right turn. Hence, for magnetic sensors 2
and 3, we expect that the ratio r = Bmax−2/Bmax−3 is closer
to 1 during scenarios 1 and 3 compared to scenario 2, as shown
in Fig. 14.

B. Method B

Using all the information from all the four magnetic sensors,
the following is expected when integrating the signals of each
detected vehicle:

Scenario 1 : Bint−1
∼= Bint−3 > Bint−2

∼= Bint−4 (17)

Scenario 2 : Bint−3 > Bint−1
∼= Bint−4 > Bint−2 (18)

Scenario 3 : Bint−3
∼= Bint−4 > Bint−1

∼= Bint−2. (19)

Now, consider four points in a 3-D space located at
(0, 0, intB1), (0, d, intB2), (−d, 0, intB3), and (−d, d, intB4),
where x and y of each point show the position of a magnetic
sensor with respect to the origin (sensor 1), and z shows the
value of Bint−i for each sensor. Next, we fit a plane with
a normal vector n̂ to these four points and define n̂p as the
projection of n̂ into the xy plane and γ as the angle between
n̂p and the x-axis. It is expected that, for scenarios 1, 2, and 3,
the angle γ will be close to 90◦, 45◦, and 0◦, respectively. The
angle γ is calculated as follows. The equation of a plane is

n̂.(p− p0) = 0 (20)

where p0 is the position of a known point on the plane, n̂ is
a nonzero vector normal to the plane, and p is a point on the
plane. Expanding this equation, we get

nx(x−x0)+ ny(y−y0)+ nz(z−z0) = 0 → ax+ by + c = z
(21)

where

a = −nx

nz
b = −ny

nz
c =

nxx0 + nyy0
nz

+ z0.

Fig. 15. Results of applying the support vector machine algorithm to obtain
classification boundaries.

Hence

γ = atan

(
ny

nx

)
= atan

(
b

a

)
. (22)

Therefore, we should obtain a, b, and c, which can be done
using a least squares method, i.e.,

y = Hx+ v → x̂ = (HTH)−1HT y (23)

where

x =

⎡
⎣ a
b
c

⎤
⎦ H =

⎡
⎢⎣

0 0 1
0 d 1
−d 0 1
−d d 1

⎤
⎥⎦ y =

⎡
⎢⎣
Bint−1

Bint−2

Bint−3

Bint−4

⎤
⎥⎦

and v is the measurement noise.

C. Experimental Results

Methods A and B were applied to the data set obtained from
the experiments. The data set was obtained by placing the sen-
sors (with the configuration shown in Fig. 14) at two different
intersections and recording signals from passing vehicles. The
experiments were performed during noon hours under clear-sky
conditions. Fig. 15 shows the results.

As shown in Fig. 15, both methods can be used separately
or in combination to reject the straight-driving vehicles, which
have created a large-enough signal to be incorrectly detected
as a vehicle that makes a right turn. A support vector machine
is used to obtain the classification boundaries in Fig. 15 [15].
If only one of the methods is used, the separation between
the classes will be smaller, and the measurements will be less
separated. These results show that straight-driving vehicles that
have created a large-enough signal to be detected by the sensors
can completely be excluded, reducing the 31% misdetection
error to 0%.
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Fig. 16. Magnetic signature of a Nissan Maxima (class I) that passes at 1.6 m
from the sensors.

Fig. 17. Magnetic signature of a Toyota Highlander SUV (class II) that passes
at 1.4 m from the sensors.

VIII. CONCLUSION

This paper has proposed a portable and low-cost sensing
system based on magnetic sensors that can be placed adjacent to
the road and be used for traffic counting, speed measurement,
and vehicle classification in the lane adjacent to the sensors.
The vehicle classification and speed measurement in this paper
are enabled using multiple spatially separated magnetic sensors.
Through experimental data from 188 vehicles, it is shown that
the traffic counting accuracy of the system is 99%. A method
is also proposed to make the system robust to the traffic in the
nonadjacent lane. The false calls caused by the traffic in the
nonadjacent lane, if uncorrected, can cause an 8% detection
error. However, using the proposed method, the error reduces to
1%. Speed estimation is done by placing two magnetic sensors
0.9 m longitudinally apart and taking the cross-correlation
between the signals from the two sensors. Digital signal pro-
cessing methods are adopted to reduce the computation effort.
The speed estimation method is verified by mounting a test
vehicle with a GPS. Experimental results show a maximum
of 2.5% error in speed estimates over the range of 5–27 m/s
(11–60 mi/h). Vehicle classification is performed based on

Fig. 18. Magnetic signature of a cement truck (class III) that passes at
1.5 m from the sensors.

Fig. 19. Magnetic signature of an articulated bus (class IV) that passes at
1.2 m from the sensors.

the magnetic length and average magnetic height of vehicles.
Vehicle length is estimated by multiplying the detection time
by the estimated speed. The average vertical magnetic height is
estimated using two magnetic sensors that are vertically spaced
by about 0.3 m. Finally, it is shown that the sensing system
can be used to reliably count the number of right turns at
an intersection, with an accuracy of 95%. The challenge in
counting the number of right turns is the false calls created
by larger straight-driving vehicles, which, if uncorrected, cause
31% overdetection. Two methods are proposed based on using
two and four magnetic sensors, which totally eliminate this
error.

APPENDIX

Figs. 16–19 show four examples of magnetic signatures for
vehicles in classes I–IV.
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