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Abstract—The development of intelligent vehicle systems has
resulted in an increased need for a high-precision road map.
However, conventional road maps that are used for vehicle
navigation systems or geographical information systems are insuf-
ficient to satisfy new requirements of intelligent vehicle systems
such as autonomous driving. There are three primary road
map requirements for intelligent vehicle systems: centimeter-level
accuracy, storage efficiency and usability. However, no existing
researches have met these three requirements simultaneously. In
this paper, we propose a precise and efficient lane-level road map
generation system that conforms to the requirements all together.
The proposed map building process consists of three steps: 1)
data acquisition, 2) data processing, and 3) road modeling. The
road data acquisition and processing system captures accurate
3D road geometry data by acquiring data with a mobile 3D laser
scanner. The road geometry data is then refined to extract meta
information, and in the road modeling system, the refined data
is represented as sets of piecewise polynomials to ensure storage
efficiency and usability of the map. The proposed mapping system
has been extensively tested and evaluated on a real urban road
and highway. The experimental results show that the proposed
mapping system outperforms conventional ones in terms of the
road map requirements.

Index Terms—road map, lane-level road map, road modeling,
piecewise polynomial approximation.

I. INTRODUCTION

S IGNIFICANT efforts have been made in academia and
in industry to develop intelligent vehicle systems that can

provide a higher level of safety and convenience [1], [2]. To
this end, it is necessary to have a precise lane-level road map
to provide various autonomous driving vehicle applications,
such as vehicle path or motion planning [3]–[6] and ego-
vehicle localization [7]–[12]. In addition, various advanced
driver assistance systems (ADASs) including lane keeping,
lane change assist, and fuel management systems, benefit from
having precise lane-level road maps [13].

From a technical point of view, a map for intelligent and
autonomous vehicle systems has to fulfill the following three
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requirements: accuracy, storage efficiency, and usability. First,
a road map should contain the geometry of all lanes with
accuracy at the centimeter-level as well as the 3D structure
of roads in order to represent various type of roads, including
sloped roads, overpasses, etc. Second, the geometry of the road
should be expressed in a compact form such that the map can
be downloaded and updated via wireless networks. Finally,
the road geometry should be expressed in an application-
friendly format. Specifically, low computational efforts should
be necessary to calculate the road geometry information,
including coordinates, tangent angle or curvature from the road
map to provide real-time operation.

Conventional road maps only provide macro-scale informa-
tion for vehicle navigation systems or geographical informa-
tion systems (GISs), so many studies have been carried out to
produce a precise road map intended for use with intelligent
vehicle systems. Bétaille et al. proposed an Emap structure
for meso-scale lane-level driving assistance that utilizes GPS
and Dead Reckoning (DR) [14]. However, the quality of
the map is easily affected by the data acquisition process
and is inadequate for autonomous driving purpose. A map
for autonomous driving requires micro-scale precision, but
such a precise map requires a large amount of storage space
and has a low level of usability [15]. Jo et al. proposed
a mapping system that can generate a storage-efficient map
suitable for autonomous driving purposes without considering
lanes, complex junctions and 3D traffic structures such as an
overpass and a slope [16].

Few previous studies have considered the latter two re-
quirements while providing centimeter-level functionality. In
this paper, we propose a road map generation system that
considers the three aforementioned road map requirements
altogether. The road map generation system is composed of
three subsystems, including data acquisition, processing, and
road modeling systems. The data acquisition and processing
system acquires accurate road geometry data that fulfills the
accuracy requirement, and we introduce a data acquisition
system to obtain highly-accurate 3D road geometry by uti-
lizing 3D mobile laser scanning (3D MLS) data. Then, the
road geometry data that is obtained is refined to extract the
corresponding meta information.

The main contribution of this paper lies in the road modeling
system. In the road modeling system, the road geometry data
that is obtained is approximated and represented as sets of
piecewise parametric polynomials in order to conform to the
latter two road map requirements. The piecewise polynomial
is more effective in terms of usability than those previously
used in other road models, including clothoid or B-spline, be-
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cause various types of road geometry information such as the
tangent angle and the curvature of the road can be calculated
by conducting simple arithmetic operations. In addition, the
piecewise polynomial form is suitable for local modification
of the map, since the modification of the coefficients of a
piecewise polynomial does not affect the shape of the other
piecewise polynomials.

The main problem in representing the road as the sets of
piecewise polynomials is the need to minimize the required
data size, since the geometry data about the length of the
tens-of-thousands kilometers of roads should be stored in
a storage device of a vehicle. However, previous piecewise
polynomial-based curve approximation algorithms are inap-
propriate for processing the significantly large amount of road
geometry data, since these global optimization algorithms have
exponential or O(n3) computational complexity [17], [18].
In this paper, we propose an efficient road modeling algo-
rithm that has O(n) complexity. The proposed algorithm sub-
optimally determines the number of piecewise-polynomials of
the overall curve and its coefficients by converting the global
approximation problem to a combination of small easy-to-
solve approximation problems.

The proposed road map generation system has been exten-
sively tested and evaluated on an urban road and a highway,
and the results of the experiment show that the proposed
map outperforms conventional maps in terms of the road map
requirements. Our scheme can thus contribute to building a
precise and efficient map for navigation systems that can be
embedded in autonomous driving vehicles and updated via
wireless networks.

The main contributions of this paper can be summarized as
follows:

• We propose a road map generation system to generate a
precise and efficient lane-level road map for intelligent
and autonomous vehicle systems.

• We propose an efficient curve approximation algorithm
that represents the road as the minimum number of
piecewise polynomials.

• The feasibility and practicality of the proposed map were
evaluated by conducting extensive experiments on an
urban road and a highway.

The remainder of this paper is organized as follows. Section
II presents related works. Section III presents the overall
system architecture of the road map generation system. Sec-
tion IV introduces the road geometry data acquisition and
processing system, and Section V presents the proposed road
representation system. Section VI provides the experimental
results and Section VII concludes this paper.

II. RELATED WORKS

The accuracy, storage efficiency and usability of a map all
depend on the combination of data acquisition and road mod-
eling methods that are used. The objective of data acquisition
is to obtain accurate data to represent the actual geometry
of the road, and the primary purpose of road modeling is
to effectively represent the road geometry in terms of the
storage efficiency and usability while maintaining a certain

level of accuracy. Table I presents the data acquisition and road
modeling methods used in previous representative studies and
also describes the extent to which they meet the three road map
requirements for intelligent vehicle systems. The vertical axis
of the table represents the classification of the data acquisition
methods based on the level of accuracy that the methods
can meet, and the horizontal axis represents the classification
of the road models based on the level of usability. The
asterisk in the table indicates that the marked method considers
the maximization of storage efficiency. The table shows that
no prior system has simultaneously achieved the three road
map requirements for intelligent vehicle applications. A more
detailed description about the previous approaches is presented
in the rest of this section.

A. Acquisition of Road Geometry
Various approaches have attempted to acquire accurate road

geometry data. For example, an aerial/satellite image-based ap-
proach has been extensively used for conventional digital maps
and GISs. High-resolution aerial camera images have been
acquired from a satellite or a aerial vehicle, to extract road
geometries through manual work or through image processing
means [22]–[24]. An image-based approach has an advantage
in that we can obtain the road geometry for a larger region
by processing a single image. However, the resolution of the
aerial/satellite images is insufficient for extracting precise lane-
level road geometry. Moreover, the elevation information of
the roads cannot be acquired because the images contain no
depth information. As a consequence, the accuracy of the
image-based approach is limited to meter-level.

Many studies have adopted a probe vehicle-based approach
to acquire a more accurate road geometry [13], [14], [16],
[25]–[27]. In this approach, a probe vehicle equipped with
various sensors explores roads and collects sensor data to
obtain road geometry information. Of the various sensor con-
figurations that are possible, kinematic GPS-based methods are
the most widely used systems that include real-time kinematic
(RTK) and post-processing kinematic (PPK) GPSs. In this
method, the trajectory of a probe-vehicle driving along the
centerline of a road (or lane) is recorded as road geometry
data. The accuracy of the road geometry depends mainly on the
positioning accuracy of the vehicle, so many previous studies
have used algorithms that integrate GPS with other positioning
systems, such as dead reckoning (DR) and inertial navigation
system (INS), to improve the accuracy and reliability of the
vehicle position [16], [28], [29].

Although the GPS-based methods are useful to obtain a
greater degree of accuracy in the road geometry than image-
based methods, there are some fundamental limitations to
using this method. First, it is inefficient for the probe vehicle
to capture information for a road multiple by as many times as
the number of lanes. Such repetitive work is costly and time-
consuming. The second problem is the so-called trajectory
error. In a GPS-based method, it is desired for a probe vehicle
to drive along the exact centerline of the lane. However, it is
practically impossible for a human driver to control the vehicle
with centimeter-level precision for an extended period of time.
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TABLE I
COMPARISON TO REPRESENTATIVE PREVIOUS ROAD MAP GENERATION METHODS.
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Meter Aerial/satellite image OSMa [19]
Decimeter GPS+DRb (INSc) Bétaille, et al. [14]* Jo, et al. [16]* .

Centimeter
GPS+DR (INS)+Camera Ziegler, et al. [20]
GPS+DR (INS)+3D Lidar Joshi, et al. [21] Proposed*

*Methods where the maximization of storage efficiency is considered.
aOpen street map, bDead reckoning, cInertial navigation system.

Therefore, discordance between the vehicle trajectory and the
centerline of the lane is unavoidable. Thus the accuracy of
using this method is limited to decimeter-level.

Various methods based on perception sensor have been
introduced in recent years to tackle the problems of using GPS-
based methods [20], [26], [30]–[33]. In these methods, road
markings are detected and extracted by using perception sen-
sors that capture road geometry data. Since the road geometry
data is acquired directly from lane marking information, the
above problems are fundamentally prevented. Various sensor
configurations have been used to this end, including a monoc-
ular camera [26], stereo-camera [20], and 2D or 3D Lidar
[21], [31]–[33]. Camera-based methods have an advantage in
that the cost of the sensor can be reduced; however, it is
difficult to extract precise 3D road geometry because of the
inherent limitation of a camera, which is that the information
is represented in a 2D plane. For this reason, the 3D Lidar
is the most appropriate way to acquire centimeter-level road
geometry since it can provide accurate 3D information about
roads. Some studies have extracted road geometry from 3D
Lidar data. In [31], an algorithm was proposed to extract
road geometry from 3D Lidar data; however, the algorithm
focused on extracting road regions rather than lane-level road
geometry. In [32] and [33], the extraction of lane markings
from 3D Lidar data was considered, but, the clustering among
lanes was not addressed. Joshi et al. proposed a particle
filter-based method to extract lane-level geometry data and
clustering among the lanes using 3D Lidar data [21]. However,
that method extracts the centerline of lanes rather than the lane
marking points, so the shape of the lane markings (e.g., the
dashed line) is ignored, which can be useful for intelligent
vehicle applications such as vehicle localization. In this paper,
we propose a 3D Lidar data processing algorithm to extract
and cluster the lane marking points.

B. Modeling of Road Geometry
It is important to have the appropriate road geometry

representation to ensure storage efficiency and usability along
with map accuracy. Various road geometry models have been
previously proposed [13], [14], [16], [26], [34], [35], but the
previous models have not considered the three requirements
simultaneously. For example, polygons are widely used in
conventional digital road maps and various intelligent vehicle

applications to represent the road geometry due to their
simplicity [19], [36]–[39]. However, since a polygon cannot
express curved roads with precision, too many line segments
become necessary to express the roads with a large curva-
ture in order to achieve centimeter-level accuracy. Therefore,
the accuracy and storage efficiency requirements cannot be
simultaneously satisfied. In addition, direct exaction of road
geometry information cannot be provided, including the tan-
gent angle and curvature, and thus the usability requirement
is also not satisfied.

Various mathematical curve models have been proposed
to provide a more accurate and efficient road representation.
For example, a clothoid is the best way to represent road
geometry since a road is traditionally designed by a set
of clothoids [14], [40]. Bétaille et al. proposed a clothoid-
based road modeling algorithm that satisfies the accuracy and
storage efficiency requirements [14]. In this algorithm, the road
geometry is represented as a set of the minimum number
of clothoid curves while also satisfying a preset accuracy
constraint. However, a clothoid is inadequate for use with
intelligent vehicle applications since it includes transcendental
functions. Thus the calculations for the information required
for advanced vehicle applications, such as distance and relative
angle between an ego-vehicle and a lane in the map, are
computationally intense. As a result, the clothoid does not
satisfy the usability requirement. Moreover, a clothoid cannot
express the 3D road geometry by itself since the clothoid is
only defined on a plane.

An alternative is to use a spline curve. Many studies have
used various types of spline curves to represent the road
geometry [13], [16], [26], [34], [35]. For example, a cubic B-
spline is a representative method for road modeling that has
an advantage in that local modifications of the curve do not
affect to the entire shape of the curve. This is an important
characteristic for road map maintainability, and in addition,
many efficient B-spline curve approximation algorithms that
have been developed for computer aided design (CAD) make it
easy to use B-spline curves for road modeling. For example, in
literature [16], a B-spline-based road modeling algorithm was
proposed based on a dominant points-based B-spline curve
fitting algorithm developed for computer-aided design (CAD)
[41]. The control point of the B-spline is sub-optimally de-
termined according to a preset accuracy constraint in order to
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Fig. 1. Overall System Architecture.

simultaneously adhere to the accuracy and storage-efficiency
requirements. However, it is difficult to extract the information
on the geometry of the road, such as the tangent angle and
curvature by using a B-spline curve because the functions
of the B-spline are not intuitive, and it is thus difficult to
calculate the first and second derivatives of the functions [42].
Therefore, B-splines also do not satisfy the usability constraint.

In this paper, we use the most intuitive spline curve form
where a curve segment is expressed as a piecewise cubic
polynomial. Since a polynomial can be used to conveniently
calculate the derivatives, we can extract the tangent angle
and curvature of the road from the proposed spline curve
by using simple arithmetic operations. Piecewise polynomial-
based curve approximation has not been studied as much as
other spline curves such as the B-spline. Moreover, previous
piecewise polynomial approximation algorithms are not ap-
propriate for approximating significantly large amount of road
geometry data since the previous algorithms have exponential
or O(n3) computational complexity [17], [18]. One solution
is to approximate the data as a B-spline curve first and to
convert the B-spine curve to a set of piecewise polynomials
[43]. However, this approach requires a great number of
piecewise polynomials than directly approximating the data
as a set of piecewise polynomials as will be shown in Sec-
tion VI-C2. Thus, this paper proposes an efficient piecewise
polynomial curve approximation algorithm that processes a
significantly large amount of road geometry data and sub-
optimally determines the number of piecewise polynomials
and their coefficients with O(n) computational complexity.

III. OVERALL SYSTEM ARCHITECTURE

The overall road map generation system is composed of
three subsystems: a data acquisition, a data processing and a
road modeling subsystems (see Fig. 1). The data acquisition
and processing subsystems acquire accurate and reliable road
geometry data by using various sensors during collection on a
probe vehicle equipped with a GPS+INS vehicle positioning
system and a 3D laser scanner. Then, accurate road geometry

data is extracted by integrating the sensor data in the data
processing system.

In this paper, two different types of road geometry are
acquired depending on the road type. For a road in which lane
markings exist, the Cartesian coordinates of the lane markings
are obtained as the road geometry data from the 3D laser
scanning data (see the black circles in Fig. 1). For a road in
which lane markings do not exist, such as when going off-
road, the trajectory of a probe vehicle driving along centerline
of a road is used in a manner similar to the previous probe
vehicle-based approach (see the white squares in Fig. 1). For
convenience, we have name the road in which lane markings
exist as a type I road and the other as a type II road in the
rest of this paper.

Both types of road geometry data obtained from the data
acquisition and processing systems are represented by a large
number of points. However, this type of geometry represen-
tation is inadequate for a road map in terms of the storage
efficiency. Moreover, the point representation makes it difficult
to extract the required road geometry information, such as
tangent angle and the curvature of a road. To solve these
problems, we have applied a mathematical modeling technique
to the road geometry point data in order to increase its
storage efficiency and usability. The road modeling system
approximates a set of geometry point data that correspond to
a road line as a cubic spline curve consisting of sequential
parametric piecewise cubic polynomials curves (see the right
bottom of Fig. 1). A sequential approximation algorithm is
proposed to efficiently approximate the curve.

IV. ROAD GEOMETRY DATA ACQUISITION AND
PROCESSING

In the data acquisition, the required raw sensor data is
collected by using a probe vehicle equipped with a positioning
system and a 3D Lidar, and the geometry data of the lanes
is then obtained from raw data in the data processing step.
Detailed description of the two steps is presented as follows.
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Fig. 2. Overall data processing procedure: (a) raw MLS data, (b) ground
extraction result, (c) result of data accumulation, (d) result of intensity
thresholding, (e) result of lane marking point extraction and clustering, and
(f) skeletonization result.

A. Data Acquisition
During the data acquisition step, two kinds of data are

collected by the probe vehicle: 6D vehicle pose data and 3D
MLS data. The vehicle pose data includes the accurate 3D
global position and 3D attitude (yaw, pitch and roll) with
respect to the trajectory of the probe vehicle. In order to
obtain the accurate vehicle pose data, a high-precision vehicle
positioning system is recommended. In this paper, we use a
sensor fusion system that integrates a RTK-GPS and a high-
precision INS. The 3D MLS data is obtained by correcting
the raw 3D laser scanning data using the INS data. When a
vehicle moves, the measurement origin of the laser scanner is
changed; thus the laser points are twisted [44]. To resolve this
problem, a preprocessor untwists the points using the vehicle
motion sensor measurements from the INS.

For type II roads, the vehicle pose data is simply used
as the road geometry data, and for type I roads, MLS data
is additionally used. The rest of this section presents the
data processing algorithm that is used to obtain accurate road
geometry data from the raw data. Note that this paper focuses
more on a type I road since the road geometry for type II
roads can be obtained by using the previous probe vehicle-
based methods.

B. Data Processing
The road geometry data for a type I road can be obtained

by integrating 3D MLS data with the vehicle pose data. Fig.
2 depicts the overall procedure for the data processing step.
First, ground extraction is applied to each frame of the MLS
data to remove unnecessary points from the MLS data, and
then, the ground points for every frame of the MLS data
are accumulated on a global coordinate system by using 6D

R1

R3 R4

R21 R22

R23 R24

R1 R2 R3 R4

R

R21 R22 R23 R24

R

Fig. 3. Quadtree partition structure which is used for ground extraction. Based
on the quadtree structure, the point cloud is divided into multiple cells until
all the cells are identified as ground cells or non-ground cells.

vehicle pose data synchronized with MLS data. The accumu-
lated ground points with a high intensity are then extracted
as candidate points that correspond to lane markings, and the
exact lane marking points are extracted and clustered by using
more complex algorithms. Finally, the desired geometry data
is obtained by skeletonizing the dense point data.

1) Ground extraction: Since the lane marking points on
the ground surface are the only points of interest in this paper,
removing off-ground points from each MLS is helpful for later
processes in terms of the processing time and performance.
Ground extraction is carried out according to an adaptive
quadtree partition structure, as shown in Fig. 3. Initially, the
MLS data points are divided into multiple cells with a size of
winit, and then, each cell is tested to identify whether the cell
is a ground cell or not. If it is not certain whether a cell is
a ground cell or not, the cell is divided into four child cells,
and the test is applied to all child cells. This process is then
continued until all the cells have been identified. The test to
identify this type of cell is conducted as follows.

First we assume that there is at least one cell among the
initial cells that has already been identified as a ground cell.
This assumption is valid since it is certain that the cells near
the probe vehicle are ground cells. Then, the test is performed
starting from the unidentified cells neighboring the identified
cells. Let an unidentified cell be RUI . Then the roughness of
the cell is calculated to determine whether the cell is a ground
cell or not by

Δzcell = zmax(RUI)− zmin(RUI), (1)

where zmax(·) and zmin(·) refer to the z coordinate value of the
highest points and the lowest point in the cell, respectively. If
the roughness value of the cell is larger than a given threshold,
this means that the cell has to include the off-ground points. In
this case, the cell is unidentified, and thus is divided into four
child cells again. On the other hand, if the roughness value of
the cell is smaller than the given threshold, it is then considered
to be a candidate ground cell. For a candidate ground cell,
the identification whether the cell is actually a ground cell is
performed according to the following test:

|zmean(RUI)− zmean(RI,Nbh)| < λGND (2)

where RI,Nbh denotes the ground cell that has already been
identified among the neighborhood of the test cell RUI, and
zmean(·) refers to the mean value of heights of the points. If
the test result is true, the height difference between the test cell
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Fig. 4. Lane marking point extraction and clustering. The extraction regions
are formed on the vehicle pose data. The points inside the extraction region
are extracted as the lane marking points.

and the neighbor ground cell is small, and therefore, the cell is
identified as a ground cell. If the test result is false, then the test
cell is identified as an off-ground cell. As a consequence, a cell
is categorized into three states after this process: a ground cell,
an off-ground cell or an unidentified cell. For the unidentified
cells, the above process is repeated until all cells have been
identified. Fig. 2b shows an example of the ground extraction.

2) Accumulation of MLS data: Every frame of the MLS
data from which off-ground points have been removed is accu-
mulated on a global coordinate system by using synchronized
vehicle pose data. Basically, the MLS data is represented
on a vehicle body coordinate system, and therefore, a rigid
body transformation is applied to accumulate these in a global
coordinate system based on the Euler angles (yaw, pitch and
roll) of the vehicle body, and the position of the vehicle in
a global coordinate system. Finally, dense point cloud data
representing the ground region is obtained, as shown in Fig.
2(c).

3) Extraction and Clustering of Lane Marking Points: Now,
the points corresponding to the lane markings are extracted
and are clustered among the points that belong to the same
road line. First, rough lane marking points are extracted by
using simple intensity-based thresholding, i.e., the points with
a higher intensity than the threshold are extracted. We assume
that an appropriate static intensity threshold is given for a
road, since the intensity value of the Lidar is robust to external
factors such as illumination. As we can see in Fig. 2(d), the
majority of non-lane marking points are effectively filtered out
just through the simple intensity thresholding method. How-
ever, there are still exist outliers, and in addition, the points
are not clustered by the road line. Therefore, an additional
algorithm is applied to remove the remaining outliers and to
cluster the points by the road line, and since it is difficult
and inefficient to process all points at once, we first vertically
divide the point cloud into a set of data blocks by using the
vehicle pose data in the XY plane. A block is then defined by
two lines, named a split line, where the kth split line, lk, is a
line that is orthogonal to the yaw of the kth vehicle pose and
the passing vehicle position PXY,k (see the coarse dashed lines
in Fig. 4). With the split lines, all points are divided into Np−1
blocks, where Np is the number for the vehicle pose data
(number of split lines). These data blocks are then processed

separately to extract the lane marking points as follows.
The algorithm starts by finding an intersection for two split

lines, lk and lk+1, and the radius RBL with respect to the
intersection point. Note that we assume that the probe vehicle
drives along the centerline of a lane as much as possible, and
the vehicle trajectory between time k and k+1 can be modeled
by an arc since the time gap is small enough (10 ms in this
paper). After that, the lane marking point extraction regions in
which the lane marking points are likely to exist are set using
some prior information of the road, e.g, the number of lanes,
NL; width of a lane, WL; and the lane number in which the
probe vehicle drove, ndrv (ndrv = 1 for the leftmost lane).
This information can be obtained using conventional maps,
such as Open Street Map (OSM) [19], or by using camera-
based algorithms [45]–[47]. There is an exceptional case where
the yaw angles of two consecutive vehicle pose data are exactly
the same; thus, the intersection point of two split lines does
not exist. In this case, the radius RBL is set to a value that is
large enough (e.g., 3000 m), and the origin O is set to a point
so that it satisfies ‖PXY,k −O‖ = ‖PXY,k+1 −O‖ = RBL.
This trick is valid since the radius is large enough compared
to the length of the arc between points PXY,k and PXY,k+1

(about 2.7 m where the speed of the vehicle is 100 km/h and
the pose data is acquired at a 10 Hz data rate) As shown in
Fig. 4, the extraction region is bounded by two inner and outer
arcs, and the radiuses of the arcs are determined by RBL, NL

and WL as follows:

RER,i = {RER,i,in, RER,i,out}

= RBL + (2i− 2ndrv − 1)
WL

2
±

WER

2
,

(3)

where i denotes the index of the road lines from the left
(e.g., i = 1 for the leftmost road line), and the width of
the extraction region, WER, is determined by considering
the uncertainty degree with respect to the error between the
expected location of the lane marking points and the true
location of these. Although the larger value for WER may
decrease the false negative rate, more non-lane marking points
may be extracted. On the other hand, a smaller WER value
may exclude non-lane marking points as well, which would
decrease the true positive rate. Therefore, it is important to
carefully determine WER value to ensure reliable road marking
point extraction. Finally, the points inside of the extraction
region are extracted as the lane marking points, and the points
belonging to the same region are grouped together. After
finishing the extraction procedure, the points belonging to the
same region are naturally grouped, and thus the lane marking
points are clustered into several clusters that correspond to
each of the road lines.

4) Skeletonization: In the previous steps, the lane marking
points were obtained as shown in Fig. 2(e). However, since the
lane marking points describe thick lane markings at this stage,
it is difficult to represent lane markings as lines by using this
set of lane marking points. Skeletonization is applied to the
lane marking points to represent the lane markings as lines,
as shown in Fig. 2(f). Skeletonization is a technique that is
used to simplify and abstract a volumetric object to a line
shape [48]. In this paper, the skeletonization is applied to lane
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Fig. 5. Example of outlier points. The points corresponding to the crosswalk
are extracted as the lane marking points since they are well-aligned with the
lane markings, so exist in the extraction region.

marking points for extracting the points that correspond to the
centerlines of the lane markings.

5) Sorting: For the final process, the lane marking points
within each cluster are sorted and sequentially indexed from
the closest point to the farthest point with respect to the starting
point of the road. However, applying the sorting algorithm to
all of the points is time-consuming. Fortunately, the points
were divided into multiple blocks in the lane marking point
extraction process. Since the blocks are sequentially arranged
from the starting point of the road, we can sort all of the
points by sorting the points in each block separately and
concatenating the blocks of sorted points. In this paper, the
bubble sorting algorithm is used in a block. As a result of
the data sorting, the geometry data of the road with respect
to the road lines is represented as sets of sequential points as
follows:

G = {Gi|i = 1, ..., NL + 1}

Gi = {Gn = (X,Y, Z)n|n = 1, ..., Ni},
(4)

where Gi is a set of sequential lane marking points correspond-
ing to the ith road line, NL is the number of lanes, Gn is the
nth lane marking point, and Ni is the total number of lane
marking points in Gi.

C. Outlier Problem
The MLS-based lane marking extraction algorithm is sus-

ceptible to outliers that can be extracted with true lane marking
points. As shown in Fig. 5, the road markings that exist outside
of the extraction region such as arrows are effectively excluded
by the extraction algorithm. However, the road markings
that exist inside the extraction region (road markings that
are well aligned with the lane markings) are extracted with
the lane markings. These outliers may prevent the extracted
road geometry data points from accurately expressing the true
geometry of the road. This problem is supplemented by the
road modeling algorithm that will be proposed in a later
section. The proposed road modeling algorithm was designed
to accurately model the true geometry of the road even though
there exist outliers in the data.

V. ROAD MODELING

The road geometry data G that is represented by a set
of points is not suitable for use as a road map since it

consumes a large amount of storage space and the road
geometry information is difficult to extract from the data.
In this section, we propose a road modeling algorithm that
increases the storage efficiency and usability of a road map
by representing each set of points, Gi, corresponding to a road
line, as a mathematical curve defined as

L(s) =

M∑
m=1

Lm(s), (5)

where, the subscript i that refers to the index of the road line
was omitted for convenience, and

Lm(s)=

⎡
⎣Xm(s)
Ym(s)
Zm(s)

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3∑
p=0

CXp,m ·(s− sm)p

3∑
p=0

CY p,m ·(s− sm)p

3∑
p=0

CZp,m ·(s− sm)p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, for s ∈ [sm, sm+1).

(6)

The curve L(s) is a cubic spline curve that is composed of a
finite number of sequentially connected piecewise polynomial
curves. Each piecewise polynomial curve is parameterized
according to s ∈ [si, si+1] and consists of three cubic polyno-
mials that represent the X , Y and Z coordinates, respectively.
The advantage of representing the road geometry data points
as a spline curve is obvious since the number points can
be expressed as only one parameter value and twelve coef-
ficients of a piecewise polynomial, i.e., sm, CX0,m ∼ CX3,m,
CY 0,m ∼ CY 3,m and CZ0,m ∼ CZ3,m.

The problem lies in expressing the point data in the spline
curve form, that is, how to determine the number of piecewise
polynomial curves and coefficients of the curves. There are
three main considerations for this problem: storage efficiency,
accuracy and outlier handling. First, the number of piecewise
polynomial curves that compose the spline curve should be
minimized to maximize the storage efficiency. However, there
is a tradeoff between the number of piecewise polynomials and
the accuracy, and in general, as we use a greater number of
polynomial curves, the spline curves can express the point data
with higher accuracy. Therefore, the problem is to minimize
the number of piecewise polynomial curves while satisfying
predefined accuracy constraint. Meanwhile, outliers included
in the point data negatively impact the accuracy of the curve
approximation. Therefore, the goal of the road modeling
system is to find the optimal M , the number of piecewise
polynomial curves, {sm|m = 1, ...,M}, the set of parameters
that indicate the point where the piecewise polynomial curves
are divided, and the coefficients of the curves that take the
accuracy constraint and outlier points into account.

However, it is very difficult to solve this problem from a
global optimization point of view since we need to consider
the number of piecewise polynomials, the parameter points
at which the curve is divided, and the coefficients of the
polynomials altogether. In addition, the accuracy constraint
and the outliers should also be considered. Therefore, we
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consider the original problem as a a combination of smaller
problems that can be solved relatively easily, and we thus
propose the sequential approximation algorithm to efficiently
find the near-optimal solution. In the rest of this section, we
describe the details of the sequential approximation algorithm.

A. Overview of the sequential approximation algorithm
As mentioned above, the basic idea to solve the global

optimization problem is to convert the problem into a combi-
nation of multiple simpler problems. The problem conversion
process is based on the intuition that minimizing the number
of piecewise polynomials that model the overall road geometry
data is equivalent to maximizing the number of data points that
each piecewise polynomial can express. We thus propose the
sequential approximation algorithm, which can be summarized
as below:

i) A set of road geometry point, G = {Gn =
(X,Y, Z)n|n = 1, ..., N}, is given. Note that index i

of the point set Gi is omitted for convenience.
ii) An initial polynomial curve is approximated by using

the first few points. Here, the starting point of the curve
is fixed for the first data point.

iii) Starting from the second point, a new point is sequen-
tially added at every step, and the coefficients of the
polynomial curve are corrected by using a Kalman filter
(KF)-based algorithm.

iv) Whenever the polynomial curve is corrected, the accu-
racy of the curve is verified.

v) If the accuracy is higher than a threshold, step iii) is
repeated. If not, adding new data points stops, and the
coefficients of the polynomial curve that do not violate
the accuracy criterion are saved.

vi) The remaining data points are used to repeat, ii) - v)
until the last data point is has been reached.

As can be seen from the above description of the algo-
rithm, the overall algorithm is composed of multiple sequen-
tial approximation processes. In an approximation process, a
piecewise polynomial curve is generated to expresses as many
points as possible within the accuracy bound. This approach is
used to sub-optimally determine the set of break parameters,
{sm|i = m, ...,M}, and the coefficients of the curves. In the
rest of this section, a detailed explanation of the sequential
approximation algorithm is presented. First, we describe the
detailed curve approximation process, and then present the
detailed curve transition criterion and algorithm. The overall
procedure for the algorithm is described in Algorithm 1.

B. Approximation Process
We use a Kalman filter, a recursive Bayesian estimation

approach to approximate the given points to a cubic polyno-
mial curve. The data points are regarded as observations for
the estimation system, and the coefficients of the polynomial
curve are regarded as a system state that we want to estimate.
The reason to use a stochastic method instead of deterministic
methods, such as spline interpolations, is that the data points
contain stochastic errors even though the data has been refined

Algorithm 1: Sequential Approximation Algorithm
input : Gi = {Gi,n = {X,Y, Z}i,n|n = 1, ..., Ni}
output: Li = {Li,m|m = 1, ...,Mi}

m ← 1;
k ← 1;
[C0,m, xm,k|k, Pm,k|k] ← Initialization(Gi, k);
[xm,k+1|k, Pm,k+1|k] ← Prediction(xm,k|k,
Pm,k|k);
sk ← 0

for k = 2 to Ni do
sk ← sk−1+DistanceBetweenPoints(Gi,k−1,
Gi,k);
if OutlierCheck(xm,k+1|k, Pm,k+1|k , Gi,k) false
then

[xm,k|k, Pm,k|k] ← Update(xm,k+1|k,
Pm,k+1|k, uk, Gi,k);

else
xm,k|k = xm,k|k−1;
Pm,k|k = Pm,k|k−1;

end

if (CurveTransitionTrigger(Gi, C0,m,
xm,k|k)) or (k = Ni) then

k ← k −Nbuff ;
Li,m ← {C0,m, xm,k|k};
m ← m+ 1;
[C0,m, xm,k|k , Pm,k|k] ←
Initialization(Gi, k);

end

[xm,k+1|k, Pm,k+1|k] ← Prediction(xm,k|k,
Pm,k|k);

end

Li ← ArcLengthParameterization(Li);
/*C0,m = {CX0,m, CY 0,m, CZ0,m} */

in the data acquisition and processing systems. In addition,
outliers included in the data should also be handled, and with
proper parameter settings, a Bayesian filter can be designed to
be robust against such outliers.

1) System Model: The system state vector xk and the
measurement vector yk are defined by

xk=(CX1,k∼CX3,k, CY 1,k∼CY 3,k, CZ1,k∼CZ3,k)
T,

yk=(Xy,k, Yy,k, Zy,k)
T.

(7)

Note that the constant terms of the polynomials are excluded
from the system state vector to ensure the geometrical con-
tinuity between neighbouring piecewise curves. However, we
do not regulate both C1− and C2−continuity since there can
be points where the tangent or the curvature are discontinuous
in real roads.

Based on the state and the measurement vector definitions,
we establish linear prediction and measurement models that
are suitable for Kalman filtering. The prediction model is



0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2535210, IEEE
Transactions on Vehicular Technology

9

defined as
xk = xk−1 + wk−1, wk−1 ∼ N(0, Qk−1)

⇒

⎡
⎣ CX,k

CY,k

CZ,k

⎤
⎦ =

⎡
⎣ CX,k−1

CY,k−1

CZ,k−1

⎤
⎦+ wk−1,

(8)

and the measurement model is defined as
yk=Hk · xk + uk + vk, vk ∼ N(0, Rk)

yk=

⎡
⎣Xy,k

Yy,k

Zy,k

⎤
⎦=

⎡
⎣CX0+CX1,k ·sk+CX2,k ·s

2
k+CX3,k ·s

3
k

CY 0+CY 1,k ·sk+CY 2,k ·s
2
k+CY 3,k ·s

3
k

CZ0+CY 1,k ·sk+CY 2,k ·s
2
k+CY 3,k ·s

3
k

⎤
⎦+vk

=

⎡
⎣sk s2k s3k 0 0 0 0 0 0
0 0 0 sk s2k s3k 0 0 0
0 0 0 0 0 0 sk s2k s3k

⎤
⎦·xk+

⎡
⎣CX0

CY 0

CZ0

⎤
⎦+vk,

(9)
where k denotes the iteration step of the Kalman filter, sk is a
system input denoting the parameter value of the polynomial
curve, and wk and vk are the prediction and measurement
noises with covariance Qk and Rk, respectively. Under ideal
conditions where the prediction noise is ignored, the system
state does not change during the prediction step. This is
reasonable since the coefficients of the polynomial curve
are only affected by the data points that are observed. The
coefficients should be adjusted only when a new data point
has been added.

Measurement matrix Hk is a function of the time-varying
system input sk. Ideally, sk is an arc-length parameter of the
spline curve that corresponds to the measurement point yk.
However, since it is impossible to calculate the arc-length
of the curve before finishing the approximation process, we
approximate the curve by using arbitrary, strictly-increasing
parameters first, and then we re-parameterize the curve by
the arc-length after finishing the approximation process. To
simplify the re-parameterization process, we use the chord-
length from the initial point as the parameter value, sk, which
is an approximated value of the arc-length.

2) Observability Proof: The suitability of the proposed
system model can be proven by checking the observability
of the system. Observability is a necessary condition for the
Kalman filter to work correctly, and we say that a linear
system is observable if there is a finite number of steps n

so that knowledge about the input sequence u0, ..., un−1 and
the output sequence y0, ..., yn−1 is sufficient to determine
the initial state of the system, x0. Therefore, the system is
observable if x0 is uniquely determined by⎡

⎢⎣
y0
...

yn−1

⎤
⎥⎦ = Onx0 + Tn

⎡
⎢⎣

u0

...
un−1

⎤
⎥⎦ , (10)

where On is a matrix that maps the initial state x0 into the
resulting output over [0, n− 1] and Tn is a matrix that maps
the input to the output over [0, n − 1]. For our system, the
above problem can be represented as⎡

⎢⎣
y0
...

yn−1

⎤
⎥⎦ =

⎡
⎢⎣

H0

...
Hn−1

⎤
⎥⎦ x0 +

⎡
⎢⎣

C0

...
C0

⎤
⎥⎦ , (11)

where C0 = [CX0, CY 0, CZ0]
T. For n = 3, the initial state

x(0) is uniquely determined if and only if N(O3) = 0 and,
equivalently, Rank(O3) = 9. The matrix O3 is composed of
three observation matrices: H0, H1 and H2. It can be easily
proved that Rank(On) = 9. By definition, since sk > sk−1

for every k, every row vector for matrix On is independent
relative to the other row vectors. Therefore, we can prove that
the proposed system is observable.

3) Error Covariance: In order to obtain good results from
the Kalman filter, the proper error covariance matrices, Qk

and Rk, need to be set up. First, the prediction error should
be zero (and thus Qk = 0) for this problem since the statistics
of the state values do not vary during the prediction step.

The measurement error covariance matrix, Rk, is deter-
mined according to the statistics of the vehicle pose data and
the MLS data. For example,

Rk =

⎡
⎣ 0.052 0 0

0 0.052 0
0 0 0.052

⎤
⎦ . (12)

4) Processing Outlier Points: The Kalman filter has the
inherent ability to handle outliers by allocating small gains
to measurements that are far from the predicted system state.
However, outliers that are too large or too frequent may force
the Kalman filter to diverge. To address this problem, outliers
are detected and isolated so that they are not used for state
update, by applying a normalized innovation squared (NIS)
test to every measurement point before updating the system
state using the measurement point. The NIS test is defined as
follows:

NISk = (yk −Hkx̂k|k−1)
TS−1

k (yk −Hkx̂k|k−1) > λ, (13)

where
Sk = HkPk|k−1H

T
k +Rk. (14)

The measurement point that is larger than a threshold λ is
considered to be an outlier, and it is discarded. The threshold
value λ should be carefully determined since a value that is
too large for λ negatively impacts the ability to detect for an
outlier, while the Kalman filter may diverge with a too small
value for λ due to frequent removal of normal measurement
points.

C. Curve Transition
Based on the proposed system and measurement model,

covariance matrices, and outlier point process algorithm, the
KF approximates the road geometry point data that are given
one by one to a polynomial curve. At a certain point, the
KF should stop the current approximation and should start to
generate a new polynomial curve since one cubic polynomial
curve cannot express all points. The condition and procedure
for the curve transition are discussed below.

At the end of every step of the KF, two kinds of maximum
distance between the curve and the data points are calculated
in order to decide whether the new curve approximation should
be started, i.e.,

Dmax,XY = max
i

‖LXY (s̄i)−GXY,i‖ , i = 1, ..., k,

Dmax,Z = max
i

‖LZ(s̄i)−GZ,i‖ , i = 1, ...k,
(15)
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where

LXY (s) =

[
CX0 + CX1 · s+ CX2 · s

2 + CX3 · s
3

CY 0 + CY 1 · s+ CY 2 · s
2 + CY 3 · s

3

]
(16)

and

LZ(s) = CZ0 + CZ1 · s+ CZ2 · s
2 + CZ3 · s

3 (17)

are the polynomial curve on the XY- and Z-planes, respec-
tively, while GXY,i and GZ,i refer to the i-th data point on
the XY- and Z-plane, respectively. Therefore, Dmax,XY and
Dmax,Z refer to the maximum distance errors between the
curve and the data points on the XY- and Z-plane, respectively.
The reason to calculate the distance error on the XY- and
Z-plane separately is that the accuracy requirements for the
XY- and Z-plane can be different. In general, autonomous
vehicle systems require accuracy at the centimeter-level in
the XY-plane since the map accuracy in the XY-plane affects
vehicle safety in applications that involve vehicle localization
or vehicle motion planning. On the other hand, a relatively low
accuracy is required for the Z-plane since generally the height
information of the road is generally used in non-safety-related
applications such as for fuel management systems.

Ideally, the curve transition should be conducted at the
moment when at least one of the two distance error exceeds
a pre-defined threshold, i.e.,

Dmax,XY > χXY or Dmax,Z > χZ , (18)

However, the maximum distance error can occasionally exceed
the threshold even though all data points belong to one
polynomial curve due to stochastic errors that are included
in the data. In this case, the errors have to be ignored, and
the KF should be continued. For this reason, a heuristic test
is applied for the curve transition as follows:

i) A counter is initialized to zero before starting the KF.
ii) At the end of the every step of the KF, the maximum

distance errors, Dmax,XY and Dmax,Z , are calculated.
iii) The counter increases if Dmax,XY > χXY or Dmax,Z >

χZ and it is set to zero otherwise.
iv) If the counter exceeds a threshold Nbuff , the curve

transition is triggered.
In summary, the curve transition is triggered when the max-
imum distance errors exceed the threshold Nerr times in a
row. Once the curve transition is triggered at step k, the
curve approximated at step k−Nbuff is saved since the curve
approximated from step k−Nbuff to k is inaccurate. Therefore,
state vectors and covariance matrices for the KF for recent
Nbuff steps should be stored in the buffer, and after the current
polynomial curve is saved, the KF is initialized and a new
curve approximation process begins.

In addition to the normal case, there is another case where
the curve transition is needed. In a road, the number of
lanes can vary, as shown in Fig. 7. In this case, the curve
approximation process has to be stopped at the point where
the road line disappears, and a new curve has to be started from
the point where the road line reappears. In order to handle this
case, at every step of the approximation process, the distance

Fig. 6. Probe vehicle equipped with a 3D Lidar and a GPS+INS positioning
system.

between the current data point and the next point is calculated.
If the distance is larger than a threshold, i.e.,

‖Gi+1 −Gi‖ > η, (19)

which means that the road line disappears at the current
point, the curve transition is triggered. Since the new curve
is discontinuous with the previous curve, the curve parameter
representing the arc-length is set to zero at the start point of
the new curve.

D. Arc length parameterization
The remaining portion of the procedure for road modeling

involves arc-length parameterization. As mentioned in the
previous sections, the curve generated from the sequential ap-
proximation algorithm is parameterized according to the chord
length as an approximation of the arc-length. However, since
accurate arc-length information is useful for many intelligent
vehicle applications, we parameterize the curve in terms of
the arc-length as the final task for the road modeling. Many
studies have investigated the arc-length parameterization task
for a curve, and in this paper, we use the algorithm proposed
in [49] since it can process a large quantity of map data in a
simple and efficient manner. The arc-length parameterization
of a curve can be constructed by adhering to the following two-
step process: After conducting the arc length parametrization,
we obtain the final arc length-parameterized cubic spline curve
for the data points of the road geometry.

VI. EXPERIMENTAL VALIDATION

In this section, we provide the results of the experiment that
was carried out to evaluate the performance of the proposed
road map generation system. First, we introduce the probe
vehicle and sensor configuration used in the experiments. We
then present the results of 3D Lidar-based data acquisition
and data processing. We also evaluate the accuracy, storage
efficiency and usability performance of the road modeling
system. Finally, we provide an autonomous driving test based
on the proposed road map to validate the practicality of the
proposed road map system.

A. Experimental Setup
The raw data required to evaluate the proposed road

map generation system was collected using a probe vehi-
cle equipped with a 3D Lidar (Velodyne HDL-64E) and
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TABLE II
SPECIFICATION OF THE 3D LIDAR.

Horizontal field Vertical Distance Measurement
field of view field of view accuracy rate

360 deg. 26.8 deg. <2 cm >1.3 M points/sec.

TABLE III
SPECIFICATION OF THE VEHICLE POSITIONING SYSTEM.

Measurement Frequency Accuracy (RMS)
Position 100 Hz 2 cm

Yaw 100 Hz 0.1 deg.
Roll/pitch 100 Hz 0.03 deg.

a GPS+INS vehicle positioning system (OXTS RT3002) as
shown in Fig. 6. The Velodyne HDL-64E is a 64-layer Lidar,
and it was configured to rotate 360 degrees to emit 64-
layer laser beams with a minimum of 1.3 million points
measured per second. OXTS RT3002 is a unified GPS+INS
system that provides a highly accurate 6D vehicle poses by
combining the GPS and INS data. The specifications of these
two measurement system are summarized in Tables II and III,
respectively. In this paper, raw data was collected with a 10
Hz rate, and the prove vehicle was driven at a normal driving
speed of 30 km/h to 80 km/h depending on the the road type
and conditions. All of the experiments were carried out on a
PC with a 3.40 GHz i7-4770 CPU. The parameters χXY and
χZ in Eqs. (18) were set to 0.1 m and 0.3 m respectively, and
η in Eqs. (19) was set to 10m.

B. Data Acquisition and Processing

Two different data sets were collected from the Incheon
International Airport Express (IIAE) and Seoul National Uni-
versity (SNU) ring road, respectively. The IIAE is a type I
road that has four lanes, and thus is suitable to evaluate the
road map generation system including the MLS-based data
acquisition system. The IIAE data set covers a road length
of approximately 13 km and contains about 5,900 frames of
synchronized 3D MLS (7.7 billion points) and 6D vehicle pose
data. Fig. 7 shows a qualitative result of the data processing
algorithm when applied to the IIAE data set. From total
7.7 billion laser points, about 65,000 were extracted after
executing the data processing algorithm. It is impossible to
present the quantitative accuracy of the data acquisition and
processing result, since there is no way to measure more
accurate coordinates of the lane markings than the RTK-GPS
+ 3D Lidar configuration that was used in this paper. The
data processing operates in off-line mode. In the experiment,
it took about 38 seconds to process 1 km road of the IIAE
data set, where the algorithm was implemented based on the
point cloud library [50].

The SNU ring road is a type II road and is more appropriate
to evaluate the road modeling system since it contains various
curves and height variations. The SNU data set consists of a
road with a distance of approximately 3.7 km and contains
about 6,900 vehicle pose data in intervals of about 0.5 m.

S

E

Fig. 7. Data processing result for the IIAE data set. Both the solid and dashed
lane markings were extracted clearly, and the variation of the number of lanes
is handled properly.

C. Road Modeling
Both the IIAE and SNU data sets were modeled using spline

curves by using the proposed road modeling algorithm. Figs. 8
and Fig. 9 show the results of road modeling where the XY -
plane and Z-axis accuracy thresholds, Dmax,XY and Dmax,Z,
were set to 0.1 m and 0.3 m, respectively. Since the IIAE
data set contains four lanes, a total of five spline curves were
generated, whereas only one spline curve was generated for
the SNU data set. The dots in the figures denote the point
data, and the lines denote the approximated spline curve. The
circles indicate the break points of the spline curves. The road
modeling process operates in off-line mode. In the experiment,
it took about seven seconds to process 1 km road of the IIAE
data set.

To quantitatively evaluate the performance of the proposed
road modeling system in terms of the accuracy, storage ef-
ficiency and usability, we conducted a comparison with a
B-spline-based state-of-the-art algorithm that was proposed
in [16]. The B-spline-based algorithm had been proven to
outperform various previous algorithms, including algorithms
using polygons, natural cubic splines, or cubic B-splines with
a constant interval.

1) Accuracy: In terms of the accuracy, a major goal of the
road modeling system is to generate a curve model for the
distance errors between the road geometry data points and the
curve not to exceed a preset tolerance, e.g., 0.1 m. Fig. 10
shows the modeling accuracy of the proposed algorithm and
the B-spline-based algorithm when the SNU data set is used
with 0.1m XY-plane accuracy tolerance. The horizontal axis
of the figure refers to each data point and the vertical axis
refers to the distance error between the data points and the
generated curve. Note that two different results are presented
for the proposed algorithm depending on whether or not the
outlier rejection scheme was used. In the case where the
outlier rejection was used, six points were found to violate
the 0.1m tolerance. However, exceeding the tolerance does
not necessarily mean that the accuracy is degraded but rather
that the outliers were detected and rejected by the algorithm.
We found that all points that violated the tolerance coincide
with outliers that had been detected during the road modeling
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Fig. 8. The result of the road modeling for the IIAE data set. (a) Overall map, and (b) and (c) enlarged maps.
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Fig. 9. The result of the road modeling for the SNU data set. (a) 3D road map, (b) road map projected on XY plane, and (c) height of the road.

process, as the example in Fig. 11 shows. The outlier rejection
affects the storage efficiency of the map, and in this example,
the entire road was modeled with 55 piecewise polynomials
in the case where outliers were rejected while a total of 67
piecewise polynomials were used in the case where outliers
were not rejected. As a consequence, we can see that the
proposed road modeling algorithm successfully detects and
rejects outliers that are contained in data points and also
accurately and efficiently represents data points.

Accurate coordinates as well as accurate tangent angle and
curvature information is very important for various intelligent
vehicle applications. Such information is essential for safety-
related systems, including motion planning systems. Adhering
to the tolerance requirements does not necessarily ensure the
accuracy of the tangent angle and curvature, and therefore,
we also evaluated the road modeling algorithm in terms of the
accuracy of the tangent angle and curvature. It is difficult to
evaluate the accuracy of the tangent angle and curvature by
using real road geometry data points since it is impossible to
know the exact tangent angle and curvature values of the real
road. Thus, we generated artificial road geometry data points
for which we know the exact tangent angle and curvature
values by first generating an artificial spline curve, shown
in Fig. 12(a), and then we sampled the curve at every 1 m.
To ensure that the data is close to the real values, Gaussian

random noise with a standard deviation of 0.05m was added to
all points. The artificial road geometry data was approximated
with a set of polynomials that make use of the proposed
road modeling algorithm, and the geometry information that
is extracted from the curve was compared to the true value of
the road geometry. Fig. 12 presents the results, and we can
see that the road model accurately expresses all the true road
geometries.

A quantitative evaluation was also carried out. Table IV
shows the accuracy of the tangent angle and curvature of the
road models that were generated using the proposed algorithm
and B-spline-based algorithm, where the tolerance of the
algorithm was set to 0.1 m. The results show that the proposed
algorithm generated a more accurate road model than the B-
spline-based algorithm. Furthermore, the levels of maximum
error in the tangent angle and curvature were 10−1 and 10−3

respectively. In general, such levels are acceptable for the
errors in intelligent and autonomous vehicle applications.

2) Storage Efficiency and Usability: The storage efficiency
and usability were evaluated together. First, the SNU data set
was modeled using the proposed algorithm and the B-spline-
based algorithm to compare the storage efficiency and usability
of the two models. In this paper, the storage efficiency is
measured by the number of floating-point numbers that are
used to express the road model. In the case with the proposed
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Fig. 10. Errors between road geometry data points and road models generated
by (a) proposed algorithm without outlier rejection, (b) proposed algorithm
with outlier rejection, and (c) B-spline-based algorithm. Both methods satisfy
the 0.1 m accuracy constraint. Note that the error violations in subfigure (b)
do not mean the accuracy degradation. Instead, it means that the outliers were
successfully detected and rejected.
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Fig. 11. Example of the outlier rejection which shows that the outliers were
effectively detected and rejected.

TABLE IV
ACCURACY OF TANGENT ANGLE AND CURVATURE OF THE PROPOSED

ROAD MODEL AND THE B-SPLINE-BASED ROAD MODEL.

Mean Std. RMS Max
Tangent angle Proposed 0.898E-02 1.88E-02 1.59E-02 2.67E-01

error [deg.] B-spline 3.54E-02 3.86E-02 5.24E-02 3.13E-01
Curvature Proposed 1.67E-05 0.682E-04 0.496E-04 0.841E-03
error [m-1] B-spline 7.98E-05 1.23E-04 1.47E-04 1.24E-03

set of piecewise polynomial forms, a piecewise polynomial
requires thirteen floating-point numbers (one beginning param-
eter and twelve polynomial coefficients). Therefore, the set of
piecewise polynomial forms requires totally 13×[number of
piecewise polynomials] floating-point numbers. The number
of required floating-point numbers for the B-spline form
depends on the number of knots and control points. Since
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Fig. 12. Qualitative result of road modeling in terms of (a) coordinates, (b)
tangent angle, and (c) curvature.

each control point contains three floating point numbers (X,Y
and Z coordinates), the B-spline requires a total of [number of
knots]+3×[number of control points] floating-point numbers.

The usability of such a system for intelligent and au-
tonomous vehicles is inversely proportional to the computa-
tional time required to calculate the essential information from
the road models. Four essential pieces of information were
selected: position, tangent angle and curvature at an arbitrary
point on a curve, and closest point on a curve from an external
point. The position, tangent angle and curvature information
can be analytically calculated using both the proposed and the
B-spline curves. However, the B-spline curve requires complex
recursive calculations to obtain this information [42], while the
proposed method only requires simple calculations since the
first and second derivative of the curve are easily calculated
from the polynomials. The closet point on a curve should be
calculated using a numerical method for both curves. In this
paper, we used Newton’s method to evaluate both curves on
equal terms (with 10−6 tolerance), and the experiments were
carried out on a PC with a 3.40 GHz i7-4770 CPU.

Table V shows the results of the experiment. Note that
the B-spline was evaluated using two different modes. In the
normal mode, only the knots and control points of the B-spline
curve itself were stored in the memory. On the other hand, in
the second mode, the knots and control points for the first and
second derivatives of the B-spline curve were precomputed
and additionally stored in the memory. The precomputation of
the derivatives increases the storage space that is required,
however, it decreases the computational time. The results
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TABLE V
STORAGE EFFICIENCY AND USABILITY OF THE PROPOSED ROAD MODEL AND THE B-SPLINE-BASED ROAD MODEL.

# of segments # of floating-point numbers Computational time (μs)
Position Tangent angle Curvature Closest point

Proposed 55 715 0.68 0.47 0.59 16
B-spline 178 728 32 82 146 630

B-spline (precomputed derivatives) 178 1805 32 29 52 280
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Fig. 13. (a) The original road map. (b) The augmented road map that represent
the dashed road lines.

Fig. 14. Transformation of the local map data to image plane. This example
show a case where the map data and the image is matched well.

show that the proposed algorithm outperforms the B-spline-
based algorithm in both modes in terms of both the storage
efficiency and usability. In particular, the proposed road model
dramatically decreases the computational time needed to cal-
culate the various pieces of information for intelligent and
autonomous vehicles. In terms of storage efficiency, note that
the B-spline-based algorithm requires a total of 178 curve
segments, whereas the proposed algorithm requires only 55
curve segments. This means that, in the case in which the
curve is first approximated as a B-spline curve and converted
to the piecewise-polynomial form, a large amount of storage
is required than when using the proposed algorithm.

D. Practicality of the Proposed Road Map: Map-Aided Vehi-
cle Localization

Vehicle localization is one of the primary applications of the
precise lane-level road map. In order to show the feasibility
and practicality of the proposed road map, we conducted
a vehicle localization experiment using the map. First, in
order to utilize the road map more effectively, we somewhat
augmented the map so that it can represent the dashed road
lines as shown in Fig. 13. This was accomplished by finding
the curve parameters that correspond to the start and end points
of the dashed lane markings using the road geometry point
data presented in Section IV, and the corresponding parameter
values were stored with the coefficients of the polynomial
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Fig. 15. The localization errors of the lane-level map-based localization
system and the conventional GPS/DR-based localization system.

curves. Using this method, the road map can represent the
dashed road lines efficiently.

We designed a localization system using the augmented road
map and some affordable sensors, such as a low-cost GPS, in-
vehicle network sensors (yaw rate and wheel speed sensors),
and a monocular camera. Since the goal of this section is to
show the practicality of the proposed road map, we focus on
showing how the map is used for accurate vehicle localization
rather than explaining the details of the localization algorithm.
A detailed localization algorithm will be presented in our
future paper.

The core of the localization system is feature matching
between the given road map and the lane marking detection
result from the monocular camera image. Whenever an image
is updated from the camera, the road map data around the
vehicle is transformed to the image plane with respect to some
candidates for true vehicle position. Then, a position candidate
for which the transformed map data and lane markings are
well matched is selected as the estimated value of the vehicle
position (see Fig. 14).

The performance of the vehicle localization system based on
the proposed road map was evaluated through an experiment
conducted on about a 5 km section of the IIAE. Fig. 15
shows the localization errors of the localization system using
the proposed road map and the conventional GPS/DR-based
localization system [51]. The result shows that the proposed
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road map-based localization system provides sufficient lon-
gitudinal localization accuracy for vehicle route guidance,
and sufficient lateral localization accuracy for lateral vehicle
control of autonomous vehicles.

VII. CONCLUSION

In this paper, we have presented a road map generation
system that simultaneously considers the accuracy, storage
efficiency and usability to generate high-precision lane-level
road maps for use in intelligent vehicle systems. The over-
all system is composed of three subsystems, including data
acquisition, data processing and road modeling systems. The
MLS data-based data acquisition and processing system ef-
ficiently acquires accurate road geometry data by integrating
6D vehicle pose and 3D MLS data. The main contribution
of this paper is to present a road modeling algorithm that
models road geometry data as a form consisting of sets of
piecewise polynomial curves that are more appropriate for
use in intelligent vehicle systems than those of previous road
models, such as clothoid or B-splines in terms of usability.
The proposed road modeling algorithm maximizes the storage
efficiency of the map by minimizing the number of piecewise
polynomials needed to express the map. The experiments were
conducted to demonstrate that the map that is generated by
the proposed algorithm is more efficient than those obtained
using previous algorithms in terms of the storage efficiency
and usability.
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