
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Smart Configuration of Smart Environments
Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friedemann Mattern

Abstract—One of the central research challenges in the Internet
of Things and Ubiquitous Computing domains is how users can
be enabled to “program” their personal and industrial smart en-
vironments by combining services that are provided by devices
around them. We present a service composition system that en-
ables the goal-driven configuration of smart environments for end
users by combining semantic metadata and reasoning with a visual
modeling tool. In contrast to process-driven approaches where ser-
vice mashups are statically defined, we make use of embedded se-
mantic API descriptions to dynamically create mashups that fulfill
the user’s goal. The main advantage of our system is its high de-
gree of flexibility, as service mashups can adapt to dynamic envi-
ronments and are fault-tolerant with respect to individual services
becoming unavailable. To support users in expressing their goals,
we integrated a visual programming tool with our system that al-
lows to model the desired state of a smart environment graphically,
thereby hiding the technicalities of the underlying semantics. Pos-
sible applications of the presented system include the management
of smart homes to increase individual well-being, and reconfigura-
tions of smart environments, for instance in the industrial automa-
tion or healthcare domains.

Note to Practitioners—Machine tooling times are an important
factor especially when producing small batch sizes. Our approach
holds the potential to have manufacturing lines reconfigure them-
selves at runtime, based on descriptions of the functionality of in-
dividual devices. It can even consider properties that influence the
process indirectly (“nonfunctional”), such as the time or monetary
cost of a process.We additionally implemented a system thatmakes
these rather complex descriptions understandable for nonspecial-
ists. In this paper, we describe use cases from the home automation
and future manufacturing domains.
Index Terms—Internet of Things, semantic technologies, service

composition, smart factory, smart home, web of things.

I. MOTIVATION

A MAIN GOAL of the Internet of Things (IoT) is to em-
power users by giving them the ability to “program” ev-

eryday things and create new public and personal services based

Manuscript received November 27, 2015; revised January 24, 2016; accepted
February 19, 2016. This paper was recommended for publication by Associate
Editor G. Fortino and Editor M. Zhou upon evaluation of the reviewers’ com-
ments. This work was supported by the Swiss National Science Foundation
under Grant 341627. This is an extended and updated version of the Fourth In-
ternational Conference on the Internet of Things (IoT), Cambridge, MA, USA,
October 6–8, 2014.
S. Mayer was with the Department of Computer Science, ETH Zurich, Zurich

8006, Switzerland. He is now with Siemens Corporate Technology, Berkeley,
CA 94704 USA (e-mail: simonmayer@siemens.com).
M. Kovatsch and F. Mattern are with the Department of Computer Sci-

ence, ETH Zurich, Zurich 8006, Switzerland (e-mail: kovatsch@inf.ethz.ch;
mattern@inf.ethz.ch).
R. Verborgh is with the Multimedia Laboratory, Ghent University–iMinds,

Ghent 9050, Belgium (e-mail: ruben.verborgh@ugent.be).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASE.2016.2533321

on ubiquitous connected devices. It is paramount that users can
easily learn how to use these services (e.g., fetch data from sen-
sors and trigger actuators) and how to combine the capabilities
of different devices and services to create advanced composite
functions that provide added value. The adoption of Web pat-
terns for the provisioning of services by smart things in the Web
of Things (WoT) domain has made it simple for users to use
them (this literally is as simple as browsing the Web), and also
machines can automatically deduce how a service can be in-
voked because the low-level protocol semantics are specified by
the standard Web architecture style.
The focus of this paper is on enabling users to combine

services that are provided by smart devices in their environ-
ment, which remains a heavily researched problem and one of
the central challenges for Ubiquitous Computing [2], [3]. For
instance, in a smart home, many heterogeneous devices can
modify the environment (e.g., smart thermostats) and provide
contextual information about the home (e.g., motion sensors).
These could also interact to enable more complex applications
that involve multiple cooperating services: motion sensors and
smart thermostats could together infer and apply an optimal
heating schedule for the home [4]. The same is true for smart
factories, where the easy (re)configuration of manufacturing
environments is gaining importance [5]–in that domain, the
focus is on supporting operators of industrial plants in man-
aging the increasing dynamicity of manufacturing processes.
We explore a novel method to facilitate the composition of

heterogeneous services for end users. We propose a goal-driven
approach, meaning that we ask users to state which properties
their smart environment should have (e.g., regarding their per-
sonal comfort, such as setting the ambient temperature). Given
this semantic statement of a user’s goal, our system determines
whether the goal can be reached given the set of available ser-
vices and infers which user actions [i.e., API requests] are nec-
essary to reach it. The user can then execute these requests and
thereby modify his environment to reach the desired goal. Be-
cause service mashups are created at runtime, this approach can
handle highly dynamic situations.
One concrete use case that we use for illustration throughout

the rest of this paper is the Smart Environments Configurator,
an application that automatically modifies smart environments
to match end-user preferences. Using a handheld or wearable
device such as a tablet computer or smartwatch, users specify
the song or radio station to be played in their environment, set
ambient alarms, or adjust the lighting and temperature to match
their preferred levels. This device then negotiates with the envi-
ronment to adjust the specified parameters to the user’s comfort
settings and can also provide feedback–one application that we
developed on top of this configurator is a service that is aware
of the user’s current location and music preferences and streams
his favorite songs directly to media devices in his vicinity. Our

1545-5955 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

goal is to enable such applications to successfully operate in
arbitrary environments, that is, not only in the user’s private
home, but also in an office environment, in hotel rooms, cars,
and public places. They could also be helpful in medical en-
vironments, for instance to increase the oxygen saturation to
aid asthmatics, or to automatically configure monitor systems
to support doctors during clinical diagnostics.
A similar idea can be applied in an industrial context, where

machines or assembly lines could automatically adjust to sup-
port their current operator, and semantics could assist the rapid
reconfiguration of manufacturing systems [5]. To this end, we
have implemented a proof of concept to derive execution plans
for manufacturing environments: this system is able to move
workable items between different manufacturing stations by
integrating a semi-professional stationary robot (a Universal
Robotics UR5) with a Fischertechnik toy robot. The integration
between these very heterogeneous devices–the UR5 is driven
by the open-source Robot Operating System (ROS), while the
Fischertechnik robot connects to a Siemens PLC–takes place
on a semantic level. This provides the foundation for rapidly
exchangeable manufacturing devices in industrial environ-
ments, which is relevant to reduce tooling times and coordinate
maintenance operations.

II. SERVICE COMPOSITION FOR SMART DEVICES

Many different approaches to (Web) service composition
have been proposed over the last decades since “connecting to
customers, suppliers, or partners electronically” is considered
the top global management issue in the IT domain [6], necessi-
tating tools that allow to compose services globally and across
company boundaries. It quickly became obvious that themanual
composition of services, where designers use a language such
as the Business Process Execution Language (BPEL) directly
to define a service mashup, is too time-consuming, inflexible,
and error-prone, especially when considering the size of the
Web and its dynamicity [7]. This led to the development of
semi-automatic composition systems that provide support tools
to facilitate the mashup design process [8].

A. Semi-Automatic Service Composition Systems

Semi-automatic service composition systems proposed in the
literature often adopt a process-driven paradigm, meaning that
users create a composite service by connecting multiple indi-
vidual, elementary services. Usually, these systems support end
users (i.e., process designers) through a formal language or a
visual model of the composite service [9], [10], and create exe-
cutable service specifications from the user input [7].1
Many mashup editors from academia and almost all promi-

nent tools used for service composition in business environ-
ments feature visual composition interfaces to make them
usable by mashup designers without programming skills [7].
Visual programming abstractions have also been applied in the
context of facilitating the configuration of smart environments
for end users in home automation scenarios: for instance, end
users can stack blocks that represent individual services [10]

1This is true for well-known tools in industry (e.g., IBM Business Process
Manager and Oracle BPEL Process Manager), as well as open source solutions
such as Apache ODE and research prototypes (e.g., SOA4ALL [11]).

or connect pictures of smart objects to describe the desired
composite functionality [12]. Specifically for IoT scenarios,
the ClickScript [13] visual programming language has been
extended to handle smart things in the WoT [1].
To support users during the service composition process,

some of the composition tools that are proposed in the literature
can automatically suggest appropriate individual services.
While many of these systems provide very limited–often only
syntactic–support during service selection, some stand out by
providing semantics-based assistance to users when designing
composite services (e.g., WebDG [14] and SOA4All [11]).
These use ontologies to categorize services and help mashup
designers quickly select appropriate services. However, ac-
cording to [7], even with basic semantic selection support,
the main shortcoming of semi-automatic service composition
systems is that they only provide very limited support for
runtime adaptation of the composite services: the tools help
users to create static links between elementary services, which
cannot adapt when services become unavailable or new services
appear.

B. Approaches to Fully Automatic Service Composition

To enable more dynamic service composition, fully auto-
matic composition engines have been proposed [7]. These
typically take a set of descriptions of elementary services and
a design goal as input and attempt to synthesize a composite
service using matching techniques that are based on (often
graph-based) planning and scheduling techniques and on dif-
ferent ways of semantically describing the “mini-world” of
the individual services. Together with a user-defined planning
query, these systems then generate a composition plan for the
individual services. Taking a goal-driven approach to service
composition, this aims at reducing the complexity of the de-
velopment process as a whole by automating the composition
step. To our knowledge, none of the currently proposed fully
automated service composition solutions are in use in industry,
although major research initiatives are targeting their deploy-
ment in this context [15]. In particular, [16] is an interesting
solution that uses the GOLOG logic programming language
to construct composite services from primitive actions. Our
system is similar in that we also employ first-order logic to
compose services. However, our approach goes beyond the
adaptation of a generic composition template and enables
the composition of arbitrary APIs in smart environments that
adhere to the Representational State Transfer (REST) architec-
tural style.
Aside from the greater level of automation that goal-driven

systems bring, they have the major advantage of enabling the
on-the-fly inference of service mashups, and thus avoid static
linkage of services. Largely due to lacking interoperability of
the different approaches and the isolated application domains
of individual systems, automatic service composition still rep-
resents an open challenge [7]: many of the currently proposed
systems use planning languages such as the Planning Domain
Definition Language (PDDL) that are limited regarding their
expressibility across different domains. Furthermore, many of
the automatic composition systems suffer from the same draw-
back as the semi-automatic approaches in that they cannot adapt



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAYER et al.: SMART CONFIGURATION OF SMART ENVIRONMENTS 3

to highly dynamic environments [7]. However, context dynam-
icity should be considered the default rather than an excep-
tion in smart environments, especially when targeting appli-
cations on mobile devices whose entire environment changes
when they are on the move. This disadvantage is indeed con-
sidered one of the main currently open issues regarding future
research in the service composition domain: future composition
systems should be adaptable to dynamic environments, ideally
supporting self-configuration and automatic optimization rel-
ative to the current environment and quality-of-service (QoS)
constraints, as well as relevant security policies [7], [17].

III. AUTOMATIC SERVICE COMPOSITION

Several of the currently proposed systems for composing
Web services are based on the Web Services Description
Language (WSDL) and its semantic extensions–however, the
severely limited support for REST that WSDL provides [18]
represents a missed opportunity since REST itself already
defines the low-level protocol semantics of a Web interac-
tion. Semantic descriptions for REST services can therefore
focus on specifying the high-level functionality of a service
to create a more lightweight automatic composition system.
To achieve this, however, it is not sufficient to annotate Web
resources with “hints” about the functionality they provide,
as proposed with the hRESTS Microformat [19]–annotations
should rather contain explicit machine-readable functional
service descriptions [20].
In the following, we discuss an approach to fully automatic

service composition that allows clients to automatically create
and apply service compositions in WoT scenarios with the help
of functional semantic annotations, while exploiting the REST
principles for defining the services’ low-level protocol seman-
tics. Our system thus enables the goal-driven configuration of
smart environments for end users which means that, instead of
having to design a service mashup that achieves their goal, they
are merely required to state that goal in a machine-understand-
able way. Given this goal statement, a reasoning component
determines whether the goal can be reached given the set of
available services and infers which user actions (i.e., requests
involving REST resources) are necessary to reach it.

A. System Overview

To compose services that are provided by devices in smart
environments, our system must be able to discover the in-
dividual services and their semantic descriptions. In our
prototype implementation, we make use of a proprietary
Web-based search infrastructure for HTTP and the CoRE
Resource Directory [21] for CoAP, a Web protocol for re-
source-constrained devices [22], [23]. However, our approach
is compatible with any system that enables clients to find
the URIs of service endpoints, including search engines for
the WoT such as Dyser [24] and industry standards such as
Universal Plug and Play (UPnP).
To specify the high-level domain semantics of a service, we

use RESTdesc [20], which we have extended to make it suit-
able for reasoning about service capabilities in smart environ-
ments. Next, our system needs to be able to infer the global
structure of a service mashup from information about individual

Listing 1: A RESTdesc description of a temperature conversion service.

services–for this, we use a semantic reasoner that can infer log-
ical consequences from the semantic service specifications. In
principle, this reasoner could be hosted anywhere on theWeb–in
our prototype, however, we use a local instance to reduce delays
and to avoid privacy and security implications.
Finally, our system requires a component that interacts with

the reasoner and the services in the smart environment on behalf
of the user. This interface (e.g., a Web application on a smart-
phone) is used by people to formulate goals, queries the reasoner
for a service mashup that allows to reach the goal, and executes
the requests proposed by the reasoner.

B. Semantic Metadata for REST Services
We consider all smart devices and services to feature Web

APIs that are modeled according to the REST principles,
so that their protocol semantics are already well-defined, ei-
ther by HTTP or by CoAP. On top of this, we define their
high-level domain semantics (i.e., what function a service
provides) using RESTdesc, a machine-interpretable functional
service description format for REST APIs. RESTdesc descrip-
tions are expressed in Notation3 (N3) [25], an RDF superset
that adds support for quantification. Services expose these
descriptions for automated discovery–thus advertising their
functionality–through Web Linking [26]. HTTP can carry a
link to the RESTdesc document as part of the header
field in responses to HTTP and requests. For
resource-constrained devices, this information can be provided
out-of-band using the CoRE Link Format [27], an extension to
Web Linking that defines an Internet Media Type for Web links.
We illustrate the main concepts of RESTdesc using the ex-

ample of a service that can convert temperatures given in de-
grees Celsius to Fahrenheit values, whose semantic description
is shown in Listing 1. Later, we will show how a semantic
reasoner can automatically create a service mashup that com-
bines the functionality of this converter with a smart thermo-
stat (see Section III-C). At the highest level, a RESTdesc de-
scription consists of three parts: preconditions, postconditions,
and a REST request that realizes the postconditions from the
preconditions. In our example, the preconditions (lines 2 to 4)
in the antecedent stipulate that a certain temperature expressed
in degrees Celsius exists, and that this temperature has a spe-
cific value. The postconditions (lines 8 to 11) in the consequent
warrant that there exists a temperature expressed in degrees
Fahrenheit that is the same as the Celsius temperature. Finally,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Listing 2: A semantic goal for converting a temperature value.

the HTTP request (lines 13 to 15) is a request to a URI
determined by the value of the variable that returns the
Fahrenheit value in the response body. This HTTP request is de-
scribed by the HTTP in RDF vocabulary [28], which provides
a semantic way to describe HTTP exchanges and is compatible
with CoAP. The description as a whole communicates in a ma-
chine-interpretable way how a Celsius temperature can be con-
verted to the equivalent Fahrenheit temperature.
In more detail, the basic unit in N3 is the triple that is

expressed in the format “ .”
N3 also has formulas that group together triples (between
braces ), variables (starting with a question mark ), and
implications (i.e., triples where the predicate is ). When
multiple predicate-object pairs are separated using semicolons,
all of these pairs are associated with the leading subject. For
instance, lines 2 to 4 state that is a “Temperature,” that
its relation to is “hasValue,” and that its relation to the
constant is “hasUnit.” For conciseness, we omit the
required declarations in our listings that allow the
abbreviation of URIs of subjects, predicates, and objects.
Because RESTdesc descriptions are regular N3 implications,

they can be applied as inference rules by N3 reasoners without
requiring any special support. For each rule it holds that, if the
triples in the antecedent can be matched, the triples in the con-
sequent can be concluded. To find out whether a specific goal
can be reached in a given context, users can thus use a semantic
reasoner that has access to service descriptions such as that of
the temperature converter shown above. For instance, a user
could ask which Fahrenheit temperature is equivalent to
(Listing 2). Given this goal, a reasoner can instantiate the de-
scription of the temperature conversion service, which will in-
dicate that the answer is given by an HTTP request to the
URI http://converter.example.com/cel2degf?temp=20.
When a reasoner has access to multiple rules, it can chain

them and thereby find out how the client must coordinate invo-
cations of different services that together achieve the user goal.
For instance, if the user wants to set a temperature of in
an environment that contains a smart thermostat that only takes
inputs in degrees Fahrenheit, the reasoner will generate a plan
to first send an HTTP to the converter service, unpack the
response body, and send the obtained Fahrenheit temperature
value to the thermostat. The combination of RESTdesc descrip-
tions with reasoning thus yields a powerful service composition
mechanism [20].

C. Reasoning in Smart Environments

Unfortunately, it is not straightforward to apply RESTdesc
in the context of configuring smart environments: one main
issue when trying to integrate its semantic descriptions with
our systems and implementing use cases from the field of per-
vasive computing is that RESTdesc–being grounded in first-

Listing 3: A RESTdesc description of a temperature conversion service.

order logic–is not able to distinguish between mutually exclu-
sive states of components of the system (e.g., of a specific de-
vice in the user’s smart environment). Therefore, while REST-
desc works very well for describing services that do not induce
incompatible states such as the temperature converter in the
previous section, already the most basic use cases that involve
stateful objects cause problems. As a simple example, assume
the system has access to the fact that a room has a temperature
of C. If the user then defines a goal where the same room
has a temperature of C, this introduces a logical contradic-
tion because no room can have two different temperatures at any
given moment (note that it is not possible to remove facts from
the knowledge of a first-order logic system).
For this reason, we extended RESTdesc by incorporating

a mechanism that allows to describe states of devices within
smart environments. We also introduced the concept of state
transitions to enable the annotation of services that induce state
changes, the semantics of which are described in a publicly
available states ontology.2 As an example of a service that
makes use of our states definition, consider the description of
a smart thermostat in Listing 3. From the antecedent of this
rule, we can see that an execution of the service requires a
temperature value in degrees Fahrenheit (lines 2 to 3) as well
as the presence of a device of type at a specific
location (lines 5 and 6). The consequent of the rule specifies
that an HTTP request to the thermostat (lines 10 and 11)
will result in a state transition (lines 13 to 15): in the new
state of the , the object of the relation is
replaced by , the new temperature at the location.
To find out how to set the ambient temperature at the location

“Office” to , a user would now formulate the goal shown
in Listing 4. In this goal, the user first defines the con-
stant that includes the desired temperature value as well as the
information that this value is given in degrees Celsius. This en-
tity is then used when defining the desired state of the location
“Office.” As described in Section III-B, this goal can now be
sent to a reasoner, which will indicate that the goal state can
be reached by first sending an HTTP request to the con-
verter service that includes the Celsius value to obtain the cor-
responding Fahrenheit value, and then sending an HTTP re-
quest to the URI of the thermostat at the location “Office.” Note
that because the concrete location is dynamic in the service de-
scription in Listing 3, the URI of a correct smart thermostat is

2See http://purl.org/restdesc/states



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAYER et al.: SMART CONFIGURATION OF SMART ENVIRONMENTS 5

Listing 4: A RESTdesc description of the temperature goal.

given by the variable and found at runtime from
all available thermostats in the system.

IV. FACILITATING THE CREATION OF USER GOALS

To summarize, we have successfully extended RESTdesc
with the concepts of states and state changes. This allows to
describe services that induce state transitions, and specifically
to model states of smart environments. However, especially
because these extensions add a lot of complexity to the goal
creation, we cannot expect users to write valid goal descriptions
by themselves: they would not only need to know about the
correct N3 syntax, but also about the states ontology and all the
predicates to use (e.g., ) to express their goal.
To facilitate the goal formulation step for end users, we in-

tegrated our system with ClickScript [13], a JavaScript-based
visual programming tool. We already used ClickScript in ear-
lier projects, when it was extended with the capability of con-
necting to Web services that run on smart devices using AJAX.
For this work, we have further extended the tool to enable its
usage for designing semantic goals and for using it as an in-
terface to a semantic reasoning service. Specifically, we have
equipped ClickScript with components that represent the dif-
ferent predicates that are useful to describe a smart environ-
ment with entities that encapsulate the state of real-world items
such as rooms (see Fig. 1(a)]. The components available for
modeling attributes of a smart environment, such as an abstrac-
tion for a Room entity or a thermometer that is associated with
the predicate, can be dragged to the editing view of
ClickScript to use them within goal definitions.
For instance, to model different desired attributes of a room

as in Fig. 1(a), the first step is to create a new room entity and to
connect it to the corresponding room identifier (in this case, Of-
fice). Next, the user configures the desired state of this room by
adding components that represent different aspects of this state:
the note icon represents media playback, the thermometer icon
stands for the ambient temperature (i.e., the property
in the goal shown in Listing 4), and the alarm clock icon is used
to model ambient alarms. Finally, the user can infer the correct
data types of the input parameters of the components (for in-
stance, the concrete temperature value) from the colors of the
component inputs. Thus, users merely have to drag the desired
elements into the editing view, connect the matching input and
output types, and enter the parameter values.
When satisfied with the configuration of the smart envi-

ronment, the user can choose among multiple options of how
the created model should be processed by ClickScript by
connecting different components to the output connector of the
room entity be displayed. Users can then decide whether: (a) the
goal should be displayed; (b) the reasoner should be invoked
and the necessary requests displayed in human-readable form;
or (c) the requests should be immediately executed by the
ClickScript tool itself.

Fig. 1. (a) With our extensions, ClickScript users can create semantic goals
graphically. In this example, the user configures the ambient temperature, sets
an alarm, and chooses a song for the room “Office.” (b) The connected “Target”
instructs ClickScript to display the goal that corresponds to the modeled envi-
ronment, where we omit the definitions of the parameters , , and

. (c) ClickScript can also display the necessary requests to achieve the
goal in a human-readable way, using a simple verbalization heuristic.

ClickScript does not only parse syntactically correct goals
from modeled environments, but also constrains the user to spe-
cific ontologies that describe services in smart environments,
thus mitigating the problem of conflicting semantic information
discussed in Section V. Still, to extend the graphical interface
with additional predicates, it is sufficient to specify their names,
input types, and appropriate icons to represent the added prop-
erties, which requires only a few lines of JavaScript code.

V. DISCUSSION

To evaluate our proposed approach to automatic service com-
position in smart environments, we draw on earlier studies that
assess service composition systems with respect to a set of qual-
ities these systems should exhibit (see [7]). By its very nature,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

our system achieves a high degree of automation with respect
to the selection of individual services: given that these services
are annotated appropriately, service selection and composition
is done fully automatically. It is also highly adaptable with re-
spect to the dynamic availability of specific services in a smart
environment, since the ability to bind services dynamically at
runtime lies at the core of our system. Compared to others,
our approach allows to obtain execution plans very rapidly, and
hence clients may even choose to re-query the reasoner in the
middle of executing a service mashup for maximal adaptation.
Our system also features a high level of personalization: user
preferences and context characteristics (e.g., device locations)
that are available to the reasoner as logical facts are automat-
ically considered during the service composition phase. Since
clients execute all requests to individual services themselves,
our system can also be considered to be simple to monitor by
the client. This is closely tied to our system’s reliability: our ap-
proach does not automatically handle exceptional behavior, but
the client is explicitly informed about incidents via REST status
codes, which are returned by the individual services. The con-
crete recovery mechanism must, however, be implemented by
the client itself. However, if the reason for a failure was a tran-
sient fault in the system, for instance related to bad connectivity,
it might be sufficient to execute the requests once more, given
the idempotent service design that is common with REST. Al-
ternatively, if the reason for the fault was a component of the
system that became unavailable, the reasoner should be asked
again for a new service execution plan. Both these resolution
strategies are generic and do not depend on an explicit fault
handling mechanism. In the following, we discuss our semantic
service composition approach with respect to the remaining de-
sirable qualities of such systems set forth by [7]: scalability, ex-
pressibility, correctness, and selectability.
1) Scalability of the Reasoning: One concern with respect

to all service composition systems is how they scale with an
increasing number of individual services. We explored the
scalability of our approach with two experiments: The first
demonstrates that it is very lightweight compared to other rea-
soning-based approaches in principle, while the second focuses
on showing that it is usable to control smart environments in
realistic contexts.
Being grounded in pure first-order logic, our system scales

better than other approaches that employ more heavyweight
technologies [20]. To demonstrate this, we conducted an eval-
uation to see how fast the reasoner we use in our system–the
Euler Yet another proof Engine (EYE) [29]–can process service
descriptions when the number of available services grows. In
this test, that is described in detail in [20], the total composi-
tion length was fixed to 32 simple, stateless, services (which is
a lot for the context we consider), and the number of individual
services that are considered during the reasoning step was in-
creased to up to . Our results (see Table I) show that the
reasoning time remains under a few hundred milliseconds on
an average consumer computer even for very high numbers of
considered service descriptions.3 The time required for down-
loading and parsing the rules does significantly increase, but
this effect can easily be mitigated by caching service descrip-
tions locally at the reasoner.

TABLE I
DELAYS INCURRED BY PARSING AND REASONING OVER MANY SERVICES

Fig. 2. Reasoning time under realistic conditions (reproduced from [32]). (a)
Growing Number of Services. (b) 1,024 Services.

In contrast to our system, service composition approaches
that are based on heavier technologies, such as OWL-S XPlan,
require processing time in the order of seconds for planning
interactions in settings with under 100 services [30]. Demon-
strating that our system scales better than other reasoning-based
approaches is, however, insufficient to prove its capability of
composing IoT services–some even challenge the ability of cur-
rent reasoners to accomplish this feat in principle, due to archi-
tectural and performance issues [31]. For this reason, we per-
formed more extensive testing of our system under realistic IoT
conditions: we simulated an environment with up to 1000 ser-
vices, which corresponds to about 250 devices, a reasonable as-
sumption for typical smart environments according to several
studies (see [32] for a discussion of these estimates). Our tests
show that the proof calculation time in such an environment
that also includes stateful services (which are natural to phys-
ical mashups) is in the order of a few seconds on a laptop com-
puter for execution plan lenghts of up to 16 service interactions
(see Fig. 2). Although the performance of our reasoner is thus
lower in IoT settings with stateful services, we conclude that
our system can be used to control medium-sized smart environ-
ments that contain up to about 250 devices when the goal is
reachable through execution plans with around ten requests and
only few stateful services are required to reach it. More opti-
mization is necessary for larger settings and applications with
real-time constraints–several initial ideas of how this could be
accomplished are discussed in [32].
2) Expressibility of RESTdesc: Being based on rules in the

N3 format, the RESTdesc language is in principle limited in its
expressiveness to implications in monotonic first-order logic.
Although its explicit expressiveness thus does not rival that of

3The code to run this experiment is available at https://github.com/RubenVer-
borgh/RESTdesc-Composition-Benchmark



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAYER et al.: SMART CONFIGURATION OF SMART ENVIRONMENTS 7

planning languages or business process definition languages, we
found that it is suitable for describing services that we encounter
in WoT scenarios. The only capability that we added to the lan-
guage is an explicit state handling mechanism to remove incon-
sistencies that could arise from state changes in smart environ-
ments. With this modification, which we combined with a prag-
matic approach of handling temporal dependencies, we found
the system to be applicable in typical smart environments. We
successfully used it to specify services in a home automation
context, and in an industrial manufacturing scenario, where we
defined capabilities of robotic devices with respect to the trans-
portation of items between manufacturing stations. Others have
demonstrated that the RESTdesc language can also be used in
the context of multimedia, mathematics, and medical imaging
analysis as well as diagnosis assistance [29].
3) Correctness of Service Compositions: In principle, the

reasoning component in our approach guarantees the correct-
ness of any composite service it generates. This, however, as-
sumes that the underlying RESTdesc documents clearly and un-
ambiguously capture the functionality of the described services,
and that the user goal correctly specifies the desired state of
the smart environment using semantic concepts that are com-
patible to the service descriptions. While we believe that both
these challenges can be overcome in limited scenarios with full
agreement on the underlying semantic concepts, they give rise
to a challenge at the heart of the Semantic Web, especially when
third-party services and ontologies are incorporated in the rea-
soning: the issue of conflicting semantic information. This is
perhaps the prime reason for many researchers to remain skep-
tical regarding the fitness of semantic technologies for real-
world applications [33] and to question whether they are ac-
tually able to achieve the promised interoperability between
services.
In the context of service composition in smart environments,

conflicts in the semantic information could lead to situations
where services that should be interoperable cannot be com-
bined by the system and to situations where services that
should not interact are utilized within a service mashup. To
mitigate these issues in our system, we added the option of
visualizing suggested composite applications prior to executing
them, but our system does not provide a universal remedy to
these issues.
4) Selectability of Service Mashups and Usability Consider-

ations: The property of selectability refers to the selection of
the most appropriate service among a number of functionally
similar or equivalent options, based on nonfunctional charac-
teristics such as QoS parameters [7]. Ideally, a service composi-
tion system would allow users to formulate nonfunctional pref-
erences with respect to individual services or the service mashup
as a whole, either directly within their goals or within accompa-
nying input documents to the reasoner that express these desired
characteristics. In fact, the RESTdesc language permits the en-
coding of such properties within descriptions by extending the
preconditions of a service description with clauses that describe
nonfunctional characteristics–similar information could also be
provided using a separate semantic metamodel of devices and
their services.

Listing 5: A RESTdesc description of a temperature conversion service.

As an example, we show how our system can enable users
to formulate basic security requirements (e.g., confidentiality
of data exchanged within a mashup) that are considered by the
reasoner when composing the service mashup. For illustration,
we again use our smart thermostat example, and define basic
rules that specify the relationships between different security-
and privacy-related concepts in a Web service environment: In
Listing 5, the first rule expresses that Secure is a “stronger” re-
quirement than None. The second and third rules express the
relationships between the two security requirements and

, and the HTTP and HTTPS protocols, respectively.4
These additional rules allow users to express that they want
the communication to happen confidentially, by supplying the
fact . In their goal: in this
case, the reasoner will only infer the fact that an entity of type

exists (third rule in Listing 5) which will prevent
any service that contains a security specification of
in its precondition from being instantiated by the reasoner. This
mechanism also works for composite mashups, e.g., ensuring
that all communication that happens as part of a mashup hap-
pens confidentially, and also applies to other nonfunctional as-
pects that can be modeled ontologically.

VI. CONCLUSION

To facilitate the configuration of smart environments for
end users by fully automating the service composition step,
we propose a goal-driven approach where users express their
needs using a graphical configuration environment. In our
system, users define the desired state of their smart environ-
ment in the form of a semantic goal that is used by a reasoner
to deduce the REST requests necessary to reach that goal.
The requests can be executed using HTTP, or using CoAP for
resource-constrained devices such as battery-powered sensors
or embedded automation components. We are able to satisfy
complex demands using only first-order logic, which makes
our system flexible yet fast. To overcome the complexity of the
goal formulation step for end users, we integrated our system
with a graphical editor that enables users to easily create a
model of the desired state of their environment. This editor
then translates the graphical model into a goal in the N3 format,
thereby hiding the complexity of the underlying semantics and
mitigating the fragility of manual goal formulation.
Themain advantage of using semantic technologies to deduce

service mashups is the flexibility of this approach: because the
services are combined at runtime, the system can flexibly react
to individual services becoming unavailable by finding alterna-
tive paths that also serve to reach the user’s goal. Furthermore,
this allows to derive context-adaptive, personalized mashups by

4The same mechanism can be used in constrained environments via CoAPS
which uses DTLS, the datagram version of TLS.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

taking into account more information about the system context
and users’ preferences.
Standards–if honored by all relevant stakeholders–could also

accomplish the use cases that we put forward in this paper. How-
ever, while standardization can improve interoperability among
standard-compliant components, it impedes or complicates the
integration of elements that were out of scope at the time the
standard was designed. Ontologies have been shown to be more
flexible with respect to adding additional concepts to deployed
systems [5]. In the context of smart environments, we thus con-
sider semantic technologies as a very flexible form of standard-
ization: using semantics within service descriptions represents
a lightweight approach to support new services in an evolving
way–even when considering their shortcomings with respect to
conflicting information.
In the future, we plan to experiment more with multi-user en-

vironments and mixed interaction scenarios where the reasoner
can interactively ask users for more instructions or to clarify
inputs that are required for the reasoning. We expect that this
would increase the robustness of the system and that the addi-
tional feedback would help users gain confidence in it.

ACKNOWLEDGMENT

The authors would like to thank J. De Roo for his help with
the EYE reasoner.

REFERENCES

[1] S. Mayer, N. Inhelder, R. Verborgh, R. Van de Walle, and F. Mattern,
“Configuration of smart environments made simple—Combining vi-
sual modeling with semantic metadata and reasoning,” in Proc. IEEE
4th Int. Conf. Internet of Things (IoT), 2014, pp. 61–66.

[2] A. J. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home automation in the wild: Challenges and opportunities,” in
Proc. ACM CHI Conf. Human Factors Comput. Syst. (CHI), 2011, pp.
2115–2124.

[3] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadis, M. Au-
tili, M. A. Gerosa, and A. B. Hamida, “Service-orientedmiddleware for
the future internet: State of the art and research directions,” J. Internet
Services Appl., vol. 2, no. 1, pp. 23–45, 2011.

[4] W. Kleiminger, C. Beckel, and S. Santini, “Opportunistic sensing for
efficient energy usage in private households,” presented at the Proc.
Smart Energy Strategies Conf. (SES), Zurich, Switzerland, 2011.

[5] J. L. M. Lastra and I. M. Delamer, “Semantic web services in factory
automation: Fundamental insights and research roadmap,” IEEE Trans.
Ind. Informatics, vol. 2, no. 1, pp. 1–11, Feb. 2006.

[6] C. Peltz, “Web services orchestration and choreography,” IEEE
Comput., vol. 36, no. 10, pp. 46–52, Oct. 2003.

[7] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X.
Xu, “Web services composition: A decade’s overview,” Inform. Sci.,
vol. 280, pp. 218–238, 2014.

[8] N. Milanovic and M. Malek, “Current solutions for web service com-
position,” IEEE Internet Comput., vol. 8, no. 6, pp. 51–59, Nov.–Dec.
2004.

[9] K. Baïna, B. Benatallah, F. Casati, and F. Toumani, “Model-driven web
service development,” in Proc. 16th Int. Conf. Adv. Inform. Syst. Eng.
(CAiSE), 2004, pp. 290–306.

[10] M. Rietzler, J. Greim, M. Walch, F. Schaub, B. Wiedersheim, and M.
Weber, “HomeBLOX: Introducing process-driven home automation,”
in Proc. ACM Conf. Pervasive Ubiquitous Comput. (UbiComp) Ad-
junct, 2013, pp. 801–808.

[11] F. Lécué, Y. Gorronogoitia, R. Gonzalez, M. Radzimski, and M. Villa,
“SOA4All: An innovative integrated approach to services composi-
tion,” in Proc. IEEE Int. Conf. Web Serv. (ICWS), 2010, pp. 58–67.

[12] G. Vanderhulst, K. Luyten, and K. Coninx, “Pervasive maps: explore
and interact with pervasive environments,” in Proc. IEEE 8th Annu.
Int. Conf. Pervasive Comput. Commun. (PerCom), 2010, pp. 227–234.

[13] L. Naef, “ClickScript: Easy to use visual programming language,”
2011. [Online]. Available: http://clickscript.ch/site/home.php

[14] B. Medjahed and A. Bouguettaya, “A multilevel composability model
for semantic web services,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 7, pp. 954–968, Jul. 2005.

[15] P. Stephan, M. Eich, J. Neidig, M. Rosjat, and R. Hengst, “Applying
digital product memories in industrial production,” in SemProM: Foun-
dations of Semantic Product Memories for the Internet of Things, W.
Wahlster, Ed. New York, NY, USA: Springer, 2013, pp. 283–304.

[16] S. Sohrabi, N. Prokoshyna, and S. A. McIlraith, “Web service compo-
sition via the customization of golog programs with user preferences,”
in Conceptual Modeling: Foundations and Applications, ser. Lecture
Notes in Comput. Sci., A. T. Borgida, V. K. Chaudhri, P. Giorgini, and
E. S. Yu, Eds. New York, NY, USA: Springer, 2009, vol. 5600, pp.
319–334.

[17] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in architecture for
self-adaptive web service compositions,” in Proc. IEEE Int. Conf. Web
Serv. (ICWS), 2009, pp. 35–42.

[18] H. Zhao and P. Doshi, “Towards automated RESTful web service
composition,” in Proc. IEEE Int. Conf. Web Serv. (ICWS), 2009, pp.
189–196.

[19] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An HTML micro-
format for describing restful web services,” in Proc. IEEE/WIC/ACM
Int. Conf. Web Intell. Intell. Agent Technol., 2008, pp. 619–625.

[20] R. Verborgh, V. Haerinck, T. Steiner, D. Van Deursen, S. Van Hoecke,
J. De Roo, R. Van de Walle, and Joaquim Gabarró Vallés, “Functional
composition of sensor web APIs,” in Proc. 5th Int. Workshop Semantic
Sens. Netw. (SSN), 2012, pp. 65–80.

[21] Z. Shelby, “CoRE resource directory,” Internet-Draft, 2014. [Online].
Available: http://tools.ietf.org/html/draft-ietf-core-resource-directory-
02

[22] M. Kovatsch, “CoAP for the web of things: From tiny resource-con-
strained devices to the web browser,” in Proc. ACM Int. Joint
Conf. Pervasive Ubiquitous Comput. (UbiComp) Adjunct, 2013, pp.
1495–1504.

[23] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC 7252, 2014. [Online]. Available: http://tools.
ietf.org/html/rfc7252

[24] B. Ostermaier, K. Römer, F. Mattern, M. Fahrmair, and W. Kellerer,
“A real-time search engine for the web of things,” presented at the Proc.
2nd IEEE Int. Conf. Internet of Things (IoT), Tokyo, Japan, 2010.

[25] T. Berners-Lee and D. Connolly, “Notation3: A readable RDF syntax,”
2011. [Online]. Available: http://www.w3.org/TeamSubmission/n3/

[26] M. Nottingham, “Web linking,” RFC 5988, 2010. [Online]. Available:
http://tools.ietf.org/html/rfc5988,

[27] Z. Shelby, “Constrained RESTful environments (CoRE) link format,”
RFC 6690, 2012. [Online]. Available: http://tools.ietf.org/html/
rfc6690,

[28] World Wide Web Consortium,, “HTTP vocabulary in RDF 1.0,” 2011.
[Online]. Available: http://www.w3.org/TR/HTTP-in-RDF10/

[29] R. Verborgh and J. De Roo, “Drawing conclusions from linked data on
the web,” IEEE Software, vol. 32, no. 5, pp. 23–27, May–Jun. 2015.

[30] M. Klusch and A. Gerber, “Fast composition planning of OWL-S
services and application,” in Proc. 4th IEEE Eur. Conf. Web Serv.
(ECOWS), 2006, pp. 181–190.

[31] S. De, B. Christophe, and K. Moessner, “Semantic enablers for dy-
namic digital-physical object associations in a federated node architec-
ture for the internet of things,” Ad Hoc Netw., vol. 18, pp. 102–120,
2014.

[32] M. Kovatsch, Y. N. Hassan, and S. Mayer, “Practical semantics for
the internet of things,” in Proc. IEEE 5th Int. Conf. Internet of Things
(IoT), 2015, pp. 54–61.

[33] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revis-
ited,” IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101, Jan.–Feb. 2006.

Simon Mayer is with Siemens Corporate Technology’s Web of Systems Re-
search Group in Berkeley, CA, USA. He has a strong background in distributed
systems andWeb of Things research. His focus at Siemens is to apply his knowl-
edge on (Semantic) Web technologies, functional modeling, and humancom-
puter interaction to enable interoperability and selfconfiguration across devices
in factory, building, and smart grid automation scenarios. He also Co-Chairs the
International Web of Things Workshop Series.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAYER et al.: SMART CONFIGURATION OF SMART ENVIRONMENTS 9

Ruben Verborgh is a Researcher in semantic hypermedia at Ghent
University–iMinds, Ghent, Belgium, and a Postdoctoral Fellow with Research
Foundation Flanders. He explores the connection between Semantic Web
technologies and the Web’s architectural properties, with the ultimate goal
of building more intelligent clients. Along the way, he became fascinated by
Linked Data, REST/hypermedia, Web APIs, and related technologies. He is a
coauthor of two books on Linked Data, and has contributed to more than 150
publications for international conferences and journals on Web related topics.

Matthias Kovatsch is a Research Associate with ETH Zurich, Zurich, Switzer-
land, with a focus onWeb technology for the Internet of Things (IoT). He is also
contributing to IoT standardization within the Internet Engineering Task Force
(IETF) and W3CWeb of Things Interest Group. He started several open source
projects that found wide adoption in academia and industry.

FriedemannMattern received the Ph.D. degree from the University of Kaiser-
slautern, Kaiserslautern, Germany, in 1989.
He is a Professor of Computer Science at ETH Zurich, Zurich, Switzerland.

He was the Founding Director of the Institute for Pervasive Computing and
heads the Distributed Systems and Ubiquitous Computing Research Group. Be-
fore being appointed by ETH Zurich in 1999, he was a Professor at Saarland
University, Saarbrucken, Germany, and at TU Darmstadt, Darmstadt, Germany.
His main research fields are distributed algorithms, ubiquitous computing, and
the Internet of Things.


