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 

Abstract— Realizing the factors involved in power system 
outages can be effective in reliability improvement. This paper 
analyzes the distribution power network outage data to find 
dominant factors in occurring vegetation-, animal-, and 
equipment-related outages. After their integration, real outage, 
weather, and load as input data are used to extract associated 
features. In this paper, visualization techniques are initially 
utilized to show the impact of features on the outage occurrence 
and then association rule mining is used to find factors correlated 
with each outage type as well as each other. Association rules are 
mined using Apriori technique, considering the chi-square and 
lift index as the measures of interestingness. The outage analyses 
are also performed for each equipment separately to find the 
associated rules. The results showing the effectiveness and 
validity of the proposed method to identify factors connected 
with outage occurrences can be used for future planning and the 
operation schedule of distribution power networks. 
 

Index Terms— Artificial intelligence, Association Rules, Data 
mining, Power System, Reliability. 

I. INTRODUCTION 

AST amount of data collected in a system can make 
opportunities to gain a better understanding of the 
system. Regular methods for data analysis such as 

traditional statistical analysis may not be applicable due to the 
large amounts of data. Recently, data mining algorithms have 
presented promising artificial intelligence tools to discover 
useful and actionable knowledge from the available data. 
Among the most well-known data mining analyses, one can 
refer to visualization, classification, clustering, association 
rule mining, and outlier detection [1], [2]. 

Power networks are also faced with various and huge data 
such as voltages, current, voltage phases, active and reactive 
power, component failures, and system outages. Accordingly, 
data mining methods can be implemented to discover valuable 
knowledge from power network data. For example, meter and 
consumer power usage data were classified in [3]–[6] to detect 
electricity theft and in [7] and [8] to classify power quality 
disturbances. Visualization techniques were also used in [9]–
[11] to monitor power network states [9] and to identify 
temporal and spatial clusters of faults in Scottish distribution 
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and transmission systems [10]. A set of clustering methods 
was further utilized in [12] to optimally design the topology of 
a wind farm.  

To evaluate the power system reliability, many researchers 
have focused on the mining of recorded outage data in power 
networks [13]-[22]. For example, to build an accurate model 
to predict outage components in the power grid. Researchers 
in [13] used the support vector machine algorithm. Since most 
failures occur in the distribution systems [14], researchers 
have mostly paid attention to distribution system outages. For 
example, [15] and [16], respectively, used artificial neural 
network and support vector machine classification algorithm 
to estimate the fault location in distribution systems. In [17], 
outage duration was predicted and refined over time through 
the artificial neural network. Feature selection methods were 
utilized in [18] both to find a subset of useful factors in 
different fault causes in different regions and to identify the 
cause of outages. Classification methods were also 
implemented in [19] to predict the weather-related outages in 
distribution systems. In [20], the number of growth-related 
and weather-related vegetation outages were estimated for the 
future through regression methods. In the same vein, logistic 
regression was also utilized in [21] to examine the factors 
involved in vegetation related outages. To predict the failure 
rate of line sections in power distribution networks, the 
researchers in [22] employed and evaluated four data mining 
models namely, linear regression, exponential regression, 
linear multivariable regression and neural network. The 
animal-related incidents on overhead distribution feeders were 
studied in [23] and the main causes of outages in distribution 
systems such as bad weather conditions, vegetation incidents, 
animal-related incidents, and equipment failures were totally 
classified in [24]. In [25], equipment related outages were 
initially examined and 12 important factors in equipment-
related failure were identified through a feature selection 
algorithm. Afterward, three classification methods were used 
to relate the outages to equipment or non-equipment related 
outages. However, fault causes in different equipment are not 
separately investigated. Although investigated factors might 
have different influences on each equipment, these differing 
influences would be lost in the results. An association rule 
mining algorithm has been also implemented in [24] to 
determine the effects of various environmental factors on the 
outage causes. Despite its significant impacts on the operation 
of equipment, distribution system loads have not been 
properly addressed in the literature of fault cause analysis. 
Association rule mining is the most appropriate method to 
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determine the important factors in each outage type, since 
other methods were not able to investigate the importance of 
co-occurrence of the factors better than association rule 
mining. Although feature selection methods could yield high 
correlation between factors, some non-correlated factors could 
cause a condition that might consequently leads to an outage. 

This paper utilizes association rule mining to discover 
frequent patterns in vegetation, animal, and equipment-related 
outages in a real power distribution system. To this end, in 
addition to faults and weather data that have been previously 
analyzed in the literature [18], [19], we aim to investigate load 
data. In this regard, various features such as temperature, 
humidity, hourly load, date, and wind speed are selected. 
Then, fault datasets are labeled by their causes, (i.e., 
vegetation-, animal-, and equipment-related) and these labeled 
data are transformed from a multi-class dataset to one-versus-
all datasets. Several 2-D visualization techniques are also used 
to get a better understanding of the inner relations of datasets. 
Finally, after a preprocessing phase, which includes under-
sampling procedure association rules are mined in each fault 
cause class against other causes. To inspect associations 
between outage causes and factors affecting them, we should 
count each of their co-occurrences in the data Since this 
procedure could be time-consuming due to a large number of 
records and parameters, the Apriori algorithm which avoids 
generating unnecessary candidate rules [26] is used to improve 
performance. Besides, in the equipment-related fault category, 
various equipment such as transformers, poles, jumpers, 
overhead lines and cables, cable terminations, and insulators 
are separately examined, to identify the most frequent patterns 
of failure occurrence in each equipment. In addition to 
support, confidence, and lift indexes, the current study also 
proposes chi-square as a statistical technique [27] to determine 
the strength of the relation between outage and its factors. In 
conclusion, utilizing the load dataset in the rule mining 
methods for fault cause analysis, mining fault cause rules for 
each equipment of the distribution systems, and testing the 
interestingness of the rules using both lift and chi-square tests 
are the main contributions of the current study to the related 
literature.  

The proposed method is examined on a real system to show 
its effectiveness and applicability in real-world data, 
obtainable in many distribution networks.  

II. DATA AND FEATURES 

The real power distribution network considered in this paper 
consists of 64 substations, 491 feeders with a total length of 
10981 Km. Table I shows some characteristics of this 
network. 

TABLE I 
TEST DISTRIBUTION NETWORK CHARACTERISTICS 

Components Measurement 
Unit 

Amount 

Substations Count 64 
Feeders Count 491 

Feeder Length Length (km) 10981 
Distribution Transformers Count 26155 

Underground Posts Count 1593 
Overhead Posts Count 23207 

Three datasets are integrated and used in this paper. The 
first and foremost dataset, called the outage dataset throughout 

this paper, is a five-year outage record collected from this 
network from March 2013 to March 2018. The second dataset 
contains weather conditions for the same period which is 
collected from [28] and named weather dataset here. Hourly 
loads collected from the same distribution network for a year 
from March 2017 to March 2018 comprise the third dataset. 

TABLE II 
DATASETS USED IN THIS RESEARCH 

Dataset 
Number of 
Features 

Number 
of 

Records 

Important 
Features 

Period 

Outage 
Dataset 

18 31079 

Outage Cause, 
outage date and 

time, feeder 
number 

2013 to 2018 

Weather 
Conditions 

29 14565 

Time and date, 
temperature, 

humidity, 
pressure, observed 

weather, 
precipitation, 
wind speed 

2013 to 2018 

Load 4 477548 
Hourly Load of 
each substation 

2017 to 2018 

When an outage occurs in this network, a record is added to 
the outage dataset. Various features which are recorded in the 
dataset are regional features showing the location of the 
outage, temporal features determining the date and time of the 
outage, restoration time and outage duration, main reasons for 
the outage, faulty feeder number, and the amount of energy 
not supplied 

Based on the existing literature, bad weather conditions may 
cause some outages. Since weather attributes are not available 
in the main dataset, these features are collected from other 
sources. Each weather record represents the weather 
conditions of a three-hour period. In this weather dataset, there 
are various features including time and date, temperature, 
humidity, pressure, observed weather, precipitation, and wind 
speed.  

Another important feature that may cause outages is the 
substation load. The load profile as the hourly metered 
electrical energy consumptions of each substation is used in 
this research. The load data are available only from March 
2017 to March 2018. Table II shows the characteristics of the 
three datasets used in this research. 

III. PROPOSED FRAMEWORK FOR ASSOCIATION RULE MINING 

The objective of this paper is to discover meaningful 
patterns in the outage occurrences. To this end, several data 
sources are initially chosen to study their probable effects on 
outage occurrences. While weather and outage datasets are 
commonly addressed in the related literature, the impact of 
load dataset on the outage occurrences has not been touched 
upon. To eliminate unreliable values from datasets, we used a 
cleaning process on each dataset prior to their joining and 
integration. Since these datasets are gathered from different 
sources, they should be integrated based on a common field. 
Although the datasets contain time and date values, the time 
stamps are different; therefore, an alignment procedure is 
performed. To prepare the data for investigation, continuous 
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features are discretized in several ways such as equal count 
and equal width bins. In this paper, the equal count method is 
used, so that the final discretized feature would have a similar 
population among categories. After the initial preprocessing 
phase, visualization is used to gain an understanding of the 
inner relations between different variables. In the final phase, 
reclassification is done several times to generate multiple 
datasets each of which is used to investigate one fault cause. 
In addition to general categories of vegetation, animal and 
equipment investigated in the literature [20]-[25], each 
equipment is separately investigated in this paper. Each 
dataset is then balanced to have the same number of samples 
from each class. Finally, the association rules are extracted to 
discover interesting patterns. Flowchart of the proposed data 
mining procedure is presented in Fig. 1 to better clarify the 
structure of the paper. 

 
Fig. 1.  Flowchart of the proposed method. 

A. Preprocessing 

Three different sources of data used in this study are shown 
in Table II. Preprocessing step is described in the following 
three phases: 
1) Cleaning 

The weather dataset is already clean and in a flat-comma 
separated format. The outage dataset has been stored with an 
unusual structure. Each record consists of three rows and 
seven columns and has been sorted by the feeder number and 
date. Some cells are blank or contain irregular values. For 
example, substation names were not stored consistently. In 
such cases, if additional information through which substation 
names could be modified was available, modification would 
be done; otherwise, the record would be eliminated. After 
eliminating or fixing these inconsistent values, the dataset is 
converted into a flat comma-separated file.  

Each row in the load dataset contains 24 values, 
representing an hourly load for one substation in a day. For 
cleaning this dataset, load values are transposed and a time 
field is added to each row to represent the load measured for 
an hour for one substation. In addition, another feature is 
added to the dataset as ‘Normalized Load’ which is 

 
Hourly Load

Normalized Load
Average Substation Load

   (1) 

In (1) Hourly Load is the actual measured load for that hour in 
the substation and Average Substation Load is the average 
measured load for that substation in a year. 
2) Integration and Alignment 

To perform analysis of data, the researcher in the current 
research did the alignment and integration of the datasets. 
Since substation load does not have direct effects on animal 
and vegetation-related outages, vegetation and animal-related 
datasets are produced from the integrating of both outage and 
weather datasets from 2013 to 2018. However with regard to 
both the possible load effects and the inaccessibility of the 
load data prior to March 2017, equipment-related datasets 
have been generated from the combination of outage, weather 
and load datasets over a one year period from March 2017 to 
March 2018. As mentioned before, each record in the datasets 
has a timestamp. Since weather and load datasets are time-
based and the outage dataset is event-based, timestamps are 
not exactly aligned. Hence, to integrate these datasets, it is 
necessary to match outage records with weather conditions 
and the load causing the outage. To match outage and weather 
datasets, it needs to be pointed out that each record in weather 
dataset shows the weather conditions in the last three hours. 
As a result, the weather condition of the outage time is 
recorded after the outage timestamp. Therefore, to align 
outage records with weather conditions, we consider the next 
recorded weather data to be relevant. To match outage and 
load datasets, we also regarded the load recorded at each hour 
as the outage feature for the next hour. Fig. 2 shows the 
presented alignment method for the datasets. 

 
Fig. 2.  Alignment method used to merge three datasets. 

3) Discretization 
To prepare data for association rule mining, continuous 

features are discretized. Because association rule mining is 
greatly disturbed by having imbalanced features and classes, 
the equal frequency-binning method is used to convert each 
continuous feature into a categorical feature with nearly equal 
count categories. Therefore, the newly generated features are 
completely balanced. Features like hour and month are also 
replaced by Daytime (Morning, Evening, Night) and Season 
(spring, summer, autumn, winter) respectively. Table III 
shows continuous features and their discretized values. 

B. Visualization 

In this section, several visualization techniques are used to 
visualize and get a better understanding of the inner relations 
of data fields. In Fig. 3, the relation between outage classes 
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and the measured load before the incident is illustrated. This 
shows that equipment failures in higher loads occur more than 
other failures. This result shows that the load amount might 
have an impact on equipment failure. 

In Fig. 4, for the sake of comparison, failures of insulator, 
pole and cable termination versus season and load data are 
illustrated. This shows that load amount and season can have 

TABLE III 
FEATURES AND ASSOCIATED DISCRETIZED VALUES 

Continues 
Feature 

Discretized 
Feature 

Condition Value 

Hourly 
Load 

Hourly 
Load (D) 

Hourly Load < 8.75 1 
8.75 <= Hourly Load < 15.6 2 

15.6 <= Hourly Load 3 

Normalized 
Load 

Normalized 
Load (D) 

Normalized Load < 0.83 1 
0.83 <= Normalized Load < 

1.13 
2 

1.13 <= Normalized Load 3 

Temperature 
Temperature 

(D) 

Temperature < 14.2 1 
14.2 <= Temperature < 24.6 2 

24.6 <= Temperature 3 

Humidity 
Humidity 

(D) 

Humidity < 18 1 
18 <= Humidity < 37 2 

37 <= Humidity 3 

Time Day Time 
8:00 <= Time < 16:00 Morning 

16:00 <= Time <= 23:59 Evening 
00:00 <= Time < 8:00 Night 

Month 
(Jalali) 

Season 

1 <= Month <= 3 Spring 
4 <= Month <= 6 Summer 
7 <= Month <= 9 Autumn 

10 <= Month <= 12 Winter 

Wind Windy 
Wind < 1 False 

1 <= Wind True 

Precipitation 
Precipitation 

(D) 
Precipitation = 0 False 
0 < Precipitation True 

different impacts on the different equipment failures. For pole, 
the season seems to be irrelevant as the failure rate is assumed 
to be fixed throughout the year. However, for other equipment 
like insulator and cable termination, the failure rate varies in 
different seasons. 

C. Association Rule Mining 

 Determining features causing animal, vegetation or 
equipment-related outages and investigating features affecting 
each of the equipment separately are two general goals 
explored in this paper. These goals are fulfilled in four steps: 
1) Re-Classification 

In this step, nine sub-datasets of the main dataset are 
created. Each sub dataset is created to investigate one of the 
main causes of outage. These datasets are: 
a) Animal: 

In this sub-dataset, every animal-related outages are labeled 
animal and every other class is labeled by other. The goal of 
this dataset is to distinguish the parameters having more effect 
on animal-related incidents than other types of outages. 
b) Vegetation: 

This sub-dataset is generated by aggregating all trees and 
vegetation-related outages in one class named vegetation 
against all other types of outages labeled other. 
c) Equipment: 

In equipment failure outages, every outage caused by at 
least one faulty equipment is aggregated in one class named 
equipment and other outage causes are labeled other as the 
keyword. 

d) Separate equipment sub-datasets: 
To further investigate the causes of equipment failure, we 

labeled the outage for each specific equipment by that 
equipment name. For example, transformer faults and cut-out 
fuse-related outages were labeled as transformer and cut-out 
fuse respectively. Accordingly, 12 different equipment sub-
datasets are created but only six have enough occurrence 
frequency to be considered for the final step.  

 
Fig. 3.  2-D illustration of the relation between load and outage class 

2) Balancing 
As mentioned in the previous section, nine different binary 

sub-datasets are generated. Since the class labeled as other is 
more frequent than the main class in every dataset, prior to 
any further investigation, every sub-dataset is balanced 
through the reduce method. To apply this method to the nine 
sub-datasets created in the reclassification phase, we remove 
samples from the class with higher frequency (other), so that 
the frequency of the main class and other class would be the 
same. As a result, every sub dataset includes a class labeled 
'other' representing instances of all other classes. In both 
classes the number of records are approximately equal. Table 
IV shows the investigated outage causes, the frequency of 
their occurrences and the date range of the sub dataset based 
on the data availability. 
3) Apriori 

In this paper, the Apriori algorithm is used to find features 
of data that occur in a correlated matter to determine important 
features in each type of outage. Apriori algorithm was 
proposed in 1994 to find frequent itemsets in a transactional 
database in a bottom-up approach. To measure the 
interestingness of each rule in the Apriori technique, we utilize 
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TABLE IV 
INVESTIGATED CAUSES, TIME INTERVAL AND TOTAL COUNT 

Outage Cause Time Interval Total Count 
Vegetation 5 Years 210 

Animal 5 Years 251 
Equipment 1 Year 405 

Transformer 1 Year 32 
Pole 1 Year 41 

Jumper 1 Year 38 
Cable Termination 1 Year 103 

Distribution Lines and Cables 1 Year 77 
Insulator 1 Year 38 

 
Fig. 4.  2-D illustration of relation between load and season from spring to 

winter; a) Insulator, b) Pole and c) Cable Termination 
three parameters of support, confidence, and lift [1]. In 

association rule mining, for a rule with a form of A B , 

support of a rule is the percentage of transactions including 
both antecedent (A) and consequent (C) of the rule, as follows: 

 support( ) ( )A C P A C     (2) 

In this case, each row of the sub-datasets is considered as a 
transaction. As a result of the balancing phase, support value, 
which is calculated here, is higher than the actual support. But, 

since the target class of each sub-dataset is fixed, the support 
values are comparable and their order is unchanged. The 
confidence parameter is the percentage of transactions 
including A within which C also lies, as follows: 

 ( ) ( )confidence A C P C A     (3) 

Similar to support value, the value of calculated confidence 
is higher than the actual value due to the balancing process, 
The lift value as the common metric in association rule mining 

is the ratio of ( )P A C to ( ) ( )P A P C which will be close to 

one when A is independent of C, as follows: 

 
( )

( , )
( ) ( )

P A C
lift A C

P A P C


   (4) 

If lift value is higher than one it means that A and C are 
positively correlated. To avoid generating too many rules 
which would be hard to inspect, we initially restrict the 
Apriori algorithm to find rules with support values higher than 
a minimum threshold (minsup) which is set to 10 percent in 
the present study. Additionally, any rule having a confidence 
value below 60% is omitted from final rulesets. All rules with 
the consequent of other are also removed since they are not 
helpful in achieving the objectives of the study.  
4) Chi-square test 

Since sampling can have an effect on the values of support, 
confidence and lift, it is necessary to further evaluate the 
interestingness of all rules to statistically filter out the 
insignificant ones. To this end, the chi-square test [27] is used 
here. For each rule, a confusion matrix is initially calculated 
for the whole population, and chi-square is then computed as: 

 

2

2

1 1

( )c r
ij ij

i j

o e

eij 


 

  (5) 
Where oij is the observed frequency of each ijth cell (actual 

count), and eij is the expected count computed as: 

( ) ( )i j

ij

count Antecedent a count Consequent c
e

n

  


  (6) 
To compute the probability of the independence of A and C 

based on chi-square value, degree of freedom (k) is needed 
which computed as: 

 ( 1) ( 1)k r c      (7) 

Where r and c are the number of rows and columns in the 
confusion matrix, respectively. The probability of 
independence based on the calculated chi-square is computed 
through the following equation: 

 
2 2

1
2 2

2

( ; )

2 ( )
2

k x

k

x e
probability f x k dx dx

k

  

 

 


    (8) 

It could be proved that Apriori is a complete solution that 
finds all the association rules having their support and 
confidence more than specified minimum support and 
minimum confidence respectively [26]. In other words, all 
popular association rule mining algorithms like Apriori, Eclat 
and FP-growth produce the same results on a similar data. 
Their difference is on their efficiency and speed. All 
remaining rules are inspected by experts to extract meaningful 
results. Fig. 5 shows the pseudocode used in this paper. 
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IV. RESULTS AND DISCUSSION 

In this section, the presented results show the final rulesets 
for each sub-datasets. For each rule, support, confidence and 
lift values are calculated after running the Apriori algorithm. 
Then, the significant relation between antecedent and  

Fig. 5.  Pseudocode used to mine the association rules in this paper 

consequent which is determined by the chi-square test is 
bolded in tables. The confusion matrix is then used to 
calculate chi-square for each rule. As an example, consider the 
following rule: 
‘Season = Winter and Temperature = 1 and Humidity = 3 and 
Windy’ → ‘Vegetation’ 

Where the antecedent of the rule is ‘Season = Winter and 
Temperature = 1 and Humidity = 3 and Windy’ and the 
consequent of the rule is ‘Vegetation’.  

TABLE V 
A SAMPLE CONFUSION MATRIX: EXPECTED VALUES (OBSERVED COUNTS) 

 Consequent 

 
Vegetation Other 

Antecedent = True 9.56 (22) 1708.44 (1696) 

Antecedent = False 200.44 (188) 35820.56 (35833) 

 

According to (5), in this example, using values from Table 
V, chi-square is equal to 17.055, and the probability that a pair 
of irrelevant antecedent and consequent would generate a 
confusion matrix with the degree of freedom = 1 would be 
smaller than 0.001 based on equation 8. This probability is 
compared with a minimum threshold of significance (p-value) 
to determine whether the rule is significant or not. In the 
current research, the p-value is assumed to be 0.05. Chi-square 
and p-value of other rules are also calculated in the same way. 

Vegetation-related ruleset presented in table VI is generated 
through the Apriori algorithm with minsup of 10 percent. It is 
observed that most vegetation-related outages happen in bad 
weather conditions. Precipitation, low temperature, wind, and 
high humidity are frequent patterns in vegetation-related 
outages. Winter which is also the most frequent season in this 
type of outages might be related to the fact that tree branches 
are more fragile in this season. Although morning and 
evening Daytime appear in the ruleset, this field does not 
seem to be relevant to vegetation-related outages. 
 The ruleset for animal-related outages is represented in 
table VII. It is perceived that animal-related incidents are the 
least frequent in winter. This might refer to fewer activities of 
animals, especially birds in cold days. Furthermore, since 
birds and animals are more active in Morning and Evening 
Daytime, animal-related incidents are observed to be more 
frequent. High temperature, low humidity, and wind are also 
observed in the rules. This can be justified in the light of the 
correlation of high temperature and low humidity with the 
season on the one side and the impact of the wind on 
changing birds’ flight paths on the other. 

Table VIII shows the results when all equipment is 
considered as one class. In equipment-related rulesets, minsup 
value is assumed to be 10%. It is also observed that Load-
related features appear to be the predominant cause of failures 
in this ruleset. Hourly Load which seems to be more correlated 
with the equipment failure can be used to change the topology 
of the network and distribution of the load between feeders. 
Spring season, wind, morning Daytime, and low humidity are 
other frequent conditions in this ruleset. 

It is also significant to separately analyze each equipment’s 
failure. Table IX shows frequent features causing transformer 
failures. As expected, morning Daytime, high load, and 
summer season are frequent in this ruleset. This shows that 
when load is higher than a maximum threshold, it might cause 
transformer failure. In addition, low humidity is observed to 
cause transformer failure in all conditions. Wind, which is 
another frequent feature in this ruleset, might affect the 
transformers’ performance in an indirect way. 

Table X shows that wind is the most dominant factor for 
pole-related failures. Load, low humidity, and high 
temperature seem to be other frequent causes of outages. 
Although having lower chi-square compared with other tables, 
the rules of this ruleset are all validated by lift and chi-square 
values. In Table XI, jumper-related incidents which are 
presented in the rulesets shows that jumpers are affected by  

TABLE VI 
RULESET OF VEGETATION-RELATED OUTAGES

Consequent Antecedent Support % Confidence % Lift Chi-Square Probability 

Vegetation Precipitation (D) and Season = Winter 10.38 87.23 1.88 220.186 < 0.001 

Vegetation Precipitation (D) and Temperature (D) = 1 and Humidity (D) = 3 14.13 82.81 1.79 265.272 < 0.001 

Vegetation Season = Winter and Daytime = Morning 11.04 76.00 1.64 43.958 < 0.001 

Vegetation Daytime = Evening and Humidity (D) = 3 13.25 68.33 1.47 18.681 < 0.001 

Vegetation Daytime = Evening and Temperature (D) = 1 11.70 64.15 1.38 3.962 0.047 

Vegetation 
Season = Winter and Temperature (D) = 1 and Humidity (D) = 3 
and Windy 

10.15 63.04 1.36 17.055 < 0.001 

Apriori algorithm with lift and chi-square computation 

Ck: Candidate itemset of size k 
Lk : Frequent itemset of size k 
 

1. L1 = {frequent items}; 
2. for (k = 1; Lk !=; k++) do begin 
3.   Ck+1 = candidates generated from Lk; 
4.   for each transaction t in database do 
5.    increment the count of all candidates in Ck+1 that are contained 

in t 
6.    Lk+1  = candidates in Ck+1 with minsup 
7.    for each transaction in Lk+1 do 
8.     compute lift = p(antecedent and consequent) / 

(p(antecedent)*p(consequent)) 
9.     compute chi-square = sum((observed – expected)2 / 

expected) 
10.   end 
11. return k Lk; 
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TABLE VII 
RULESET OF ANIMAL-RELATED OUTAGES 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift 

Chi-
Square 

Probability 

Animal Humidity (D) = 1 and Windy 11.69 77.05 1.60 27.687 < 0.001 

Animal 
Season = Summer and Humidity (D) = 1 and 
Daytime = Morning and Temperature (D) = 3 

11.49 73.33 1.53 72.641 < 0.001 

Animal Daytime = Morning and Windy 12.45 72.31 1.50 65.715 < 0.001 

Animal Windy and Temperature (D) = 3 14.56 67.11 1.40 37.567 < 0.001 

Animal Season = Autumn and Daytime = Morning 12.26 64.06 1.33 44.847 < 0.001 

Animal Season = Summer and Windy and Temperature (D) = 3 10.15 60.38 1.26 15.523 < 0.001 

Animal Season = Spring and Humidity (D) = 1 and Temperature (D) = 3 10.54 60.00 1.25 8.212 0.004 

Animal Daytime = Evening and Humidity (D) = 1 and Temperature (D) = 3 10.54 60.00 1.25 1.353 0.245 

TABLE VIII 
RULESET OF EQUIPMENT-RELATED OUTAGES 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Equipment Season = Spring and Hourly Load = 3 11.78 73.11 1.42 34.985 < 0.001 

Equipment Daytime = Morning and Hourly Load = 3 and Windy 13.43 72.64 1.41 75.749 < 0.001 

Equipment 
Temperature (D) = 3 and Daytime = Morning and 
Hourly Load = 3 and Windy 

10.01 70.88 1.38 21.698 < 0.001 

Equipment 
Humidity (D) = 1 and Temperature (D) = 3 and 
Hourly Load = 3 and Windy 

14.06 70.27 1.36 8.098 0.004 

Equipment 
Normalized Load = 3 and Humidity (D) = 1 and 
Daytime = Morning and Hourly Load = 3 

11.02 70.11 1.36 69.689 < 0.001 

Equipment 
Normalized Load = 3 and Temperature (D) = 3 and 
Hourly Load = 3 and Windy 

13.68 69.44 1.35 39.292 < 0.001 

Equipment Season = Spring and Daytime = Morning 13.18 69.23 1.34 47.971 < 0.001 

Equipment 
Normalized Load = 3 and Humidity (D) = 1 and 
Temperature (D) = 3 and Daytime = Morning and 
Hourly Load = 3 

10.64 69.04 1.34 62.87 < 0.001 

Equipment 
Normalized Load = 3 and Humidity (D) = 1 and 
Temperature (D) = 3 and Hourly Load = 3 and Windy 

11.66 68.47 1.33 29.779 < 0.001 

Equipment 
Humidity (D) = 1 and Temperature (D) = 3 and 
Daytime = Morning and Hourly Load = 3 

13.05 67.96 1.32 60.519 < 0.001 

TABLE IX 
RULESET OF TRANSFORMER-RELATED OUTAGES 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Transformer 
Hourly Load = 3 and Humidity (D) = 1 and Temperature (D) = 3 
and Daytime = Morning 

21.31 92.30 1.75 43.476 < 0.001 

Transformer 
Season = Summer and Humidity (D) = 1 and Normalized Load = 3 
and Daytime = Morning 

18.03 90.90 1.73 36.633 < 0.001 

Transformer 
Season = Summer and Normalized Load = 3 and Temperature (D) 
= 3 and Daytime = Morning 

18.03 90.90 1.73 34.393 < 0.001 

Transformer 
Hourly Load = 3 and Humidity (D) = 1 and Daytime = Morning 
and Windy 

18.03 90.90 1.73 32.93 < 0.001 

Transformer 
Season = Summer and Humidity (D) = 1 and Normalized Load = 3 
and Temperature (D) = 3 and Daytime = Morning 

18.03 90.90 1.73 36.633 < 0.001 

Transformer 
Hourly Load = 3 and Humidity (D) = 1 and Temperature (D) = 3 
and Daytime = Morning and Windy 

16.39 90 1.71 30.442 < 0.001 

Transformer 
Season = Summer and Hourly Load = 3 and Humidity (D) = 1 and 
Daytime = Morning 

14.75 88.88 1.69 34.365 < 0.001 

Transformer 
Season = Summer and Hourly Load = 3 and Temperature (D) = 3 
and Daytime = Morning 

14.75 88.88 1.69 31.859 < 0.001 

Transformer 
Season = Summer and Hourly Load = 3 and Humidity (D) = 1 and 
Normalized Load = 3 and Daytime = Morning 

14.75 88.88 1.69 41.911 < 0.001 

Transformer 
Hourly Load = 3 and Humidity (D) = 1 and Normalized Load = 3 
and Daytime = Morning and Windy 

14.75 88.88 1.69 32.045 < 0.001 

wind, load, temperature, and low humidity. As illustrated in 
Table XII, cable termination is also affected by load. Low 
humidity, morning time, and spring season also seem to be 
negatively affecting cable terminations. Unlike most of the 
equipment, overhead lines seem to be resistant to load-related 

factors as presented in Table XIII. Medium to high level 
temperatures in warmer times of a day, warmer seasons of the 
year and wind speed are the major causes of overhead line 
failure. The high temperature would increase the line sag and 
wind might cause a short circuit fault. Table XIV displays 
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insulator-related outage ruleset. As observed, insulators are 
affected by high temperatures, precipitation, and wind in 

spring days. 

TABLE X 
RULESET OF POLE-RELATED OUTAGES 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Pole Daytime = Evening and Temperature (D) = 3 and Windy 10.84 88.88 1.79 5.733 0.017 

Pole Season = Spring and Daytime = Morning and Windy 12.04 80 1.61 13.137 < 0.001 

Pole Season = Spring and Humidity (D) = 1 10.84 77.77 1.57 3.503 0.061 

Pole Daytime = Night and Hourly Load = 3 10.84 77.77 1.57 5.423 0.02 

Pole Season = Spring and Humidity (D) = 1 and Temperature (D) = 3 10.84 77.77 1.57 4.587 0.032 

Pole Temperature (D) = 3 and Windy 28.91 75 1.51 9.274 0.002 

Pole 
Humidity (D) = 1 and Normalized Load = 3 and Temperature 
(D) = 3 and Hourly Load = 3 and Windy 

13.25 72.72 1.47 7.086 0.008 

TABLE XI 
JUMPER-RELATED RULESET

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Jumper Season = Winter and Temperature (D) = 2 and Windy 13.58 90.90 1.93 30.357 < 0.001 

Jumper Season = Winter and Temperature (D) = 2 and Hourly Load = 3 11.11 88.88 1.89 62.254 < 0.001 

Jumper 
Temperature (D) = 3 and Hourly Load = 3 and Normalized Load 
= 3 and Daytime = Morning and Humidity (D) = 1 

11.11 88.88 1.89 18.186 < 0.001 

Jumper 
Hourly Load = 3 and Daytime = Morning and Humidity (D) = 1 
and Windy 

14.81 83.33 1.77 25.113 < 0.001 

Jumper Normalized Load = 2 and Hourly Load = 3 and Windy 11.11 77.77 1.65 10.859 0.001 

Jumper 
Temperature (D) = 3 and Hourly Load = 3 and Normalized Load 
= 3 and Humidity (D) = 1 

14.81 75 1.59 6.902 0.009 

Jumper 
Hourly Load = 3 and Normalized Load = 3 and Humidity (D) = 
1 and Windy 

12.34 70 1.49 4.541 0.033 

Jumper 
Temperature (D) = 3 and Hourly Load = 3 and Normalized Load 
= 3 and Humidity (D) = 1 and Windy 

11.11 66.66 1.42 2.971 0.085 

TABLE XII 
CABLE TERMINATION-RELATED RULESET 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Cable Termination Season = Spring and Hourly Load = 3 12.09 76.92 1.60 15.482 < 0.001 

Cable Termination Season = Spring and Daytime = Morning 10.69 69.56 1.45 7.107 0.008 

Cable Termination 
Humidity (D) = 1 and Temperature (D) = 3 and Daytime = 
Morning and Hourly Load = 3 

10.23 63.63 1.32 6.139 0.018 

Cable Termination 
Temperature (D) = 3 and Normalized Load = 3 and Hourly 
Load = 3 and Windy 

11.16 62.5 1.30 2.819 0.093 

Cable Termination Season = Spring and Temperature (D) = 2 12.09 61.53 1.28 2.282 0.131 

Cable Termination Temperature (D) = 3 and Hourly Load = 3 20.46 61.36 1.28 7.089 0.008 

Cable Termination 
Humidity (D) = 1 and Normalized Load = 3 and Daytime = 
Morning 

10.69 60.86 1.27 2.139 0.134 

Cable Termination Daytime = Morning and Hourly Load = 3 and Windy 10.69 60.86 1.27 3.288 0.07 

TABLE XIII 
DISTRIBUTION LINE-RELATED RULESET 

Consequent Antecedent Support % Confidence % Lift Chi-Square Probability 

Class = Distribution Line 
Season = Summer and Daytime = Night and 
Normalized Load = 2 

10 80 1.55 38.384 < 0.001 

Class = Distribution Line Hourly Load = 2 and Temperature (D) = 3 10 73.33 1.42 2.206 0.138 

Class = Distribution Line Season = Summer and Temperature (D) = 2 10.66 68.75 1.33 7.626 0.006 

Class = Distribution Line Daytime = Morning and Temperature (D) = 2 10.66 68.75 1.33 1.103 0.294 

Class = Distribution Line 
Temperature (D) = 3 and Hourly Load = 3 and 
Windy 

14.66 68.18 1.32 4.08 0.043 

Class = Distribution Line Season = Spring and Temperature (D) = 3 12 66.66 1.29 1.861 0.173 

Class = Distribution Line 
Daytime = Evening and Normalized Load = 3 
and Hourly Load = 3 and Windy 

10 66.66 1.29 6.611 0.01 

Class = Distribution Line Hourly Load = 2 and Windy 15.33 65.21 1.27 0.689 0.407 
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TABLE XIV 
INSULATOR-RELATED RULESET 

Consequent Antecedent 
Support 

% 
Confidence 

% 
Lift Chi-Square Probability 

Class = Insulator Season = Spring and Humidity (D) = 1 and Windy 10.84 88.88 1.94 10.643 0.001 

Class = Insulator 
Season = Spring and Daytime = Morning and 
Temperature (D) = 3 and Windy 

10.84 88.88 1.94 24.679 < 0.001 

Class = Insulator Precipitation (D) and Normalized Load = 1 12.04 80 1.74 78.703 < 0.001 

Class = Insulator 
Humidity (D) = 2 and Temperature (D) = 3 and 
Windy 

10.84 77.77 1.69 19.967 < 0.001 

Class = Insulator Normalized Load = 2 and Hourly Load = 2 12.04 70 1.52 0.994 0.319 

Class = Insulator Humidity (D) = 3 and Hourly Load = 2 10.84 66.66 1.45 0.413 0.008 

 

V. CONCLUSION 

In this study, real distribution system fault data are analyzed 
to find frequent causes of failures. First, in addition to weather 
data commonly viewed as an important factor in power outage 
related problems, load data is also taken into account. Then, 
the impacts of various features on different failures were 
visualized. After visualization, the Apriori technique was used 
to extract frequent fault cause rules for vegetation, animal, and 
equipment related faults. According to the final rulesets, load 
data is one of the significant factors having an impact on 
equipment related outages. Then, different kinds of equipment 
were separately analyzed because they have different 
characteristics, produced from different materials and used in 
different circumstances. 

The season feature seems to be effective in almost all of the 
investigated fault causes. Spring season is correlated with 
cable termination and insulator-related faults. Vegetation-
related outages happen more in winter, whereas animal-related 
incidents are less frequent in this season. In terms of day time, 
animal-related failures mostly occur in the morning and 
evening. In the morning, transformers and cable termination 
failures occur more than others do. Noteworthy to say that low 
temperature is a frequent reason for vegetation-related faults 
while medium to high temperatures commonly cause overhead 
lines, insulators, jumpers, and animal-related outages. In light 
of the findings, it can be stated that the humidity of lower than 
18% is the frequent cause of animal-related and most of the 
equipment-related faults. In the same line, the humidity of 
higher than 37% is the main reason for vegetation-related 
outages. Except for cable termination, all of the investigated 
failures, have a correlation with the wind. The studies have 
also shown that most of the equipment failures happen due to 
the load amount, and as a result, high load demand is regarded 
as the main rule in almost all equipment failures. The results 
of the current study can be utilized to plan future network, 
condition-based maintenance scheduling, and a better 
selection of the network components. 
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