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TABLE XI
TRAINING AND TESTING TIME (SECONDS) ON SEVEN UCI DATASETS

TABLE XII
PERFORMANCE RESULTS ON THE MIHC DATASET USING iDTA-LS-SVM

DTA-LS-SVM and iDTA-LS-SVM is the summation of the
running time in each module plus the running time for the
parameter tuning of λl (l = 1, 2, . . . , L) using a fast leave-
one-out cross validation strategy. The regularization parameter
Cl (l = 1, 2, . . . , L) in each module and the kernel width
δ can be randomly chosen instead of using model selection
strategy, which also significantly reduces the running time.
Conversely, LS-SVM and SVM take much more time to pro-
duce the optimal values for C and δ by searching from 8
and 9 grid values, respectively, which is much more computa-
tionally expensive. After this comparison, DTA-LS-SVM and
iDTA-LS-SVM exhibited superior advantages in running times
compared to other methods.

B. Real-World Dataset: the Community Healthcare Dataset

In this section, a real community healthcare dataset was used
in the experiments to investigate performances of the proposed
classifiers DTA-LS-SVM and iDTA-LS-SVM.

This dataset was collected in the nurse-led PolyU-Henry G.
Leong Mobile Integrative Health Care Centre (MIHC) [40] in
August 2013. It contains 444 patient records with 33 features,
such as demographic, socio-economic, social relationship, and
social participation data. Additionally, information on the
patients’ health history, such as smoking and drinking habits,
chronic illnesses, and data from a series of health assessments
with descriptions was included. Due to the nature of both the
tests performed on the mobile clinic and the patients’ them-
selves, some values in the dataset were missing. For example,
language barriers affect the communications between nurses
and patients. The missing values in the dataset were filled in by
using the K-nearest neighbor (KNN) imputation method [41]
with their corresponding values from the nearest-neighbor
columns using the corresponding Euclidean distance.

The label information is the overall quality of life (QOL)
score on a 1–5 scale of 444 patients obtained using the
World Heath Organization questionnaire on QOL: from the

Hong Kong short version framework [42], [43]. After analy-
sis, the proportion of the two constructed classes (“poor” and
“good”) was 122 and 322, respectively. We aim to construct a
classifier to predict the QOL of elderly patients (poor or good)
using these 33 features from this MIHC dataset.

Since the two classes were originally imbalanced, iDTA-
LS-SVM was used on the datasets, and its classification
performance was compared with those using DTA-LS-SVM,
LS-SVM, and SVM. In addition, for iDTA-LS-SVM and DTA-
LS-SVM, experiments were divided into two parts for more
detailed comparisons.

1) Part (a): In layer 1 of DTA-LS-SVM and iDTA-LS-
SVM, the complete portion of the MIHC dataset, which
had no missing data was used to train an AK-LS-SVM
model. From layer 2, the whole dataset after imputa-
tion and its corresponding predictions from the previous
model were used as the new data input.

2) Part (b): In layer 1 of DTA-LS-SVM and iDTA-
LS-SVM, the whole MIHC dataset was used after
imputation as the input.

The number of processing layers in both DTA-LS-SVM
and iDTA-LS-SVM was set to 3 in these experiments. The
ratio of training and testing data sets was set to 7:3. The
classification accuracies and the running time of DTA-LS-
SVM, iDTA-LS-SVM and the comparative methods on the
training and testing datasets are listed in Tables XII–XIV.
From the experimental results, iDTA-LS-SVM in Part (b) has
achieved the best testing accuracy (0.7425) and an F-score
of 0.8553 compared to DTA-LS-SVM, LS-SVM and SVM
on the MIHC dataset. In Part (a), it achieved an accuracy
of 0.7331 and an F-score of 0.8492, which are still higher
than other methods. It shows that iDTA-LS-SVM is more
suitable for classification on imbalanced datasets. The tradi-
tional LS-SVM had the worst accuracy and F-score on the
testing dataset, iDTA-LS-SVM based on the combination of
several AK-LS-SVM modules achieved the best accuracy. We
believe that this performance improvement has arisen from
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TABLE XIII
PERFORMANCE RESULTS ON THE MIHC DATASET USING DTA-LS-SVM AND THE OTHER COMPARATIVE METHODS

TABLE XIV
TRAINING AND TESTING TIME (SECONDS) ON THE MIHC DATASET

the stacked generalization principle and the transfer learning
mechanism. In terms of the running time, DTA-LS-SVM and
iDTA-LS-SVM remains superior over LS-SVM and SVM.

In addition, we also notice that in the experimental results of
DTA-LS-SVM and iDTA-LS-SVM, both accuracy and F-score
on the testing data set are higher than those on the training data
set. There might be two reasons to explain these results. First,
DTA-LS-SVM and iDTA-LS-SVM used the stacked hierarchi-
cal architecture to enhance generalization performances and
this is reflected in the obtained results. Second, in the data
preparation, the KNN imputation method was used to fill in
missing values in the MIHC dataset. Following this proce-
dure, the distributions in the training and testing sets might be
mismatched. Referring to González and Abu-Mostafa’s [44]
conclusions, we postulate that mismatched distributions also
occurred in this experiment, which may have caused a higher
testing accuracy and F-score in DTA-LS-SVM and iDTA-LS-
SVM.

C. Statistical Analysis

In order to detect significant differences among the exper-
imental results of the proposed methods and the comparative
methods, we also carried out the Friedman ranking test
followed by Holm post-hoc test [45], [46] for multiple compar-
isons on the testing sets of four balanced and four imbalanced
datasets in which the ratio of training and testing data sets is
7:3. The Friedman ranking test was used to evaluate whether
there was a statistically significant difference among these
methods. The null hypothesis is that there is no statistically
difference. If the p-value is smaller than 0.5, the null hypoth-
esis is rejected. The Holm post-hoc test was used to further
verify if there was a statistical difference between the best
Friedman ranking method and each remaining method. We
used α = 0.05 as the level of confidence in all cases. First,
we conducted two Friedman ranking tests to assess whether
there are significant differences between: 1) DTA-LS-SVM
and the comparative methods on four balanced UCI datasets
in terms of accuracy and F1-score and 2) iDTA-LS-SVM and
the comparative methods on three imbalanced UCI datasets
and one real-world TRUS dataset in terms of F1-score. Here,
experimental results of both parts (a) and (b) on the TRUS
dataset were included.

TABLE XV
AVERAGE RANKINGS OF DTA-LS-SVM AND THE COMPARATIVE

METHODS ON BALANCED DATASETS IN TERMS OF ACCURACY

(p-VALUE = 0.049787)

TABLE XVI
HOLM POST-HOC COMPARISON RESULTS FOR DTA-LS-SVM AND THE

OTHER METHODS IN TERMS OF ACCURACY WITH α = 0.05

TABLE XVII
AVERAGE RANKINGS OF DTA-LS-SVM AND THE COMPARATIVE

METHODS ON BALANCED DATASETS IN TERMS OF F1-SCORE

(p-VALUE= 0.038774)

The ranking results of Friedman test (1) in terms of accuracy
and F1-score are shown in Tables XV and XVII, respectively.
The results reveal that there are significant differences in the
both performance metrics between DTA-LS-SVM and other
comparative methods. Then we conducted the Holm post-
hoc tests to compare the best ranking method DTA-LS-SVM
with LS-SVM and SVM in terms of accuracy and F1-score,
and presented the results in Tables XVI and XVIII, where
the methods are ranked according to the obtained z-values.
Holm post-hoc test rejects the hypothesis of equivalence for
the methods with p < α/i. According to the results in these
tables, we know that DTA-LS-SVM is at least comparable to
LS-SVM and SVM on balanced datasets in terms of accu-
racy; and is at least comparable to LS-SVM and statistically
outperforms SVM on balanced datasets in terms of F1-score.

The ranking results of Friedman test (2) are shown in
Table XIX. The results reveal that there are significant dif-
ferences in terms of F1-score between iDTA-LS-SVM and
the other comparative methods. Then we conducted the Holm



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: DEEP ADDITIVE LS-SVMs FOR CLASSIFICATION WITH MODEL TRANSFER 13

TABLE XVIII
HOLM POST-HOC COMPARISON RESULTS FOR DTA-LS-SVM AND THE

OTHER METHODS IN TERMS OF F1-SCORE WITH α = 0.05

TABLE XIX
AVERAGE RANKINGS OF iDTA-LS-SVM AND THE COMPARATIVE

METHODS ON IMBALANCED DATASETS IN TERMS OF F1-SCORE

(p-VALUE = 0.022371)

TABLE XX
HOLM POST-HOC COMPARISON RESULTS FOR iDTA-LS-SVM AND THE

OTHER METHODS WITH α = 0.05

post-hoc test to compare the best ranking method iDTA-LS-
SVM with LS-SVM and SVM, and presented the results in
Table XX. According to the obtained results, iDTA-LS-SVM
outperforms the other methods on imbalanced datasets in terms
of F1-score in our experiments.

In summary, the proposed methods are at least comparable
to or even better than LS-SVM and SVM in terms of accuracy
and/or F1-score with the faster learning speed.

V. CONCLUSION

AK-LS-SVM has been applied recently in many classi-
fication tasks. In this paper, to improve its generalization
performance and learning speed, we proposed the novel clas-
sifier DTA-LS-SVM to be applied to balanced datasets, which
follows the stacked generalization principle and transfer learn-
ing mechanism, and its extended version iDTA-LS-SVM on
imbalanced datasets. DTA-LS-SVM and iDTA-LS-SVM stack
multiple AK-LS-SVMs layer-by-layer, where the prediction
from the previous module becomes one additional feature
space together with the original data inputs to train the next
module of the next layer. Moreover, transfer learning is embed-
ded into the deep architecture to guarantee consistency across
adjacent modules, and thus the classification capability of the
module at the higher layer can be further enhanced. In addi-
tion, transfer learning based on AK-LS-SVM can perfectly
formulate a fast leave-one-out cross validation strategy for the
learning parameter tuning such that even though the kernel
width and the regularization parameter are randomly selected,
the performance of the proposed method can remain outstand-
ing. We compared the proposed method with the traditional
LS-SVM and SVM using additive Gaussian kernels on seven
public UCI datasets and one real world community healthcare
dataset. The experimental results indicate that the proposed
classifiers DTA-LS-SVM and iDTA-LS-SVM have the supe-
rior advantages on the generalization performance and the
running time. Moreover, the experimental results also reveal

that both DTA-LS-SVM and iDTA-LS-SVM have the potential
to be applied in a real world application.

Even though the proposed methods show a promising
performance, this paper has some limitations that will be
addressed in the future work. For example, DT-AK-LS-SVM
has to use the same kernel in every processing layer. The
proposed model will be investigated using different kernels in
the stacked architecture to further improve the generalization
performance.
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