
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Influence Propagation Model for Clique-Based
Community Detection in Social Networks

Noha Alduaiji , Amitava Datta , and Jianxin Li

Abstract— Social media community detection is a fundamental
challenge in social data analytics, in order to understand user
relationships and improve social recommendations. Although
the problem has been extensively investigated, the majority of
research has been based on social networks with static structures.
Our findings within large social networks, such as Twitter, show
that only a few users have interactions or communications at
fixed time intervals. Finding active communities that demon-
strate constant interactions between its members comprises a
reasonable perspective. Communities examined from this per-
spective will provide time-variant social relationships, which
may greatly improve the applicability of social data analytics.
In this paper, we address the problem of temporal interaction-
biased community detection using a four-step process. First,
we develop a partition approach using an objective function
based on clique structure, to enhance the time efficiency of our
methodology. Second, we develop an influence propagation model
that gives greatest weight to active edges or to inactive edges in
close proximity to active edges. Third, we develop expansion-
driven algorithms to efficiently find the activity-biased densest
community. Finally, we verify the effectiveness of the extended
community metric and the efficiency of the algorithms using three
real data sets and a case study conducted on Twitter dynamic
data set.

Index Terms— Community detection, influence propagation
model, partitioning algorithm, social network analysis, temporal
interactions.

I. INTRODUCTION

SOCIAL networks, such as Facebook, Twitter, and
LinkedIn, have become important parts of life. About

68% of online users have a social profile, used for getting
news or connecting with friends, family, and other interesting
people [1]. Many of these users form or join online com-
munities [2]. Therefore, community detection has become a
popular undertaking when mining social networks. Commu-
nity detection is defined as the task of identifying all those
communities in a given network, where the users are more
densely connected with each other than with the rest of the
network [3]. Networks can be visualized as graphs G(V , E)

Manuscript received September 18, 2017; revised February 23, 2018;
accepted April 14, 2018. This work was partially supported by the Australian
Research Council Discovery Project under Grant DP160102114. Correspond-
ing author: Noha Alduaiji.)

N. Alduaiji is with the Department of Computer Science and Software
Engineering, The University of Western Australia, Perth, WA 6009, Australia
and also with the College of Science and Humanities in Rumaah, Majmaah
University, Al Majmaah 11952, Saudi Arabia (e-mail: n.alduaiji@mu.edu.sa).

A. Datta and J. Li are with the Department of Computer Science
and Software Engineering, The University of Western Australia, Perth,
WA 6009, Australia (e-mail: amitava.datta@uwa.edu.au; jianxin.li@
uwa.edu.au).

Digital Object Identifier 10.1109/TCSS.2018.2831694

Fig. 1. Example of (a) static and (b) dynamic structures at t1.

where a set of vertices V represents the users in the network
and the set of edges E represents the relationships between
the users.

Community detection has many important real-world appli-
cations, including efficient information propagation, targeted
marketing, and the control of infections.

1) Information propagation occurs when users with a
particular interest share and spread information to
like-minded friends.

2) Targeted marketing identifies appropriate target
audiences for a service or product.

3) Infection control handles the community of a user who
has been in contact with infection and in monitoring
others who have interacted with that user.

In such applications, standard community detection methods,
such as the Louvain method [4], infomap [5], label propaga-
tion [6], or Newman’s leading eigenvector [7], focus on the
relationship connections between users, usually depending on
following/follower links and friendship links. These techniques
represent the network as a static structure that has stable
links; for example, Twitter appears static when one looks at
friendship or followership links, because these links exist for
a long time, Fig. 1(a). However, observations in our Twitter
data set indicate that users do not rely on their followership
links to interact, and about 70% interact with users that they
do not share followership links with. Other studies support
our observation that only a small subset of users actually uses
followership links to interact with each other [8]–[10].

To improve the cohesiveness accuracy in such communities,
one could insure that the relationships carried by the edges
offer more meaningful information and reflect more accurately
the strength of relationships. These can often be quantified
by the assignment of edge weights that better integrate and
enhance the temporal interactions they measure. A focus on
dynamic structure instead of static structure in community
extraction will improve the accuracy of the measure of cohe-
siveness and identify more meaningful communities. In a
dynamic structure, the edges only exist if the users have

2329-924X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3423-0993
https://orcid.org/0000-0001-6916-7907
https://orcid.org/0000-0002-9059-330X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

communicated in a given time interval t , Fig. 1(b). In addition,
the edges can be measured with the frequency of interactions,
one of the important factors that to date has been overlooked in
research into community detection methods. Determining the
activities on the edge of a social network can help speed up
information propagation. Similarly, targeted marketing can be
improved by targeting the right audience for a particular prod-
uct, based on the frequency of interactions on a given topic.
We argue, therefore, that the weighted dynamic structure of a
social network gives more information about the behavior of
its users, such as their interests and the prediction of activities
and interactions, than an examination of its static structures.

The bulk of the literature on community detection prob-
lems assume that input is an unweighted graph [4], [5],
[11], [12], and focus on finding cohesive structure without
considering how the frequency of interactions between the
users in a retrieved community will affect community behavior
and activities in the future. Moreover, standard community-
search models tend to focus on large communities; as a result,
irrelevant users are included. In a recent research proposing to
address this issue, Zheng et al. [13] included attributes of the
users/nodes and query nodes to detect relevant community.
Li et al. [14] focused on finding the top-k influential com-
munities with high-influence value in the network. Although
these approaches have considered weighted graphs to detect
meaningful communities, the weight attribute does not reflect
the activities of the users.

In this paper, we focus on dynamic weighted graphing to
identify active and influential communities that contain influ-
ential users and to predict their future activities. We propose an
influence propagation model, in which we identify users with
high frequency of interaction and determine their influence on
neighboring users. This approach will ensure that current, but
weakly connected users still receive a chance to be included
in the community if they are highly influenced by their active
neighbors. For example, consider an edge that has often been
regarded as inactive in the previous research literature, and
due to structural constraints, it may not be included in a
community. However, if it has an active neighbor, it may
become an active edge after a period of time because of the
influence of that neighbor, and therefore, it should be included
because it will increase the density and the cohesiveness of the
community.

For better performance, we introduce an objective func-
tion aiming to clique partitioning the graph. These partitions
are then processed in parallel to compute the influence
propagation model. We also consider the structure of com-
munities, proposing a temporal interactions biased (TIB)
community detection which is based on overlapping com-
munity detection [cliques using a percolation method for a
weighted graph (CPMw)] [15]. Overlapping community detec-
tion approach reflects real-life users having many interests and
belonging to more than one community at the same time [16].
As TIB uses cliques of size k = 3, the resulting communi-
ties derived from dynamic networks are densely connected,
increasing influence propagation and maintaining activity in
the network longer.

A. Contribution and Roadmap

This paper is an extended version of the work published
in International Conference on Advanced Data Mining and
Applications 2016 proceedings [17]. We have reworked our
influence propagation model and addressed its efficiency in
three ways.

1) We include an objective function designed to partition
the graph and improve the time efficiency for our model.
The partition relies on balancing the load of data on the
processors using clique structure. Adding the partition
phase to our approach gives a significant improvement
in time cost for the model (Section IV).

2) We evaluate the efficiency of our partitioning approach
using three data sets: Twitter, Facebook, and Amazon
(the same data sets used in this paper) [17]. However,
this time we compare the efficiency of the influence
propagation model with and without partitions, using
objective functions (Section V).

3) We conduct a case study, using a dynamic data set from
Twitter, to evaluate our approach by tracking changes
in the detected communities over eight time intervals.
We analyze interactions, topics of interest, and the
impact of community size on the volume of interactions
(Section VI).

We review related work in Section II; in Section III,
we review our problem statement in detail, and then, we show
our approach and our algorithms in Section IV followed by
our extensive experiment and results in Section V. We then
present a case study in Section VI. Finally, we discuss our
findings and conclude this paper in Section VII.

II. RELATED WORK

Here, we discuss related studies on detecting communities
in dynamic networks with focus on the differences between our
proposed approach and those of earlier work. This is followed
by related work on modeling user interactions within social
networks. An overview of graph partitioning is essential as it
relates to improving the performance of community detection
methods.

A. Community Detection Methods

Community detection methods are of two kinds: disjoint and
overlapping. Disjoint community detection methods include
Louvain [4], infomap [5], label propagation [6], Newman’s
leading eigenvector [7], and fast greedy method [18].
Metrics, such as modularity metric [19] and the conductance
metric [20], take a node in the graph and join this to a
community based on its neighbors; therefore, the node can
belong to only one community. In contrast, overlapping com-
munity detection methods can join a node into more than one
community depending on the community structure [21]. The
clique percolation method (CPM) [11], one of the well-known
overlapping community detection methods, focuses on finding
sets of k-cliques where a clique is a fully connected subgraph.
For example, a k-clique where k = 3 can be visualized as a
triangle and several triangles are merged into a community
when they have k − 1 nodes in common.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 3

Overlapping communities are more realistic depictions of
social networks as people belong to a number of communities
of family, friends, and colleagues. Recent research has paid
attention to developing community detection methods that can
find overlapping communities. Wen et al. [22], for exam-
ple, propose a multiobjective evolutionary algorithm based
on a maximal clique, to detect overlapping communities.
Our proposed method is based on the CPMw for weighted
graphs [15], but instead of using the CPMw threshold metric,
we employ the influence propagation model and the density
metrics for weighted graph into the process of detecting active
communities. In addition, we consider the time interval and
the aspects of interactions such as @ and RT, not just the
followership links, to show real interactions and verify actual
interest based on the use of hashtags in tweets.

B. Community Search and Discovery

Three common components exist in local community detec-
tion methods: first, the real-world problem is modeled as
either a binary or a weighted network; second, a goodness
metric is defined for characterizing the desired features of a
community; and third, an algorithm is proposed to search for
communities that maximize the goodness metric. According
to Cui et al. [23], such methods are referred to as community
search with maximality constraint, in contrast to community
search with threshold constraint.

For binary networks, where edges are either con-
nected or not, Wu et al. [24] categorized three types of
goodness metrics. The first considers a set of nodes as a
community when these nodes are densely connected with each
other. The metrics belonging to this category include classic
density [25], edge surplus [26], and minimum degree [27].
In the second category, not only is the internal density opti-
mized but the external sparseness also needs to be ensured.
Measures for this category include subgraph modularity [28],
density isolation [29], and external conductance [30]. The
third category ensures the set of nodes on the boundary
of a community is densely connected to the nodes in the
community but loosely connected to those outside the com-
munity. Local modularity [31] measuring the sharpness of the
boundary is optimized in this case. Recognizing that most of
these existing goodness measures suffer from the tendency
to include irrelevant subgraphs in the local community that
contains the query node, i.e., the so-called free rider effect,
Wu et al. [24] proposed a query-biased goodness metric to
ensure that such free riders are not included.

Most local community detections are based on weighted
networks modifying the goodness metric in binary cases to
incorporate edge weights. For example, given k-nodes in a
subgraph C = (V , E, W), a density metric that measures the
internal connectedness of a subgraph can be defined as the
ratio of the total edge weights to the number of vertices in
the subgraph

D =
∑

u,v∈V w(u, v)

|V | (1)

where w(u, v) is the weight between node u and v and |V | is
the cardinality of V .

A similar approach to ours has been proposed by Foroutan
and Hamzeh [32]. Their aim is to discover network structure
and the strength of edges using a nonparametric approach that
disregards the propagation model but takes into consideration
a set of observed information diffusion cascades with a static
network. Thus, their results measure the probability of spread-
ing a contagion from infected to uninfected nodes.

The main difference between our influence propagation
model and these works is that we model the dynamic com-
munication between social users in a specified time frame,
as a social graph, instead of just carrying out structure
analysis on the weighted social graph using static weights.
We propagate the communication strength of active edges to
their neighborhood edges iteratively to ensure current weakly
connected nodes will still have a chance to be included if the
neighborhood edges are highly influenced by the active edges.

C. Graph Partition

Graph partition deals with partitioning a graph G = (V , E),
with V vertices and E edges into smaller components,
where the number of edges between separated components is
minimum [33].

To partition a graph for parallelism, one either performs a
functional decomposition or a data decomposition. Functional
decomposition focuses on computation: that is, decomposing
the problem according to the tasks that need to be done on G.
Each task is a portion of the overall work. Data decomposition,
on the other hand, focuses on dividing the data associated with
the problem into roughly equal-sized components of edges and
nodes and then each processor works on a partition [33].

Many applications, such as disjoint and overlapping com-
munity detection methods, consider graph partition in their
approach for processing social graphs with acceptable time
costs [33]. Overlapping community detection problem is NP
complete [34] and massive graphs are expensive. To overcome
this problem, there has been research on developing parallel
overlapping community detection that performs well with
massive networks. Prat-Pérez et al. [35] have introduced scal-
able community detection for large graphs, using a weighted
community clustering metric weighted community clustering
metric (WCC) [36]. WCC is a metric for a quality score based
on triangular structures in a community. They use it to partition
the graph into communities and parallelize the process of the
computation to speed up the detection process. Their method
has the ability to detect overlapping and disjoint communities.

The problem of loading balanced components of a graph to
processors is an NP-hard problem [37], and many solutions
have been proposed to solve this problem. MapReduce [37]
is a well-known approach used to distribute function over
processors to boost efficiency. Low-degree distribution [38]
and PageRank [30] methods are also proposed to solve the
problem of loading balanced parts to processors. In this paper,
we propose an approach to partitioning the graph to improve
the performance of our influence propagation model. We rely
on data decomposition, and then balance the data on P proces-
sors. The approach is significantly different from other related
work as it partitions the graph based on weighted percolated
cliques (PCs). Details of this approach are in Section III.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE I

SUMMARY OF NOTATIONS

III. PROBLEM STATEMENT

In this paper, we focus on a weighted undirected simple
graph G = (V , E, W), where V represents the set of nodes,
E represents the set of edges, and W is a set of weight
functions w ∈ W . Note that each edge e = (u, v) ⊂ E ,
the weight w(e) =∑

(Interactions) ≥ 0 denotes the total fre-
quency of interactions between the node u and v for a
randomly selected time interval t. For example, in Twitter,
the weight will be calculated as: w(e) =∑

(@+ RT s), which
is the sum of interactions represented by mentions and retweets
for a given time interval t. Next, we define our problems and
introduce their preliminary concepts. Table I summarizes the
mathematical notations used throughout this paper.

Problem 1 (TIB-Community Detection): Find a community
C(V , E, W) ⊆ G, which is a set of connected k cliques, such
that: 1) ∀e ∈ E , e is active or close to active edges and
2) activity-biased density metric ρ(C) is maximized.

To address the connected k-cliques constraint, we first define
“clique.” A clique is a fully connected subgraph, and a PC is
a set of adjacent cliques, which means they share k−1 nodes.
For example, a k-clique where k = 3 can be visualized as a
triangle, so a PC of k = 3 can be visualized as connected
triangles.

In previous studies, the associated weight of an edge indi-
cates the extent to which the edge is active [39]. In the Twitter
network, an edge weighted 40 means it carries 40 interactions
and is likely to be regarded as an active edge. But an inactive
edge may also be important, especially if a majority of its
neighbors are highly active edges. In this paper, we define an
active edge based on the edge plus its neighbors and call this a
biased active edge. For example, an edge weighted 3 is usually
regarded inactive in the literature. However, if it has active

neighbors, it may become a biased active edge since it will be
reweighted by propagating the weights of these neighbors.

In the context of detecting temporal interaction-biased com-
munities, we argue that weakly connected edges are important.
They may only have a small influence in the current time
interval, but they may gain importance especially if they are
in a time-evolving and dynamic local community and not a
static one. In other words, they may become active after a
certain time if their neighborhood nodes are highly interactive.
Therefore, we propose an influence propagation model to
addresses the constraint 1) that e is active or close to the
active edge. It determines the potential weight of an edge and
redefines “active edges.”

A. Influence Propagation Model

Considering every edge e of the graph, the model determines
the weight of an edge by a two-step process. The first step is to
normalize the weight w(e) of an edge e based on the following
criteria:

N(e) =

⎧
⎪⎨

⎪⎩

1, w(e) ≥ n

w(e)/n, m ≤ w(e) < n

0, otherwise

(2)

where 0 ≤ N(e) ≤ 1, and the nonzero values indicate different
degrees of activity. When N(e) = 1 indicates a 100% active
edge. m and n in the above-mentioned equation are real
numbers m < n, that act as activities parameters and aim to
normalize the weights to be in range 0–1. These parameters
can be chosen empirically depending on a social network data
set. We consider this a straightforward way to weight edges,
using observed interactions. Other more sophisticated ways,
such as a Gaussian distribution, are also applicable.

Definition 1 (Active Edge ei): An edge ei is active when its
N(e) is equal to 1.

Definition 2 (Edge Close to Active Edge): It is neighbor
edge within h hops from an active edge ei .

The second step in the model is to propagate the normalized
weight of an active edge ei to its neighbor e based on

U(e) = λh · N(ei) (3)

λ(0 < λ < 1) is a decaying factor, h is the number of hops
between the current edge and its neighbors, and N(ei) is the
weight of an active neighbor of e. The computation of U(e)
is repeated for the next neighbor edge within h hops from e.
Then, the result of U(e) is stored in a hash table that will be
used to calculate the final weight f (e) for edge e

f (e) = 1−
∏

e∈E

U(e) (4)

f (e) multiplies the values in the hash table to determine the
new weight for the edge e. This learning model will take
the neighbors of an edge into consideration, which helps to
reweight an edge based on the activity of its neighbors as well.

The model aims to assign weights that consider temporal
interactions by taking into account the weight of neighboring
edges to an inactive edge. Thus, it considers not only current
time interval but also the influence probability of neighboring
edges.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 5

Fig. 2. (a) Example weighted graph and the same graph after applying (b) U(e) and (c) f (x) with λ = 0.5.

Fig. 3. Illustration of how TIB-community detection works, each
clique is colored. (a) Cliques k = 3. (b) Clique-based TIB communi-
ties (C0, C1, and C2).

Example 1: We consider a concrete example in Fig. 2. The
original weighted graph is given in Fig. 2(a). Applying N(e),
first step renormalizes weights from 0 to 1. When (3) is carried
out (∀e ∈ E

∧
N(e) �= 1), the results are stored in the hash

table as shown in Fig. 2(b). We have omitted some details to
avoid clutter. Finally, we use the hash table to compute the
final weight of each edge, as shown in Fig. 2(c), which is
computed using f (e) [see (4)].

The basic definition of k clique has been used to detect
overlapping communities. The well-known CPM defines com-
munities based on connected cliques. However, it ignores
the assigned weight factor for maximizing the density of a
detected community. This means that the basic definition of
CPM is not sufficient to find densely connected cliques in a
weighted graph, so we must first define the density metric
which we will use to find k cliques that have been assigned
the maximum weight by our proposed model and maximum
density by ρ(C).

Definition 3 (Activity-Biased Density): The density of an
activity-biased community is computed as follows:

ρ(C) =
∑

e∈C f (e)

|C| (5)

that is the sum of the biased weight within the community
divided by the size of the community, |C|.

The activity-biased density metric is an extension of work
done by Wu et al. [24]. It is used to evaluate the quality
of the communities by threshold limiting the cliques. Thus,
communities are found based on cliques C , where ρ(C) is
maximized.

Example 2: Continuing on the same graph in Fig. 2. Now
we have a remodeled weighted graph. Then, we find all
the cliques in the graph and computes their biased density
score (5), shown in Fig. 3(a). Next, the score of PCs is
computed (5). The PCs form one community only if their

biased density score is higher than the biased density score
of each clique; otherwise, each clique is community in itself.
Fig. 3(b) shows both the cases: the two left PCs have a lesser
density score when united, while the right part is a contradicted
case. The blue and the red PCs have high density when united.

Problem 2 (Graph Partition Based on Cliques): Find a set
of partitions R, where ∀r ∈ R contain: 1) nodes and edges that
belong to cliques structure and 2) balanced load of data (nodes
and edges) ready to be distributed over set of processors (P).

To solve the first constraint, we consider percolated
cliques PCs. The reason for choosing cliques as an important
element in our partition phase is to eliminate edges that
do not belong to any clique and which are irrelevant to
our TIB-community detection. By focusing only on cliques,
we reduce memory consumption and improve the performance
of the influence propagation model and of the TIB-community
detection. For this reason, every partition consists only of
connected cliques.

The second constraint is balancing the partitions on proces-
sors and ensuring that each processor has an acceptable
amount of data to process. The complexity of solving this
problem is NP complete [40]. Several heuristics have been
developed in an attempt to find a solution [33], [37], [41]. Our
contribution is to assign each PC to a partition. The number
of partitions should be equal to the number of processors, and
each partition will be assigned to a processor. If we have more
PCs than available partitions, we use our objective function (J)
to evenly assign the excess PCs to the partitions. This should
give us a balanced number of PCs on each partition, which
means a balanced number of distributed R partitions on P
processors. For example, if there are 30 PCs and six partitions
for six processors, we assign the first six PCs one to each
partition, and the rest are assigned based on the computation
of the objective function.

Definition 4 [Objective Function (J)]: It is a function for
assigning PCs to the available partitions evenly, if the follow-
ing conditions are satisfied.

1) The number of partitions (R) is more than the number
of processors (P), R ≥ P .

2) Every partition r ∈ R ⊂ G has almost the same number
of PCs.

3) The objective function (J) is minimized.
To ensure that these conditions are satisfied, we compute

the following for each unassigned pc ∈ PCs with r ∈ R:
J (r) =

[∑
(Pe − Ē)

]
+

[∑
(Pv − V̄)

]
(6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 4. (a) Example of a simple graph. (b) PCs are shown in red and labeled
PC1, PC2, and PC3.

where Pe is the number of edges in the processor P , Pv is
the number of vertices in the processor P , and Ē is the total
number of edges in pci set and in the extra data set of each
processor. The extra data set holds all the neighboring edges
of the cliques. We calculate Ē as follows:

Ē =
∣
∣
∣Edges

(
pci

⋃
pc	i

)∣
∣
∣ (7)

where pci is percolated cliques ∈ PC set, pc	i is extra data
for pci , which is a set of weighted edges that are within
h-hops distance from the edges in pci and h is a parameter of
any number > 0 that can be altered as required, and V̄ is the
total number of vertices in PCs set and extra data set in each
processor

V̄ =
∣
∣
∣Vertics

(
pci

⋃
pc	i

)∣
∣
∣. (8)

Example 3: Take the graph example in Fig. 4(a); to parti-
tion this graph, we first find the cliques and then the PCs. The
resulting PCs are shown in Fig. 4(b) in red. Assuming we
have two processors (P = 2), then we need two partitions,
one partition for each processor. The problem is how to
divide these three PCs to the two partitions as evenly as
possible. To solve it, we compute objective function (J). First,
we distribute PC1 to partition 1 and PC2 to partition 2; but
PC3 has to be assigned according to the result of the objective
function.

The result, when adding PC3 to PC1 in partition 1, is
[(5+ 5)− (25+ 25)] + [(4+ 4)− (11+ 11)] = (10− 50)+
(8 − 22) = 54. The result when adding PC3 to PC2 in
partition 2 is [(3+ 5)− (15+ 25)] + [(3+ 4)− (8+ 11)] =
(8− 40)+ (7− 19) = 32+ 12 = 44. Based on these results,
PC3 will be added to partition 2 along with PC2 and will
be assigned to processor 2, because it gives a lower score for
objective function than partition 1.

IV. FRAMEWORK

The framework of our approach is shown in Fig. 5. There
are three phases; the first phase is the graph partitioning, which
uses PCs and our objective function (J). Here, the nodes
and edges that do not belong to cliques are eliminated.
The second phase calculates the influence propagation model
for each partition. The third phase detects communities by
TIB-community detection method. The input for our approach
begins with G = (V , E, W), which is an undirected weighted
graph and a given number of processors. The expected output
is sets of communities.

The description of each phase of the algorithm for solving
the problem of partitioning the graph based on weighted
cliques is shown in Section IV-A, along with the influence
of the propagation model and the TIB-community detection
algorithms.

A. Algorithms

Here, we describe our algorithms for solving the problem
of TIB communities in a massive graph.

Algorithm 1 Pseudocode of the Partition Phase
Require: G(V , E, W), hops, P
1: C ← FindCliques(G)
2: PC ← FindPercolatedCliques(C)
3: h ← 1
4: for e ∈ PC and h < hops do
5: N P ← FindNeighbours(e)
6: h ← h + 1
7: end for
8: repeat
9: Assign n PCs to n processors Ps

10: if PCi is unassigned to Pi then
11: J(Pi , PCi +n) [Equation 6]
12: Assign PCi with lowest score to Pi

13: end if
14: until all PCs are assigned to P
15: return set of P .

1) Graph Partitioning: The algorithm for the graph partition
is shown in Algorithm 1. It takes the undirected weighted
graph as an input as well as a number of both hops and
processors P . We start the partition by finding the cliques
(line 1) and then the PCs of k = 3 (line 2). Next, we collect
the neighbors of every edge in the PCs within h number of
hops (lines 3–7), which will be used in the computation of the
influence propagation model. After that, we assign a number
of PCs to partitions such that if we have six partitions, then we
assign six PCs (line 9). The remaining PCs will be assigned
based on the computation of our J (lines 10–13). The partition
process finishes when all PCs are assigned evenly across the
partitions (lines 14–15).

2) Influence Propagation Model: The algorithm for the
influence propagation model is shown in Algorithm 2.

We first normalize the initial weight using P(e), as shown
in lines (2–4). For every edge e whose P(e) < 1 (line 5),
we initialize: 1) h, number of hops from the edge to its
neighbors; 2) N , which is a set containing e-neighbors; and
3) hash table for e (line 6). We then find the neighbors
of e using a breadth-first search and store them in N . Then,
calculate U(e) and store the result in the hash table. This
process repeats until the maximum hop constraint h < 4 is
reached (lines 7–11). Next, we take the set of weights U(e)
in the hash table as input (line 13), and output the f (e) values
for that edge e (line 14). The process repeats until all edges
are processed to output the set W with the biased weight
(line 16).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 7

Fig. 5. Framework of our approach.

Algorithm 2 Influential Propagation Model
Require: set of P
1: W ← { }
2: for all e ∈ E do
3: P(e)← w(e) [Normalize the weight]
4: end for
5: for every e with P(e) < 1 do
6: h ← 1, N ← { } H ashTable = { }
7: while h < 4 do
8: N ← FindNeighbours(e)
9: H ashT able← U(e) [Equation 3]

10: h ← h + 1
11: end while
12: end for
13: for all U(e) ∈ H ashT able do
14: W ← compute f(e) [Carry out the final weight calcula-

tion using Equation 4]
15: end for
16: return G(V , E, W)

3) TIB-Community Detection: The algorithm for the TIB-
community detection is shown in Algorithm 3.

TIB-community detection is based on CPMw [15]. This
approach has high accuracy in finding highly dense communi-
ties. It takes G(V , E, W) as an input and identifies overlapped
community structures using connected cliques. The algorithm
first obtains a set of all maximal cliques that cannot be further
extended beyond size k, as shown in Fig. 3(a). We consider
all the adjacent cliques that share k−1 nodes in common. The
original CPMw considers cliques only with an intensity score
higher than a threshold of θ , calculated as

I (G) =
(

∏

e∈E

we

)|E |
. (9)

This function allows k-cliques to contain links weaker than
the threshold, and therefore, the resulting communities contain
k-cliques with intensities higher than I . However, in this paper,
we replace the intensity function I (G) with our own biased
density measure ρ(C) from equation 5 to threshold limit the
cliques. Our biased density measure can find TIB communities
that are not necessarily a set of connected cliques. Next,
we compute the density ρ(C) for the PCs as the union of

Algorithm 3 TIB-Community Detection Method

Require: G(V , E, W), k.
1: C L ← { }, P L ← { }. [Initialise Cliques set (C L) and

Percolated Cliques set (P L)]
2: C L ← FindClique(G, k) [Find all maximal size k cliques]
3: for all cli ∈ C L do
4: D← ρ(cli) [Using Equation 5]
5: if cli ∪ cli+1 is True then
6: P L[pli] ← cli ∪ cli+1 [add cliques to percolated

cliques set]
7: D← ρ(pli)
8: end if
9: for all cli ∈ pci [For all cliques in a percolated cliques]

do
10: if D[pli] ≥ D[cli] [Compare percolated cliques score

with its cliques density score] then
11: C ← pli

12: else
13: C ← cli , cli+1 [Cliques having higher density score

Separated]
14: end if
15: end for
16: end for
17: return A set of TIB communities C = {C0, C1, . . . }

maximally reachable k-cliques (lines 3–8). We also compute
ρ(pli), ∀pli ∈ P L in order to compare the density and
choose either the union of the cliques or the cliques themselves
(lines 9–17) as the final identified TIB communities [see
Fig. 3(b)].

V. EXPERIMENT

In this section, we conduct extensive experiments over real
data sets to evaluate the efficiency and effectiveness of the
proposed algorithm.

A. Experiment Setting

This experiment was carried out on Windows 7, a 64-bit
operating system IntelCore i7, CPU 3.4 GHz with
16 GB RAM. To assess the TIB-community detection and
influence propagation, we conducted our experiments over
three real data sets then compared the outputs from the TIB

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE II

OVERVIEW OF THE DATA SETS USED IN THE EXPERIMENT

and CPMw methods. To evaluate the efficiency of our partition
algorithm, we compared the time cost for the influence propa-
gation model: once after partition and again without partition.

After partitioning the data sets, we applied the influence
propagation model, which begins with the process of normal-
izing the weights of edges so their maximum values are 1.
The decay factor was set as λ = 0.5 for all experiments,
and the k clique value was set to 3. The normalized weight
was propagated to neighbors using the influence propagation
model. The model takes our data set as the input graph G.
To measure the model’s performance, we assessed the time
cost, the probability of activities, and the density score of each
detected community.

B. Data sets

We used three real-world weighted graphs: Twitter,
Facebook, and Amazon. Data set statistic information is shown
in Table II. The Twitter data set used in this paper was
obtained from the Twitter application programming interface,
from Twitter Inc., which is freely available to researchers
and Twitter application developers [42]. Seed users were
randomly chosen to begin the data collection. The nodes of
the graph represent users of Twitter, and the edges represent
followership and interaction links. For example, edge (v, u)
with weight w(30) represents an interaction involving user
v following user u and were communicated using either a
mention or a retweet, or both, at least 30 times in a particular
time interval. We collected two snapshots of Twitter data sets,
between June 2015 and December 2015, and 20 weeks apart.
Facebook [43] and Amazon data sets [44] are both publicly
available. The weights in the Facebook data set describe
the frequency of message exchanges between users, while
weights in the Amazon data set describe the frequency of
product purchases by certain users. Note that the weights
in the Amazon data set were randomly assigned to edges,
as the original data set did not include weight information;
therefore, the random weight assignment is used to prove our
approach. Table II shows the number of cliques in each data
set. The data sets are not sparse and not extensively dense,
similar to the real-world social networks.

C. Experiment Results

The effectiveness was measured by the detected communi-
ties, the number of active edges in those communities, and the
dynamic effect. We also evaluated efficiency in terms of the
run time of the algorithms.

1) Effectiveness of TIB Models: Table III shows the num-
bers of communities detected by TIB and CPMw. The number

TABLE III

NUMBER OF COMMUNITIES DETECTED USING
THE TWO DIFFERENT METHODS

Fig. 6. (a)–(c) Active users (%) per community on each data set. (d) Biased
density score of top-10 Twitter communities.

detected by TIB is less than that detected by CPMw. All com-
munities detected by TIB are subsets of CPMw communities.
All TIB communities are dense and contain mostly active
edges, indicating that the biased density score and the influ-
ence propagation model are both able to detect most active,
dense communities. Fig. 6(a)–(c) shows the percentage of
activities in the detected communities by TIB and CPMw,
in Twitter, Facebook, and Amazon, respectively. It can be
seen that in all the three data sets, the TIB significantly
outperforms CPMw in detecting active communities. We can
safely conclude that CPMw produces irrelevant communities
because of its inclusion of more inactive edges.

We also tested the effectiveness of the TIB-community
detection at different time intervals. Fig. 6(d) shows the biased
density scores for Twitter communities in snapshots 1 and 2.
The weight and density scores in snapshot 2 are signifi-
cantly higher than in snapshot 1 for the 10 top communities,
because most members in such communities maintain their
interactions over time. Consequently, it can be seen that our
TIB-community detection method and TIB density scores can
help better track long-living communities in real networks.

2) Efficiency of Influence Propagation Models: Since the
most time-consuming part of our approach is the influence
propagation model, we applied our partition approach to the
input graph G to partition it into smaller components so that
each component is processed by the influence propagation
model independently, by one of the processors. Fig. 7 shows
the execution time of our influence propagation model for
each data set. For each data set, we have compared the time

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 9

Fig. 7. Time cost for influence propagation model on sequential processor, with partition and sequential processor and partition with multiprocessors.
(a) Twitter. (b) Amazon. (c) Facebook.

Fig. 8. Time cost over h-hops. (a) Twitter. (b) Amazon. (c) Facebook.

cost for the influence propagation model, with and without
graph partitioning. From Fig. 7, we see that the execution time
for the influence propagation model is significantly improved
when done after partitioning the graph, in both sequential and
parallel execution. However, a better performance of the model
is shown when the model is executed in parallel over number
of processors in all the three data sets. The first reason for
this is that the influence propagation model takes the input
of the R partitioned graph. Each partition consists of a set of
PCs and a set of extra data associated with those cliques only.
The second reason is the size of PCs: for example, the Twitter
data set consists of 30 PCs, and the biggest of these have
about 300 vertices, some of which have active edges before
applying the model which means these active edges are not
included in the calculation of influence propagation. A third
reason is memory consumption; it is improved, because in the
partition phase, we eliminated all the edges that do not belong
to cliques, decreasing the sizes of the partitions.

Broadly speaking, we see that TIB achieves good scalability
on large graphs. We tested the theoretical upper bound on
the number of h hops in the influence propagation model,
executing the model three times on each data set, on different
h-hops. We noticed that h-hops play an important role in
scalability. As Fig. 8 shows, the larger a h-hop, the larger
the cost of time of the influence propagation model, in all our
data sets. Thus, the time cost is upper bounded by the number
of h-hops used in the influence propagation model: the more
hops included, the more time it takes.

D. Static Evaluation

We evaluate our TIB-community detection method over a
static graph structure, Zachary’s karate club network [45].
We apply F1 [46] and NF1 [47] metrics, then compared the
results with the state of the art approach Fine-tune Qds [32]
and CPM community detection methods.

1) Data Set: Zachary’s karate club network consists
of 34 nodes, representing members of a karate club in the
United States and 78 edges representing friendships between
club’s members. The friendships ties split into two groups,
due to a conflict within the club. These two groups have been
treated as ground truth communities. Fig. 9(a) shows the club’s
structure.

2) Metrics: We evaluate the quality of community using
two metrics:

1) F1 is the harmonic average of precision and recall of a
community:

F1 = 2
precision ∗ recall

precision+ recall
, F1 ∈ [0, 1] (10)

where precision is the percentage of nodes in detected
community that is belonging to the ground truth commu-
nity, and recall is the percentage of nodes in the ground
truth community covered by detected community.

2) NF1 is the normalized version of F1. It accurately
characterizes the adherence of a graph partition to a
ground truth [47]:

NF1 = F1 ∗ Coverage

Redundancy
, NF1 ∈ [0, 1] (11)

where Coverage is the total number of matched com-
munities divided by the number of detected communi-
ties. Redundancy is the total number of ground truth
communities divided by the number of the detected
communities.

Table IV presents the metric values of the community
structures detected by the three algorithms on Zachary’s karate
club network. It shows that fine-tuned Qds achieved the highest
value of F1 while CPM and TIB achieved the highest value
of NF1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 9. Community structures of the detected communities by TIB, CPM, and fine-tuned Qds on Zachary’s karate club network. (a) Ground truth communities.
(b) Communities detected with TIB and CPM. (c) Communities detected with fine-tuned Qds [32].

TABLE IV

METRIC VALUES OF THE COMMUNITY STRUCTURES DETECTED BY
Fine-Tuned Qds, CPM, AND TIB (BOLD FONT DENOTES

THE BEST VALUE FOR EACH METRIC)

Zachary’s karate club network consists of two ground
truth communities. Fine-tuned Qds detected four communities,
whereas TIB and CPM detected three communities excluding
node 10, because it does not belong to a clique of k = 3.
Fig. 9(b) shows the detected communities by TIB and CPM
and Fig. 9(c) shows the detected communities by fine-tuned
Qds which relies on the modularity density score [48] to detect
communities.

Note that the Zachary’s karate club network is an
unweighted network. Thus, the detected communities by CPM
and TIB are the same, because both CPM and TIB detect over-
lapping communities based on their clique structure. However,
TIB also includes density score ρ(C), but since the Zachary’s
karate club network does not include edge weights/activities,
the communities are detected by their stricture.

The fine-tuned Qds and TIB-community detection methods
both aim to discover meaningful dense communities. However,
TIB-community detection performs best with weighted graphs
and the influence propagation model to discover not only dense
communities but also active communities over time.

VI. CASE STUDY

We conducted a case study on another Twitter data set, this
one consisting of 40 224 nodes and 50 000 edges. The aim of
this case study was to validate the following.

1) The influence propagation model can help predict active
communities with ongoing interactions over long periods
of time in a dynamic social network.

2) The influence of community size on the number of
interactions in dynamic communities is different from
those in static communities.

3) The communities detected by our approach have sets of
common interests, which keep interaction alive longer.

TABLE V

COMMUNITIES AND THEIR STATISTICS

We randomly picked 15 communities of different sizes in
the range of [20–8171], Table V. We collected their tweets
between 26 October 2015 and 27 December 2015 and filtered
them based on weekly timestamps [t1–t8]. We extracted their
RT and @ interactions with other members of the community,
removed self-edges, and counted the frequency of interac-
tions as weighted edges. In Sections VI-A–VI-C, we show
our analyses of these communities, including the evolution
of interactions, the effect of community size on members’
activities, and the community theme of interests, based on their
use of hashtags #.

A. Evolution of Interactions

Fig. 10 shows the number of interactions over eight
timestamps for six communities of different sizes. Of the
detected communities, 70% have continuous interactions over
the eight timestamps, but all had their minimum interactions at
t4 and t8, and interactions increased in the following weeks.
After analysis, we noticed that t4 and t8 were weeks of
public holidays: t4 being U.S. Thanksgiving and t8 Christmas.
People at these times tended to gather and meet face to
face instead of using social media, which explains the drop
in interaction for these timestamps [49]. In general, most
communities had active interactions over two months even
without static or followership links. From these results, we can
say that our influence propagation model and the TIB method,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 11

Fig. 10. Evolution of interactions over time for detected communities. (a) Community Id.4. (b) Community Id.7. (c) Community Id.9. (d) Community Id.11.
(e) Community Id.14. (f) Community Id.15.

which is based on the clique of k = 3, can help predict long-
living, active, and dynamic communities.

B. Size of Community

There appears to be a relationship between the size of
a community and the number of interactions within it.
As Zhang et al. [50] stated, the size of a community is an
important factor when measuring its influence. Wagenseller
and Wang [51] argued that the smaller the size of a community,
the stronger are its ties and density; however, we argue that
while this may be correct in static communities based on
friendship links, it does not apply particularly well to dynamic
communities where links are based on interactions, and only
survive if members kept communicating. In Table V, we show
each community size, the average number of interactions, and
the average density score over eight timestamps. As shown
in Table V, the average number of interactions increases with
a community’s size; for example, community C2 of size 20,
meaning it has 20 members, and average interactions over
two months were 1.375, which means their interaction lasted
for a week or less. In contrast, the small community C14,
size 29, had an average 167.75 of interactions over two
months. In addition, the sizes of communities C2, C3, C4,
C5, and C6 are less than a hundred, and their average of inter-
actions is limited over time. Thus, in dynamic communities,
where the relationship between community members is based
on interactions, it is better to consider larger communities
which show strong ties, as the density scores prove, with
stronger interactions over long period of time. In addition,
our TIB method is based on cliques of size 3, which means

TABLE VI

EXAMPLE OF HASHTAGS USED FOR SOME TOPICS

large TIB communities in dynamic networks are dense and
have a high probability of living for long time with continuous
interactions, such as community Id C15, size 8171.

C. Topic of Interest

It is usual that members of a dynamic community share sim-
ilar interests that trigger their interactions and build the edges
between them and other members of dynamic communities.
In the literature, authors focus on detected topic-based commu-
nities by extracting topics from users’ profiles such as tweets
and celebrities [10], [52]. However, we believe that if users of
dynamic communities keep communicating for long periods of
time, then they have common interests. Therefore, we analyzed
the use of hashtags in the 15 communities to check this
hypothesis. To be specific, we checked if a community had a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

common theme of topics based on their use of hashtags from
t1–t8. Table VI shows the common hashtags used to refer to
topics such as politics, sport, or holidays. These topics were
most common amongst the selected communities as they were
in news headlines at that time. According to Michelson and
Macskassy [53], 85% of trending Twitter topics are related to
news headlines. In our analysis, we found that TIB and the
influence propagation model could detect communities that
not only were active but that shared common interests. For
example, some communities kept interacting over two months
about sport, talking about a football game or its players.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose an approach to detect tem-
porally active and dense communities, making use of the
biased density metric and the influence of active users with
the frequency of their interactions with the neighborhood.
We argue that weakly connected edges in the network are
important. They may have only a small influence at the current
time, but, particularly if they are part of a time-evolving
and dynamic local community and not a static one, may
gain importance later: in other words, they may become
active after a certain time if their neighborhood nodes are
highly interactive. Therefore, we redefine the “active edges”
and propose an influence propagation model to determine
the potential weight of an edge. The influence propagation
model helps mirror the probabilities of edge activities by
increasing the probability of activity for the inactive edges
that act as bridges between highly active edges. As we show
in our experiment, communities detected by clique-based
TIB-community detection are dense and active in a time-
evolving social network. Because of this, we contend our
influence propagation model and the TIB-community detection
method will be useful in many applications, including dynamic
interaction tracking, link predictions, and the placement of
advertisement in social networks.

We also propose an objective function to partition the graph
by decomposing the data and distributing them evenly across
the available processors. Our approach is different from other
recent approaches as it makes use of the clique structure of
the graph, and important edges are not lost when useless edges
and nodes are removed, because they do not belong to cliques.
This approach required little memory consumption and showed
a significant decrease in computation time, because the model
runs on partitions and only computes the influence probability
for the inactive edges in these partitions.

We evaluated our TIB-community detection over Zachary’s
karate club network using F1 and NF1 metrics and compared
the results with the state-of-the-art method CPM and fine-
tuned Qds. TIB gives the same competitive result as the CPM
but slightly different than fine-tuned Qds. We believe that our
approach performs best with dynamic structure, because the
volume of interactions can only be seen there. We use this
attribute to discover temporal interactions biased communities
in social networks.

We conducted a case study to show the effectiveness of
our approach on a dynamic Twitter network. We tracked

15 detected dynamic communities over two months and ana-
lyzed their interactions, density, and topics, and the relation-
ship of size to their activity over time. The communities we
examined all showed interactions over a continuous period
using constant hashtag topics. These results indicate that
the qualities of a community under study are useful, as its
members have common interests based on the topics they
discuss and this result in ongoing interactions.

In the future, we aim to develop a time interval model that
combines our influence propagation model and a time interval
parameter. This will help in finding dense active communities.
The model will incorporate the knowledge of graph structure
and node attributes, in addition to time gaps.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions that helped them
to improve the presentation of this paper considerably.

REFERENCES

[1] Sensis. (Jun. 2016). Sensis Social Media Report 2016: How Australian
People and Businesses are Using Social Media. [Online]. Available:
www.sensis.com.au/asset/PDFdirectory/Sensis_Social_Media_Report
_2016.PDF

[2] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: Understand-
ing microblogging usage and communities,” in Proc. ACM 9th WebKDD
1st SNA-KDD Workshop Web Mining Soc. Netw. Anal., 2007, pp. 56–65.

[3] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 70, no. 6, p. 066111, 2004.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory
Experim., vol. 2008, no. 10, p. P10008, 2008.

[5] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proc. Nat. Acad. Sci. USA,
vol. 105, no. 2, pp. 1118–1123, 2008.

[6] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 3,
p. 036106, 2007.

[7] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 74, no. 3, p. 036104, 2006.

[8] H. Chun, H. Kwak, Y.-H. Eom, Y.-Y. Ahn, S. Moon, and H. Jeong,
“Comparison of online social relations in volume vs interaction: A case
study of cyworld,” in Proc. 8th ACM SIGCOMM Conf. Internet Meas.,
2008, pp. 57–70.

[9] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in Proc. 4th ACM
Eur. Conf. Comput. Syst., 2009, pp. 205–218.

[10] K. H. Lim and A. Datta, “An interaction-based approach to detecting
highly interactive twitter communities using tweeting links,” Web Intell.,
vol. 14, no. 1, pp. 1–15, 2016.

[11] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[12] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, 2010.

[13] D. Zheng, J. Liu, R.-H. Li, C. Aslay, Y.-C. Chen, and X. Huang,
“Querying intimate-core groups in weighted graphs,” in Proc. IEEE 11th
Int. Conf. Semantic Comput. (ICSC), Jan./Feb. 2017, pp. 156–163.

[14] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” Proceedings VLDB Endowment, vol. 8, no. 5,
pp. 509–520, 2015.

[15] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, “Weighted network modules,”
New J. Phys., vol. 9, no. 6, p. 180, 2007.

[16] T. Price, F. I. Peña, III, and Y.-R. Cho, “Survey: Enhancing protein
complex prediction in PPI networks with GO similarity weighting,”
Interdiscipl. Sci., Comput. Life Sci., vol. 5, no. 3, pp. 196–210, 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALDUAIJI et al.: INFLUENCE PROPAGATION MODEL FOR CLIQUE-BASED COMMUNITY DETECTION IN SOCIAL NETWORKS 13

[17] N. Alduaiji, J. Li, A. Datta, X. Lu, and W. Liu, “Temporal interaction
biased community detection in social networks,” in Proc. 12th Int.
Conf. (ADMA), Gold Coast, QLD, Australia, Dec. 2016, pp. 406–419.

[18] T. Aynaud and J.-L. Guillaume, “Static community detection algorithms
for evolving networks,” in Proc. IEEE 8th Int. Symp. Modeling Optim.
Mobile, Ad Hoc Wireless Netw. (WiOpt), May/Jun. 2010, pp. 513–519.

[19] M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577–8582, 2006.

[20] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proc. ACM 19th Int.
Conf. World Wide Web, 2010, pp. 631–640.

[21] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,” ACM
Comput. Surv., vol. 45, no. 4, 2013, Art. no. 43.

[22] X. Wen et al., “A maximal clique based multiobjective evolutionary
algorithm for overlapping community detection,” IEEE Trans. Evol.
Comput., vol. 21, no. 3, pp. 363–377, Jun. 2017.

[23] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in Proc. SIGMOD, 2014, pp. 991–1002.

[24] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detection:
On free rider effect and its elimination,” Proceedings VLDB Endowment,
vol. 8, no. 7, pp. 798–809, 2015.

[25] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang, “Dense
subgraphs with restrictions and applications to gene annotation graphs,”
in Research in Computational Molecular Biology. Berlin, Germany:
Springer, 2010, pp. 456–472.

[26] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarl, “Denser
than the densest subgraph: Extracting optimal quasi-cliques with quality
guarantees,” in Proc. SIGKDD, 2013, pp. 104–112.

[27] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in Proc. SIGKDD, 2010, pp. 939–948.

[28] F. Luo, J. Z. Wang, and E. Promislow, “Exploring local community
structures in large networks,” in Proc. Conf. WI, 2006, pp. 233–239.

[29] K. J. Lang and R. Andersen, “Finding dense and isolated submarkets in
a sponsored search spending graph,” in Proc. CIKM, 2007, pp. 613–622.

[30] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in Proc. FOCS, 2006, pp. 475–486.

[31] A. Clauset, “Finding local community structure in networks,” Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 72, p. 026132,
Aug. 2005.

[32] N. Foroutan and A. Hamzeh, “Discovering the hidden structure of a
social network: A semi supervised approach,” IEEE Trans. Comput.
Social Syst., vol. 4, no. 1, pp. 14–25, Mar. 2017.

[33] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering. Cham,
Switzerland: Springer, 2016, pp. 117–158.

[34] X. Liu, J. Suo, S. C. H. Leung, J. Liu, and X. Zeng, “The power of
time-free tissue p systems: Attacking np-complete problems,” Neuro-
computing, vol. 159, pp. 151–156, Jul. 2015.

[35] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High quality,
scalable and parallel community detection for large real graphs,” in Proc.
ACM 23rd Int. Conf. World Wide Web, 2014, pp. 225–236.

[36] M. Saltz, A. Prat-Pérez, and D. Dominguez-Sal, “Distributed community
detection with the WCC metric,” in Proc. ACM 24th Int. Conf. World
Wide Web, 2015, pp. 1095–1100.

[37] A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, and F. Pellegrini,
“Applying graph partitioning methods in measurement-based dynamic
load balancing,” Lawrence Livermore Nat. Lab., Livermore, CA, USA,
Tech. Rep. LLNL-TR-501974, 2011.

[38] M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett.,
vol. 89, no. 20, p. 208701, Oct. 2002.

[39] B. Tsolmon and K.-S. Lee, “Extracting social events based on time-
line and user reliability analysis on twitter,” in Proc. CICLing, 2014,
pp. 213–223.

[40] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: Freeman,
1990.

[41] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-
node graph,” in Proc. IEEE 30th Int. Conf. Data Eng., Mar./Apr. 2014,
pp. 568–579.

[42] K. H. Lim and A. Datta, “Following the follower: Detecting communities
with common interests on twitter,” in Proc. Conf. Hypertext Soc. Media,
2012, pp. 317–318.

[43] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
2015.

[44] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
Netw., vol. 31, no. 2, pp. 155–163, May 2009.

[45] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” J. Anthropol. Res., vol. 33, no. 4, pp. 452–473, 1977.

[46] S. Wagner and D. Wagner, Comparing Clusterings: An Overview.
Karlsruhe, Germany: Univ. Karlsruhe, 2007.

[47] G. Rossetti, L. Pappalardo, and S. Rinzivillo, “A novel approach to
evaluate community detection algorithms on ground truth,” in Complex
Networks VII. Cham, Switzerland: Springer, 2016, pp. 133–144.

[48] M. Chen, T. Nguyen, and B. K. Szymanski. (Jul. 2015). “A new
metric for quality of network community structure.” [Online]. Available:
https://arxiv.org/abs/1507.04308

[49] H. W. Kwon, M. Choi, H. S. Kim, and K. Lee, “Dynamic characteristics
of tweeting and tweet topics,” J. Korean Phys. Soc., vol. 60, no. 4,
pp. 590–594, 2012.

[50] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement
meets similarity: Efficient (k,r)-core computation on social networks,”
Proceedings VLDB Endowment, vol. 10, no. 10, pp. 998–1009, 2017.

[51] P. Wagenseller, III, and F. Wang. (Dec. 2016). “Community detection
algorithm evaluation using size and hashtags.” [Online]. Available:
https://arxiv.org/abs/1612.03362

[52] A. Reihanian, B. Minaei-Bidgoli, and H. Alizadeh, “Topic-oriented
community detection of rating-based social networks,” J. King Saud
Univ.-Comput. Inf. Sci., vol. 28, no. 3, pp. 303–310, 2016.

[53] M. Michelson and S. A. Macskassy, “Discovering users’ topics of
interest on twitter: A first look,” in Proc. ACM 4th Workshop Anal.
Noisy Unstructured Text Data, 2010, pp. 73–80.

Noha Alduaiji received the B.Sc. degree in computer science from Qassim
University, Buraydah, Saudi Arabia, in 2008, and the M.Sc. degree in
information systems from the University of Tasmania, Hobart, TAS, Australia,
in 2010. She is currently pursuing the Ph.D. degree in computer science with
The University of Western Australia, Perth, WA, Australia.

She is a Lecturer with Majmaah University, Al Majmaah, Saudi Arabia.
Her current research interests include social networks analysis, community
detections, and data analysis.

Amitava Datta received the M.Tech. and Ph.D.
degrees from IIT Madras, Chennai, India, in 1988
and 1992, respectively.

He did the post-doctoral research at the Max
Planck Institute for Informatics, Saarbrücken, Ger-
many, and the University of Freiburg, Breisgau,
Germany. He joined the University of New England,
Armidale, NSW, Australia, in 1995, and The Uni-
versity of Western Australia, Perth, WA, Australia,
in 1998, where he is currently a Professor with
the Department of Computer Science and Software

Engineering. He has authored over 150 papers in various international
journals and conference proceedings, including the IEEE TRANSACTIONS ON
COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, the IEEE
TRANSACTIONS ON MOBILE COMPUTING, and the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS. His current research interests
include data mining, bioinformatics, social network analysis, and quantum
computing.

Jianxin Li received the Ph.D. degree in computer
science from the Swinburne University of Technol-
ogy, Hawthorn, VIC, Australia, in 2009. He is a
Senior Lecturer with the School of Computer Sci-
ence and Software Engineering, The University of
Western Australia, Perth, WA, Australia. His current
research interests include database query processing
and optimization, social network analytics, and traf-
fic network data processing.

