

@IJRTER-2017, All Rights Reserved 137

DARE: A Deduplication-Aware Resemblance

Detection and Elimination Scheme for Data

Reduction with Low Overheads
Dr.K.Srinivas Babu*1 L.Kalyani*2

 *1Professor Department of Computer Science and Engineering *2M.Tech

Abstract—Data reduction has become increasingly

important in storage systems due to the explosive

growth of digital data in the world that has ushered in

the big data era. One of the main challenges facing

large-scale data reduction is how to maximally detect

and eliminate redundancy at very low overheads. In this

paper, we present DARE, a low-overhead

deduplication-aware resemblance detection and

elimination scheme that effectively exploits existing

duplicate-adjacency information for highly efficient

resemblance detection in data deduplication based

backup/archiving storage systems. The main idea

behind DARE is to employ a scheme, call Duplicate-

Adjacency based Resemblance Detection (DupAdj), by

considering any two data chunks to be similar (i.e.,

candidates for delta compression) if their respective

adjacent data chunks are duplicate in a deduplication

system, and then further enhance the resemblance

detection efficiency by an improved super-feature

approach. Our experimental results based on real-world

and synthetic backup datasets show that DARE only

consumes about 1/4 and 1/2 respectively of the

computation and indexing overheads required by the

traditional super-feature approaches while detecting 2-

10 percent more redundancy and achieving a higher

throughput, by exploiting existing duplicate-adjacency

information for resemblance detection and finding the

“sweet spot” for the super-feature approach

Keywords— Data deduplication, delta compression,

storage system, index structure, performance evaluation

I. INTRODUCTION

The amount of digital data is growing explosively,
as evidenced in part by an estimated amount of about
1.2 zet- tabytes and 1.8 zettabytes respectively of data
produced in 2010 and 2011 [1], [2]. As a result of this
“data deluge”, man- aging storage and reducing its
costs have become one of the most challenging and
important tasks in mass storage sys- tems. According
to a recent IDC study [3], almost 80 percent of
corporations surveyed indicated that they were
exploring data deduplication technologies in their
storage systems to increase storage efficiency.

Data deduplication is an efficient data reduction
approach that not only reduces storage space [4], [5],
[6], [7], [8], [9], [10] by eliminating duplicate data
but also mini- mizes the transmission of redundant
data in low-bandwidth network environments [11],
[12], [13], [14]. In general, a chunk-level data
deduplication scheme splits data blocks of a data
stream (e.g., backup files, databases, and virtual
machine images) into multiple data chunks that are
each uniquely identified and duplicate-detected by a
secure SHA-1 or MD5 hash signature (also called a
fingerprint) [5], [11]. Storage systems then remove
duplicates of data chunks and store only one copy of
them to achieve the goal of space savings.

While data deduplication has been widely
deployed in storage systems for space savings, the
fingerprint-based dedu- plication approaches have an
inherent drawback: they often fail to detect the
similar chunks that are largely identical except for a
few modified bytes, because their secure hash digest
will be totally different even only one byte of a data
chunk was changed [4], [5], [12], [15], [16]. It
becomes a big challenge when applying data
deduplication to storage data- sets and workloads that
have frequently modified data, which demands an
effective and efficient way to eliminate redun- dancy
among frequently modified and thus similar data.

Delta compression, an efficient approach to
removing redundancy among similar data chunks has
gained increas- ing attention in storage systems [12],
[17], [18], [19], [20]. For example, if chunk A2 is
similar to chunk A1 (the base- chunk), the delta
compression approach calculates and then only stores
the differences (delta) and mapping relation between
A2 and A1. Thus, it is considered a promising tech-
nique that effectively complements the fingerprint-
based deduplication approaches by detecting similar
data missed by the latter.

One of the main challenges facing the application
of delta compression in deduplication systems is how
to accurately detect the most similar candidates for
delta compression with low overheads. The state-of-

@IJRTER-2017, All Rights Reserved 138

the-art solutions [12], [15], [16], [17] detect similarity
for delta compression by computing sev- eral Rabin
fingerprints as features and grouping them into super-
fingerprints, also referred to as super-features (SF)
(detailed in Section 3.3). Nevertheless, to index a
dataset of 80 TB and assuming an average chunk size
of 8 KB and 16 bytes per index entry, for example,
about 200 GB worth of super-feature index entries
must be generated, which will still be too large to fit
in memory [12]. Since the random accesses to on-
disk index are much slower than that to RAM, the
frequent accesses to on-disk super-features will cause
the system throughput to become unacceptably low
for the users [6], [12], [21].

The existing solutions to the indexing issue of
delta com- pression either record the resemblance
information for files, instead of data chunks, so that
similarity index entries can fit in the memory [22],
[23], or exploit the locality of backup data streams in
deduplication-based backup/archiving sys- tems,
which avoids the global indexing on the disk [12],
[17]. The first approach faces an implementation
difficulty in large-scale data deduplication systems
since it is hard to record all the resemblance or
version information of files in such systems [12]. The
second approach often fails to detect a significant
amount of redundant data when the workloads lack
locality. Another challenge facing the super-feature
method is the high overhead in computing the super-
fea- tures. According to a recent study of delta
compression [17] and our experimental observation,
the throughput of com- puting super-features is about
30 MB/s (see Section 3.3 for details), which may
become a potential bottleneck for dedu- plication-
based storage systems, particularly if most index
entries are fit in memory or partially on SSD-based
storage for which the throughput can be hundreds of
MB per second or higher.

From our observation of duplicate and similar
data of backup streams, we find that the non-
duplicate chunks that are adjacent to duplicate ones
could be considered good delta compression
candidates in data deduplication systems. Thus we
propose the approach of Duplicate- Adjacency based
Resemblance Detection, or DupAdj for short.
Exploiting this existing deduplication information
(i.e., duplicate-adjacency) not only avoids the high
overhead of super-feature computation but also
reduces the size of index entries for resemblance
detection. On the other hand, our study of the
existing super-feature approaches reveals that the
traditional super-feature method can be improved
with fewer features per super-feature, which works
very effectively on deduplication systems when
combined with the aforementioned DupAdj approach.

In this paper, we propose DARE, a low-overhead
Dedu- plication-Aware Resemblance detection and
Elimination scheme for deduplication based backup
and archiving stor- age system. The main idea of
DARE is to effectively exploit existing duplicate-
adjacency information to detect similar data chunks
(DupAdj), refine and supplement the detection by
using an improved super-feature approach (Low-
Over- head Super-Feature) when the existing
duplicate-adjacency information is lacking or limited.
In addition, we present an analytical study of the
existing super-feature approach with a mathematic
model and conduct an empirical evaluation of this
approach with several real-world workloads in data
deduplication systems.

Our experimental evaluation results, based on
real-world and synthetic backup datasets, show that
DARE signifi- cantly outperforms the traditional
Super-Feature approach. More specifically, the
DupAdj approach achieves a similar data reduction
efficiency to the pure super-feature approach and
DARE detects 2-10 percent more redundant data
while achieving a higher throughput of data reduction
than the pure super-feature approach. Meanwhile,
DARE only con- sumes about 1/4 and 1/2
respectively of the computation and indexing
overheads required by the traditional super- feature
approach for resemblance detection. It is important to
note that our evaluation also demonstrates the
superior data-restore performance of the DARE-
enhanced dedupli- cation system over the
deduplication-only systems via delta compression,
where the former outperforms the latter by a factor of
2 (2×).

II. BACKGROUND AND MOTIVATION

In this section, we first present the necessary
background knowledge about resemblance detection
for data reductions in storage systems, then provide
analytical and experimen- tal observations that
motivate our research on resemblance detection for
data reduction.

 Resemblance Detection Based Data
Reduction Data deduplication is becoming
increasingly popular in data-intensive storage systems
as one of the most efficient data reduction approaches
in recent years. Fingerprint- based deduplication
techniques eliminate duplicate chunks by checking
their secure-fingerprints (i.e., SHA-1/ SHA-256
signatures), which has been widely used in com-
mercial backup and archiving storage systems [6],
[24], [25], [26], [27].

Previous studies on data deduplication have
shown that one challenge lies in the system
scalability issue of index-lookup. That is, the

@IJRTER-2017, All Rights Reserved 139

fingerprints of a multi-TB-scale storage system will
be too large to fit in memory and must be moved to
the disk, which causes long latencies of random disk
I/Os for fingerprint index-lookup. Most existing
solutions to this problem aim to make full use of
RAM, by putting only the hot fingerprints into RAM
to reduce accesses to on-disk index. DDFS [6] and
Sparse Indexing [25] attempt to avoid the disk
bottleneck for deduplication indexing by exploiting
the inherent locality of the backup streams and
preserving this locality in the memory to increase
cache hit ratio. Locality here means that the chunks of
a backup stream will appear in approx- imately the
same order in each full backup with a high
probability. Extreme Binning [28] and SiLo [29]
exploits similarity-only and similarity & locality of
the backup data streams respectively to minimize
RAM overhead for deduplication index-lookup.
ChunkStash puts the finger- print index on SSD by
means of a memory-efficient data structure called
cuckoo hash to accelerate index-lookup for data
deduplication [21].

TABLE 1

Comparisons between Duplicate Detection and Resemblance

Detection for Data Reduction Systems

 Another challenge for data deduplication is how
to maxi- mally detect and eliminate data redundancy
in storage sys- tems by determining appropriate data
chunking schemes. In order to find more redundant
data, the content-defined chunking (CDC) approach
was proposed in LBFS to find the proper cut-point of
each chunk in the files and address the boundary-shift
problem [9], [11], [30]. Re-chunking approaches
were also proposed to divide those non-dupli- cate
chunks into smaller ones to expose and detect more
redundancy [31], [32], [33].

Resemblance detection with delta
compression[15], [16], [26], as another approach to
data reduction in storage sys- tems, was proposed
more than 10 years ago but was later overshadowed
by fingerprint-based deduplication [6], [24],

[25] due to the former’s scalability issue. Table 1
compares these two data reduction approaches.
Resemblance detec- tion detects redundancy among
similar data at the byte level while duplicate detection
finds totally identical data at the chunk level, which
makes the latter much more scalable than the former
in mass storage systems.

REBL[16] and DERD [15] are typical super-
feature-based resemblance detection approaches for
data reduction. They compute the features of the data
stream (e.g., Rabin Finger- prints [34]) and group
features into super-features to cap- ture the
resemblance of data and then delta compress the data.
TAPER [35] presents a Bloom-Filter solution that
measures the similar files based on the chunk
fingerprints recorded in Bloom Filters. All these
approaches require high computation and indexing
overheads for resemblance detection. As a result, the
simpler and faster deduplication method has become
a more popular data reduction approach in the last
five years [6], [7], [8].

Nevertheless, resemblance detection is gaining
increas- ing tractions in storage systems because of its
ability to capture and eliminate data redundancy
among similar but non-duplicate data chunks that
effectively comple- ments fingerprint-based
deduplication. Difference Engine

[20] employs Xdelta [23] to further eliminate
memory redundancy and thus enlarge the logical
RAM space in VM environments. I-CASH [18]
delta compresses similar data to enlarge the logical
space of SSD caches. Shilane et al. [12] proposed a
stream-informed delta compression (SIDC) approach
to reducing similar data transmission and thus
accelerating data replication in a WAN

Fig. 1. A conceptual illustration of the duplicate adjacency. The
non- duplicate chunks adjacent to duplicate ones are considered
potentially similar and thus good delta compression candidates.

environment. This approach is super-feature based
and complements the chunk-level deduplication by
only detecting resemblance among non-duplicate
chunks in the cache that preserves the backup stream

@IJRTER-2017, All Rights Reserved 140

locality. It avoids the costly global indexing, at a
limited loss of resemblance detection. While the
combined detection of duplicate and resemblance
promises to achieve a superior data reduction
performance, challenges of relatively high
computation and indexing overheads stemming from
resemblance detection remain [17].

Note that SIDC [12] is the most related work to
DARE. Different from SIDC that implements
traditional super- feature based delta compression in
a stream-informed (i.e., locality preserved) cache,
DARE first employs a duplicate-adjacency based
resemblance detection scheme (see Section 3.2) and
then an improved super-feature based approach (see
Section 3.3) to jointly and more effec- tively reduce
the indexing and computation overheads for delta
compression.

Fact of Duplicate Adjacency

As discussed in Section 2.1, the modified chunks
may be very similar to their previous versions in a
backup system while unmodified chunks will remain
duplicate and are easily identified by the
deduplication process. For those non-duplicate
chunks that are location-adjacent to known dupli-
cate data chunks in a deduplication system, it is
intuitive and quite possible that only a few bytes of
them are modified from the last backup, making them
potentially excellent delta compression candidates.

Fig. 1 illustrates a case of duplicate data chunks
and their immediate non-duplicate neighbors. As
mentioned above, our intuition is that the latter are
highly likely to be similar and thus good delta
compression candidates. Specifically, since chunks
B3 & B4 are duplicates of chunks E3 & E4 in Fig. 1
respectively, their immediate neighbors, the chunk-
pairs B1 & E1, B2 & E2, and B5 & E5, are then
considered good delta compression candidates, which
is consistent with the aforementioned backup-stream
locality [6], [12], [25], [29], [36].

If we can make full use of the existing knowledge
about duplicate data chunks in a deduplication
system, it is pos- sible for us to detect similar chunks
without the overheads of computing and storing
features & super-features and then accessing their on-
disk index. Fig. 2 shows important preliminary results
of this duplicate-adjacency-based resemblance
detection approach, called DupAdj, on sev- eral real-
world datasets whose workload characteristics are
detailed in Table 2 in Section 4.1. First, the similarity
degree (i.e., dela compressed size) of the DupAdj-
detected chunks tends to be very high, on average,
about 84-96 per- cent on the four backup datasets as
shown in Fig. 2a. Sec- ond, by exploiting this

duplicate adjacency information, the DupAdj-based
post deduplication delta compression approach can
further detect and eliminate about 30-50 per- cent
redundancy from the non-duplicate but duplicate-
adjacent chunks as shown in Fig. 2b. Hence, this
DupAdj approach, detailed in Section 3.2, is very
effective for detecting possible similar chunks and
then delta encoding them to further remove
redundancy in deduplication- based backup systems
while significantly simplifying the resemblance
detection process.

Fig. 2. A study of redundancy elimination on the four real-world
tarred datasets by 8KB-level deduplication and then DupAdj-based
delta compression.

 Rethinking of the Super-Feature Approaches
Similar data, like duplicate data, are in wide existence
in backup systems [8], [17]. Meister and Brinkmann
[37] find that small semantic changes on documents
may result in big modifications in the binary
representation of files, and delta compression is more
effective in eliminating redun- dancy in such cases.
To support delta compression, resem- blance
detection will be required for selecting suitable
similar candidates.

Some early research on resemblance detection of
near- duplicate or similar files was performed by
Broder for search engine results [38], [39] and
Manber for filesystems [40]. REBL [16] and DERD
[15] used an efficient super- feature approach to
eliminating redundancy with delta compression in the
early data reduction systems. How- ever, their super-
feature approaches are arguably very different from
the most recently required resemblance detection in
the current large-scale storage systems in that:

● The datasets used in REBL and DERD are
more likely of primary storage workloads and only
several hundreds of MB in size, in contrast to typical
data- sets of deduplication sytems that are usually of
the TB/PB scale [8], [12], [41].

● The chunk size tested in their papers is in the
1-4 KB range and hashing region of each feature is of
4-22 bytes, in contrast to typical deduplication
systems that adopt the larger chunk size of 8 KB and

@IJRTER-2017, All Rights Reserved 141

larger feature hashing region of 32 or 48 bytes (i.e.,
CDC sliding windows) [6], [8], [11].

Fig. 3. Architecture and key data structures of the DARE system
that combines duplicate detection and resemblance detection for

data reduction.

● The post-deduplication chunks tend to be more
fre- quently modified in backup systems, which may
make the resemblance of these non-duplicate and less
similar chunks more difficult to detect.

III. DESIGN AND IMPLEMENTATION

In this section, we will first describe the
architecture and key data structures of DARE,
followed by detailed discussions of its design and
implementation issues.

Architecture Overview

DARE is designed to improve resemblance
detection for additional data reduction in
deduplication-based backup/ archiving storage
systems. As shown in Fig. 3, the DARE architecture
consists of three functional modules, namely, the
Deduplication module, the DupAdj Detection
module, and the improved super-feature module. In
addition, there are five key data structures in DARE,
namely, Dedupe Hash Table, SFeature Hash Table,
Locality Cache, Container, Seg- ment, and Chunk,
which are defined below:

● A chunk is the atomic unit for data
reduction. The non-duplicate chunks, identified by
their SHA-1 fin- gerprints, will be prepared for
resemblance detection in DARE.

● A container is the fixed-size storage unit that
stores sequential and NOT reduced data, such as non-

duplicate & non-similar or delta chunks, for better
storage performance by using large I/Os [6], [36].

● A segment consists of the metadata of a number
of sequential chunks (e.g., 1 MB size), such as the
chunk fingerprints, size, etc., which serves as the
atomic unit in preserving the backup-stream logi- cal
locality [36] for data reduction. Here DARE uses a
data structure of doubly-linked list to record the
chunk adjacency information for the DupAdj
detection. Note that the SFeature in the segment may
be unnecessary if the DupAdj module has already
confirmed this chunk as being similar for delta
compression.

● Dedupe hash table serves to index
fingerprints for duplicate detection for the
deduplication module.

● SFeature hash table serves to index the
super-features after the DupAdj resemblance
detection. It manages the super-features of non-
duplicate and non-similar chunks.

● Locality cache contains the recently
accessed data seg- ments and thus preserves the
backup-stream locality in memory, to reduce accesses
to the on-disk index from either duplicate detection or
resemblance detection.

Here we describe a general workflow of DARE.
For the input data stream, DARE will first detect
duplicate chunks by the Deduplication module. Any
of the many existing dedu- plication approaches [36]
can be implemented here and the preservation of the
backup-stream logical locality in the seg- ments is
required for further resemblance detection. For each
non-duplicate chunk, DARE will first use its DupAdj
Detection module (see Section 3.2) to quickly
determine whether it is a delta compression
candidate. If it is not a can- didate, DARE will then
compute its features and super-fea- tures, using its
improved Super-Feature Detection module (see
Section 3.3), to further detect resemblance for data
reduction.

Because DARE adopts a caching scheme that exploits
the backup-stream logical locality [36] in a way
similar to the Sparse Indexing [25], SiLo [29], and
BLC [42] approaches, the indexing hit ratio in the
locality cache for both the deduplication and
resemblance detection mod- ules will be very high.
Upon a miss in the locality cache, DARE will load
the missing segment from the latest backup to the
RAM with the LRU replacement policy. It is
noteworthy that, after deduplication, the cached seg-
ments that have preserved the logical-locality of
chunks, including the adjacency information of the
duplicate-detected chunks, will be further exploited
by DARE to detect possi- ble resemblance among the

@IJRTER-2017, All Rights Reserved 142

non-duplicate data chunks, as detailed in the next
section.

Duplicate-Adjacency Based Resemblance Detection

As a salient feature of DARE, the DupAdj
approach detects resemblance by exploiting existing
duplicate-adjacency information of a deduplication
system. The main idea behind this approach is to
consider chunk pairs closely adjacent to any
confirmed duplicate-chunk pair between two data
streams as resembling pairs and thus candidates for
delta compression, as conceptually illustrated in Fig.
1.
 According to the description of the DARE data
structures in Fig. 3, DARE records the backup-stream
logical locality of chunk sequence by a doubly-linked
list, which allows an efficient search of the duplicate-
adjacent chunks for resem- blance detection by
traversing to prior or next chunks on the list, as
shown in Fig. 1. When the DupAdj Detection module
of DARE processes an input segment, it will traverse
all the chunks by the aforementioned doubly-linked
list to find the already duplicate-detected chunks. If
chunk Am of the input segment A was detected to be
a duplicate of chunk Bn of segment B, DARE will
traverse the doubly- linked list of Bn in both
directions (e.g., Amþ1 & Bnþ1 and Am—1 & Bn—1)
in search of potentially similar chunk pairs between
segments A and B, until a dissimilar chunk or an
already detected duplicate or similar chunk is found.
Note that the detected chunks here are considered
dissimilar (i.e., NOT similar) to others if their
similarity degree (i.e., dela compressed size) is
smaller than a predefined threshold, such as 0.25, a
false positive for resemblance detection. Actually, the
similarity degree of the DupAdj-detected chunks
tends to be very high, larger than 0.88, as shown in
Fig. 2 in Section 2.2.

In general, the overheads for the DupAdj based
approach are twofold:

● Memory overhead: Each chunk will be
associated with two pointers (about 8 or 16 Bytes) for
building the doubly-linked list when DARE loads the
segment into the locality cache. But when the
segment is evicted from the cache, the doubly-linked
list will be immediately freed. Therefore, this RAM
memory overhead is arguably negligible given the
total capacity of the locality cache.

● Computation overhead: Confirming the
similarity degree of the DupAdj-detected chunks may
intro- duce additional but ommitted computation
over- head. First, the delta encoding results for the
confirmed resembling (i.e., similar) chunks will be
directly used as the final delta chunk for storage.
Second, the actual extra computation overhead occurs
when the DupAdj-detected chunks are NOT similar,

which is a very rare event as discussed in the previous
paragraph.

In all, the DupAdj detection approach only adds a
dou- bly-linked list to an existing deduplication
system, DARE avoids the computation and indexing
overheads of the con- ventional super-feature
approach. In case where the dupli- cate-adjacency
information is lacking, limited, or interrupted due to
operations such as file content inser- tions/deletions
or new file appending, DARE will use an improved
super-feature approach to further detect and eliminate
resemblance as discussed in the next section.

IV. CONCLUSION

In this paper, we present DARE, a deduplication-
aware, low-overhead resemblance detection and
elimination scheme for data reduction in
backup/archiving storage systems. DARE uses a
novel approach, DupAdj, which exploits the
duplicate-adjacency information for efficient
resemblance detection in existing deduplication
systems, and employs an improved super-feature
approach to fur- ther detecting resemblance when the
duplicate-adjacency information is lacking or limited.

Results from experiments driven by real-world
and syn- thetic backup datasets suggest that DARE
can be a powerful and efficient tool for maximizing
data reduction by further detecting resembling data
with low overheads. Specifically, DARE only
consumes about 1/4 and 1/2 respectively of the
computation and indexing overheads required by the
tradi- tional super-feature approaches while detecting
2-10 per- cent more redundancy and achieving a
higher throughput. Furthermore, the DARE-enhanced
data reduction approach is shown to be capable of
improving the data-restore perfor- mance, speeding
up the deduplication-only approach by a factor of
2(2X) by employing delta compression to further
eliminate redundancy and effectively enlarge the
logical space of the restoration cache.

Our preliminary results on the data-restore
performance suggest that supplementing delta
compression to dedupli- cation can effectively
enlarge the logical space of the restora- tion cache,
but the data fragmentation in data reduction systems
remains a serious problem. We plan to further study
and improve the data-restore performance of storage
systems based on deduplication and delta
compression in our future work.

REFERENCES

[1] The data deluge [Online]. Available: http://econ.st/fzkuDq

@IJRTER-2017, All Rights Reserved 143

[2] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC
Rev., vol. 1142, pp. 1–12, 2011.

[3] L. DuBois, M. Amaldas, and E. Sheppard, “Key
considerations as deduplication evolves into primary
storage,” White Paper 223310, Framingham, MA, USA: IDC,
Mar. 2011.

[4] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur,
“Single instance storage in windows 2000,” in Proc. 4th
USENIX Windows Syst. Symp., Aug. 2000, pp. 13–24.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage,” in Proc. USENIX Conf. File Storage
Technol., Jan. 2002, pp. 89–101.

[6] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system,” in
Proc. 6th USE- NIX Conf. File Storage Technol., Feb. 2008,
vol. 8, pp. 1–14.

[7] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” ACM Trans. Storage, vol. 7, no. 4, p. 14,
2012.

[8] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M.
Chamness, and W. Hsu, “Characteristics of backup
workloads in production systems,” in Proc. 10th USENIX
Conf. File Storage Tech- nol., Feb. 2012, pp. 33–48.

[9] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S.
Sengupta, “Primary data deduplication-large scale study and
system design,” in Proc. Conf. USENIX Annu. Tech. Conf.,
Jun. 2012, pp. 285–296.

[10] L. L. You, K. T. Pollack, and D. D. Long, “Deep store: An
archival storage system architecture,” in Proc. 21st Int. Conf.
Data Eng., Apr. 2005, pp. 804–815.

[11] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in Proc. ACM Symp. Oper.
Syst. Principles., Oct. 2001, pp. 1–14.

[12] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “WAN
optimized replication of backup datasets using stream-
informed delta compression,” in Proc. 10th USENIX Conf.
File Storage Technol., Feb. 2012, pp. 49–64.

[13] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
“Vmflock: Virtual machine co-migration for the cloud,” in
Proc. 20th Int. Symp. High Perform. Distrib. Comput., Jun.
2011, pp. 159–170.

[14] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data
dedupli- cation to accelerate live virtual machine migration,”
in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2010, pp. 88–
96.

[15] F. Douglis and A. Iyengar, “Application-specific delta-
encoding via resemblance detection,” in Proc. USENIX
Annu. Tech. Conf., General Track, Jun. 2003, pp. 113–126.

[16] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey,
“Redundancy elimination within large collections of files,” in
Proc. USENIX Annu. Tech. Conf., Jun. 2012, pp. 59–72.

[17] P. Shilane, G. Wallace, M. Huang, and W. Hsu, “Delta
compressed and deduplicated storage using stream-informed
locality,” in Proc. 4th USENIX Conf. Hot Topics Storage File
Syst., Jun. 2012, pp. 201–214.

[18] Q. Yang and J. Ren, “I-cash: Intelligently coupled array of
SSD and HDD,” in Proc. 17th IEEE Int. Symp. High
Perform. Comput. Archit., Feb. 2011, pp. 278–289.

[19] G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via
exploit- ing content locality,” in Proc. 7th ACM Eur. Conf.
Comput. Syst., Apr. 2012, pp. 253–266.

[20] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G.
Varghese, G. M. Voelker, and A. Vahdat, “Difference engine:
Harnessing memory redundancy in virtual machines,” in
Proc. 5th Symp. Oper. Syst. Design Implementation., Dec.
2008, pp. 309–322.

