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Abstract—Data reduction has become increasingly 

important in storage systems due to the explosive 

growth of digital data in the world that has ushered in 

the big data era. One of the main challenges facing 

large-scale data reduction is how to maximally detect 

and eliminate redundancy at very low overheads. In this 

paper, we present DARE, a low-overhead 

deduplication-aware resemblance detection and 

elimination scheme that effectively exploits existing 

duplicate-adjacency information for highly efficient 

resemblance detection in data deduplication based 

backup/archiving storage systems. The main idea 

behind DARE is to employ a scheme, call Duplicate-

Adjacency based Resemblance Detection (DupAdj), by 

considering any two data chunks to be similar (i.e., 

candidates for delta compression) if their respective 

adjacent data chunks are duplicate in a deduplication 

system, and then further enhance the resemblance 

detection efficiency by an improved super-feature 

approach. Our experimental results based on real-world 

and synthetic backup datasets show that DARE only 

consumes about 1/4 and 1/2 respectively of the 

computation and indexing overheads required by the 

traditional super-feature approaches while detecting 2-

10 percent more redundancy and achieving a higher 

throughput, by exploiting existing duplicate-adjacency 

information for resemblance detection and finding the 

“sweet spot” for the super-feature approach 
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I.  INTRODUCTION  

The amount of digital data is growing explosively, 
as evidenced in part by an estimated amount of about 
1.2 zet- tabytes and 1.8 zettabytes respectively of data 
produced in 2010 and 2011 [1], [2]. As a result of this 
“data deluge”, man- aging storage and reducing its 
costs have become one of the most challenging and 
important tasks in mass storage sys- tems. According 
to a recent IDC study [3], almost 80 percent of 
corporations surveyed indicated that they were 
exploring data deduplication technologies in their 
storage systems to increase storage efficiency. 

Data deduplication is an efficient data reduction 
approach that not only reduces storage space [4], [5], 
[6], [7], [8], [9], [10] by eliminating duplicate data 
but also mini- mizes the transmission of redundant 
data in low-bandwidth network environments [11], 
[12], [13], [14]. In general, a chunk-level data 
deduplication scheme splits data blocks of a data 
stream (e.g., backup files, databases, and virtual 
machine images) into multiple data chunks that are 
each uniquely identified and duplicate-detected by a 
secure SHA-1 or MD5 hash signature (also called a 
fingerprint) [5], [11]. Storage systems then remove 
duplicates of data chunks and store only one copy of 
them to achieve the goal of space savings. 

While data deduplication has been widely 
deployed in storage systems for space savings, the 
fingerprint-based dedu- plication approaches have an 
inherent drawback: they often fail to detect the 
similar chunks that are largely identical except for a 
few modified bytes, because their secure hash digest 
will be totally different even only one byte of a data 
chunk was changed [4], [5], [12], [15], [16]. It 
becomes a big challenge when applying data 
deduplication to storage data- sets and workloads that 
have frequently modified data, which demands an 
effective and efficient way to eliminate redun- dancy 
among frequently modified and thus similar data. 

Delta compression, an efficient approach to 
removing redundancy among similar data chunks has 
gained increas- ing attention in storage systems [12], 
[17], [18], [19], [20]. For example, if chunk A2 is 
similar to chunk A1 (the base- chunk), the delta 
compression approach calculates and then only stores 
the differences (delta) and mapping relation between 
A2 and A1. Thus, it is considered a promising tech- 
nique that effectively complements the fingerprint-
based deduplication approaches by detecting similar 
data missed by the latter. 

One of the main challenges facing the application 
of delta compression in deduplication systems is how 
to accurately detect the most similar candidates for 
delta compression with low overheads. The state-of-
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the-art solutions [12], [15], [16], [17] detect similarity 
for delta compression by computing sev- eral Rabin 
fingerprints as features and grouping them into super-
fingerprints, also referred to as super-features (SF) 
(detailed in Section 3.3). Nevertheless, to index a 
dataset of 80 TB and assuming an average chunk size 
of 8 KB and 16 bytes per index entry, for example, 
about 200 GB worth of super-feature index entries 
must be generated, which will still be too large to fit 
in memory [12]. Since the random accesses to on-
disk index are much slower than that to RAM, the 
frequent accesses to on-disk super-features will cause 
the system throughput to become unacceptably low 
for the users [6], [12], [21]. 

The existing solutions to the indexing issue of 
delta com- pression either record the resemblance 
information for files, instead of data chunks, so that 
similarity index entries can fit in the memory [22], 
[23], or exploit the locality of backup data streams in 
deduplication-based backup/archiving sys- tems, 
which avoids the global indexing on the disk [12], 
[17]. The first approach faces an implementation 
difficulty in large-scale data deduplication systems 
since it is hard to record all the resemblance or 
version information of files in such systems [12]. The 
second approach often fails to detect a significant 
amount of redundant data when the workloads lack 
locality. Another challenge facing the super-feature 
method is the high overhead in computing the super-
fea- tures. According to a recent study of delta 
compression [17] and our experimental observation, 
the throughput of com- puting super-features is about 
30 MB/s (see Section 3.3 for details), which may 
become a potential bottleneck for dedu- plication-
based storage systems, particularly if most index 
entries are fit in memory or partially on SSD-based 
storage for which the throughput can be hundreds of 
MB per second or higher. 

From our observation of duplicate and similar 
data of backup streams, we find that the non-
duplicate  chunks that are adjacent to duplicate ones 
could be considered good delta compression 
candidates in data deduplication systems. Thus we 
propose the approach of Duplicate- Adjacency based 
Resemblance Detection, or DupAdj for short. 
Exploiting this existing deduplication information 
(i.e., duplicate-adjacency) not only avoids  the  high  
overhead  of super-feature computation but also 
reduces the size of index entries for resemblance 
detection. On the  other  hand, our study of the 
existing super-feature approaches reveals that the 
traditional super-feature method can be improved 
with fewer features per super-feature, which works 
very effectively on deduplication systems when 
combined with the aforementioned DupAdj approach. 

In this paper, we propose DARE, a low-overhead 
Dedu- plication-Aware Resemblance detection and 
Elimination scheme for deduplication based backup 
and archiving stor- age system. The main idea of 
DARE is to effectively exploit existing duplicate-
adjacency information to detect similar data chunks 
(DupAdj), refine and supplement the detection by 
using an improved super-feature approach (Low-
Over- head Super-Feature) when the existing 
duplicate-adjacency information is lacking or limited. 
In addition, we present an analytical study of the 
existing super-feature approach with a mathematic 
model and conduct an empirical evaluation of this 
approach with several real-world workloads in data 
deduplication systems. 

Our experimental evaluation results, based on 
real-world and synthetic backup datasets, show that 
DARE signifi- cantly outperforms the traditional 
Super-Feature approach. More specifically, the 
DupAdj approach achieves a similar data reduction 
efficiency to the pure super-feature approach and 
DARE detects 2-10 percent more redundant data 
while achieving a higher throughput of data reduction 
than the pure super-feature approach. Meanwhile, 
DARE only con- sumes about 1/4 and 1/2 
respectively of the computation and indexing 
overheads required by the traditional super- feature 
approach for resemblance detection. It is important to 
note that our evaluation also demonstrates the 
superior data-restore performance of the DARE-
enhanced dedupli- cation system over the 
deduplication-only systems via delta compression, 
where the former outperforms the latter by a factor of 
2 (2×). 

II. BACKGROUND AND MOTIVATION 

In this section, we first present the necessary 
background knowledge about resemblance detection 
for data reductions in storage systems, then provide 
analytical and experimen- tal observations that 
motivate our research on resemblance detection for 
data reduction. 

 Resemblance Detection Based Data 
Reduction Data deduplication is becoming 
increasingly popular in data-intensive storage systems 
as one of the most efficient data reduction approaches 
in recent years. Fingerprint- based deduplication 
techniques eliminate  duplicate  chunks by checking 
their secure-fingerprints (i.e., SHA-1/ SHA-256 
signatures), which has been widely used in com- 
mercial backup and archiving storage systems [6], 
[24],  [25], [26], [27]. 

Previous studies on data deduplication have  
shown  that one challenge lies in the system 
scalability issue of index-lookup. That is, the 
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fingerprints of a multi-TB-scale storage system will 
be too large to fit in  memory  and  must be moved to 
the disk, which causes long latencies of random disk 
I/Os for fingerprint index-lookup. Most existing 
solutions to this problem aim to make full use of 
RAM, by putting only the hot fingerprints into RAM 
to reduce accesses to on-disk index. DDFS [6] and 
Sparse Indexing [25] attempt to avoid the disk 
bottleneck for deduplication indexing by exploiting 
the inherent locality of the backup streams and 
preserving this locality in the memory to increase 
cache hit ratio. Locality here means that the chunks of 
a backup stream will appear in approx- imately the 
same order in each full backup with a high 
probability. Extreme Binning [28] and SiLo [29] 
exploits similarity-only and similarity & locality of  
the  backup  data streams respectively to minimize 
RAM overhead for deduplication index-lookup. 
ChunkStash puts the finger- print index on SSD by 
means of a memory-efficient data structure called 
cuckoo hash to accelerate  index-lookup  for data 
deduplication [21]. 

 

  

 

TABLE 1 

Comparisons between Duplicate Detection and Resemblance 

Detection for Data Reduction Systems 

 

  Another challenge for data deduplication is how 
to maxi- mally detect and eliminate data redundancy 
in storage sys- tems by determining appropriate data 
chunking schemes. In order to find more redundant 
data, the content-defined chunking (CDC) approach 
was proposed in LBFS to find the proper cut-point of 
each chunk in the files and address the boundary-shift 
problem [9], [11], [30]. Re-chunking approaches 
were also proposed to divide those non-dupli- cate 
chunks into smaller ones to expose and detect more 
redundancy [31], [32], [33]. 

Resemblance detection with delta 
compression[15], [16], [26], as another approach to 
data reduction in storage sys- tems, was proposed 
more than 10 years ago but was later overshadowed 
by fingerprint-based deduplication [6], [24], 

[25] due to the former’s scalability issue. Table 1 
compares these two data reduction approaches. 
Resemblance detec- tion detects redundancy among 
similar data at the byte level while duplicate detection 
finds totally identical data at the chunk level, which 
makes the latter much more scalable than the former 
in mass storage systems. 

REBL[16] and DERD [15] are typical super-
feature-based resemblance detection approaches for 
data reduction. They compute the features of the data 
stream (e.g., Rabin Finger- prints [34]) and group 
features into super-features to cap- ture the 
resemblance of data and then delta compress the data. 
TAPER [35] presents a Bloom-Filter solution that 
measures the similar files based on the chunk 
fingerprints recorded in Bloom Filters. All these 
approaches require high computation and indexing 
overheads for resemblance detection. As a result, the 
simpler and faster deduplication method has become 
a more popular data reduction approach in the last 
five years [6], [7], [8]. 

Nevertheless, resemblance detection is gaining 
increas- ing tractions in storage systems because of its 
ability to capture and eliminate data redundancy  
among  similar  but non-duplicate data chunks that 
effectively comple- ments  fingerprint-based  
deduplication.  Difference Engine 

[20] employs Xdelta [23] to further eliminate 
memory redundancy and thus enlarge the logical 
RAM  space  in VM environments. I-CASH [18] 
delta compresses similar data to enlarge the logical  
space  of  SSD  caches.  Shilane et al. [12] proposed a 
stream-informed delta compression (SIDC) approach 
to reducing similar data  transmission  and    thus    
accelerating    data    replication    in    a  WAN 

 

 

Fig. 1. A conceptual illustration of the duplicate adjacency. The 
non- duplicate chunks adjacent to duplicate ones are considered 
potentially similar and thus good delta compression candidates. 

 

environment. This approach is super-feature based 
and complements the chunk-level deduplication by 
only detecting resemblance among non-duplicate  
chunks  in  the cache that preserves the backup stream 
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locality. It avoids the costly global indexing, at a 
limited loss of resemblance detection. While the 
combined detection of duplicate and resemblance 
promises to achieve a superior data reduction 
performance, challenges of relatively high 
computation and indexing overheads stemming from 
resemblance detection remain [17]. 

Note that SIDC [12] is the most related work to 
DARE. Different from SIDC that implements 
traditional super- feature based delta compression in  
a  stream-informed  (i.e., locality preserved) cache, 
DARE first employs a duplicate-adjacency based 
resemblance detection scheme (see Section 3.2) and 
then an improved  super-feature  based approach (see 
Section 3.3) to jointly and more effec- tively reduce 
the indexing and computation overheads for delta 
compression. 

 

Fact of Duplicate Adjacency 

As discussed in Section 2.1, the modified chunks 
may be very similar to their previous versions in a 
backup system while unmodified chunks will remain 
duplicate and are easily identified by the 
deduplication process. For those non-duplicate 
chunks that are location-adjacent to known dupli- 
cate data chunks in a deduplication system, it is 
intuitive and quite possible that only a few bytes of 
them are modified from the last backup, making them 
potentially excellent delta compression candidates. 

Fig. 1 illustrates a case of duplicate data chunks 
and their immediate non-duplicate neighbors. As 
mentioned above, our intuition is that the latter are 
highly likely to be similar and thus good delta 
compression candidates. Specifically, since chunks 
B3 & B4 are duplicates of chunks E3 & E4 in Fig. 1 
respectively, their immediate neighbors, the chunk- 
pairs B1 & E1, B2 & E2, and B5 & E5, are then 
considered good delta compression candidates, which 
is consistent with the aforementioned backup-stream 
locality [6], [12], [25], [29], [36]. 

If we can make full use of the existing knowledge 
about duplicate data chunks in a deduplication 
system, it is pos- sible for us to detect similar chunks 
without the overheads of computing and storing 
features & super-features and then accessing their on-
disk index. Fig. 2 shows important preliminary results 
of this duplicate-adjacency-based resemblance 
detection approach, called DupAdj, on sev- eral real-
world datasets whose workload  characteristics  are 
detailed in Table 2 in Section 4.1. First, the similarity 
degree (i.e., dela compressed size) of the  DupAdj-
detected chunks tends to be very high, on average, 
about 84-96 per- cent on the four backup datasets as 
shown in Fig. 2a. Sec- ond, by exploiting this 

duplicate adjacency  information, the DupAdj-based 
post deduplication delta compression approach can 
further detect and eliminate about 30-50 per- cent 
redundancy from the non-duplicate but duplicate- 
adjacent chunks as shown in Fig. 2b. Hence, this 
DupAdj approach, detailed in Section 3.2, is very 
effective for detecting possible similar chunks and 
then delta encoding them to further remove 
redundancy in deduplication- based backup systems 
while significantly simplifying the resemblance 
detection process. 

 

Fig. 2. A study of redundancy elimination on the four real-world 
tarred datasets by 8KB-level deduplication and then DupAdj-based 
delta compression. 

 

 Rethinking of the Super-Feature Approaches 
Similar data, like duplicate data, are in wide existence 
in backup systems [8], [17]. Meister and Brinkmann 
[37] find that small semantic changes on documents 
may result in big modifications in the binary 
representation of files, and delta compression is more 
effective in eliminating redun- dancy in such cases. 
To support delta compression, resem- blance 
detection will be required for selecting suitable 
similar candidates. 

Some early research on resemblance detection of 
near- duplicate or similar files was performed by 
Broder for search engine results [38], [39] and 
Manber for filesystems [40]. REBL [16] and DERD 
[15] used an efficient super- feature approach to 
eliminating redundancy with delta compression in the 
early data reduction systems. How- ever, their super-
feature approaches are arguably very different from 
the most recently required resemblance detection in 
the current large-scale storage  systems  in  that: 

● The datasets used in REBL and DERD are 
more likely of primary storage workloads and only 
several hundreds of MB in size, in contrast to typical 
data- sets of deduplication sytems that are usually of 
the TB/PB scale [8], [12], [41]. 

● The chunk size tested in their papers is in the 
1-4 KB range and hashing region of each feature is of 
4-22 bytes, in contrast to typical deduplication 
systems that adopt the larger chunk size of 8 KB and 
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larger feature hashing region of 32 or 48 bytes ( i.e., 
CDC sliding windows) [6], [8], [11]. 

 

Fig. 3. Architecture and key data structures of the DARE system 
that combines duplicate detection and resemblance detection for 

data reduction. 

 

● The post-deduplication chunks tend to be more 
fre- quently modified in backup systems, which may 
make the resemblance of these non-duplicate and less 
similar chunks more difficult to detect. 

III. DESIGN AND IMPLEMENTATION 

In this section, we will first describe the 
architecture and key data structures of DARE, 
followed by detailed discussions of its design and 
implementation issues. 

Architecture Overview 

DARE is designed to improve resemblance 
detection for additional data reduction in 
deduplication-based backup/ archiving storage 
systems. As shown in Fig. 3, the DARE architecture 
consists of three functional modules, namely, the 
Deduplication module, the DupAdj Detection 
module, and the improved super-feature module. In 
addition, there are five key data structures in DARE, 
namely, Dedupe Hash Table, SFeature Hash Table, 
Locality Cache, Container, Seg- ment, and Chunk, 
which are defined below: 

● A chunk is the atomic unit for data 
reduction. The non-duplicate chunks, identified by 
their SHA-1 fin- gerprints, will be prepared for 
resemblance detection in DARE. 

● A container is the fixed-size storage unit that 
stores sequential and NOT reduced data, such as non- 

duplicate & non-similar or delta chunks, for better 
storage performance by using large I/Os [6], [36]. 

● A segment consists of the metadata of a number 
of sequential chunks (e.g., 1 MB size), such as the 
chunk fingerprints, size, etc., which serves as the 
atomic unit in preserving the backup-stream logi- cal 
locality [36] for data reduction. Here DARE uses a 
data structure of doubly-linked list to record the 
chunk adjacency information for the DupAdj 
detection. Note that the SFeature in the segment may 
be unnecessary if the DupAdj module has already 
confirmed this chunk as being similar for delta 
compression. 

● Dedupe hash table serves to index 
fingerprints for duplicate detection for the 
deduplication module. 

● SFeature hash table serves to index the 
super-features after the DupAdj resemblance 
detection. It manages the super-features of non-
duplicate and non-similar chunks. 

● Locality cache contains the recently 
accessed data seg- ments and thus preserves the 
backup-stream locality in memory, to reduce accesses 
to the on-disk index from either duplicate detection or 
resemblance detection. 

Here we describe a general workflow of DARE. 
For the input data stream, DARE will first detect 
duplicate chunks by the Deduplication module. Any 
of the many existing dedu- plication approaches [36] 
can be implemented here and the preservation of the 
backup-stream logical locality in the seg- ments is 
required for further resemblance detection. For each 
non-duplicate chunk, DARE will first use its DupAdj 
Detection module (see Section 3.2) to quickly 
determine whether it is a delta compression 
candidate. If it is not a can- didate, DARE will then 
compute its features and super-fea- tures, using its 
improved Super-Feature Detection module (see 
Section 3.3), to further detect resemblance for data 
reduction. 

Because DARE adopts a caching scheme that exploits  
the backup-stream logical locality [36] in a way 
similar to the Sparse Indexing [25], SiLo [29], and 
BLC [42] approaches, the indexing hit ratio in the 
locality cache for both the deduplication and 
resemblance detection mod- ules will be very high. 
Upon a miss in the locality cache, DARE will load 
the missing segment from the latest  backup to the 
RAM with the LRU replacement policy. It     is 
noteworthy that, after deduplication, the cached seg- 
ments that have preserved the logical-locality of 
chunks, including the adjacency information of the 
duplicate-detected chunks, will be further exploited 
by DARE to detect possi- ble resemblance among the 
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non-duplicate data chunks, as detailed in the next 
section. 

Duplicate-Adjacency Based Resemblance Detection 

As a salient feature of DARE, the DupAdj 
approach detects resemblance by exploiting existing 
duplicate-adjacency information of a deduplication 
system. The main idea behind this approach is to 
consider chunk pairs closely adjacent to any 
confirmed duplicate-chunk pair between two data 
streams as resembling pairs and thus candidates for 
delta compression, as conceptually illustrated in Fig. 
1. 
 According to the description of the DARE data 
structures in Fig. 3, DARE records the backup-stream 
logical locality of chunk sequence by a doubly-linked 
list, which allows an efficient search of the duplicate-
adjacent chunks for resem- blance detection by 
traversing to prior or next chunks on the list, as 
shown in Fig. 1. When the DupAdj Detection module 
of DARE processes an input segment, it will traverse 
all the chunks by the aforementioned doubly-linked 
list to find the already duplicate-detected chunks. If 
chunk Am of the input segment A was detected to be 
a duplicate of chunk Bn of segment B, DARE will 
traverse the doubly- linked list of Bn in both 
directions (e.g., Amþ1 & Bnþ1 and Am—1 & Bn—1) 
in search of potentially similar chunk pairs between 
segments A and B, until a dissimilar chunk or an 
already detected duplicate or similar chunk is found. 
Note that the detected chunks here are considered 
dissimilar (i.e., NOT similar)  to  others  if  their  
similarity  degree  (i.e.,  dela compressed size) is 
smaller than a predefined threshold, such as 0.25, a 
false positive for resemblance detection. Actually, the 
similarity degree of the DupAdj-detected chunks 
tends to be very high, larger than 0.88, as shown in 
Fig. 2 in Section 2.2. 

In general, the overheads for the DupAdj based 
approach are twofold: 

● Memory overhead: Each chunk will be 
associated with two pointers (about 8 or 16 Bytes) for 
building the doubly-linked list when DARE loads the 
segment into the locality cache. But when the 
segment is evicted from the cache, the doubly-linked 
list will be immediately freed. Therefore, this RAM 
memory overhead is arguably negligible given the 
total capacity of the locality cache. 

● Computation overhead: Confirming the 
similarity degree of the DupAdj-detected chunks may 
intro- duce additional but ommitted computation 
over- head. First, the delta encoding results for the 
confirmed resembling (i.e., similar) chunks will be 
directly used as the final delta chunk for storage. 
Second, the actual extra computation overhead occurs 
when the DupAdj-detected chunks are NOT similar, 

which is a very rare event as discussed in the previous 
paragraph. 

In all, the DupAdj detection approach only adds a 
dou- bly-linked list to an existing deduplication 
system, DARE avoids the computation and indexing 
overheads of the con- ventional super-feature 
approach. In case where the dupli- cate-adjacency 
information is lacking, limited, or interrupted due to 
operations such as file content inser- tions/deletions 
or new file appending, DARE will use an improved 
super-feature approach to further detect and eliminate 
resemblance as discussed in the next section. 

 

IV. CONCLUSION 

In this paper, we present DARE, a deduplication-
aware, low-overhead resemblance detection and 
elimination scheme for data reduction in 
backup/archiving storage systems. DARE uses a 
novel approach, DupAdj, which exploits the 
duplicate-adjacency information for efficient 
resemblance detection in existing deduplication 
systems, and employs an improved super-feature 
approach to fur- ther detecting resemblance when the 
duplicate-adjacency information is lacking or limited. 

Results from experiments driven by real-world 
and syn- thetic backup datasets suggest that DARE 
can be a powerful and efficient tool for maximizing 
data reduction by further detecting resembling data 
with low overheads. Specifically, DARE only 
consumes about 1/4 and 1/2 respectively of the 
computation and indexing overheads required by the 
tradi- tional super-feature approaches while detecting 
2-10 per- cent more redundancy and achieving a 
higher throughput. Furthermore, the DARE-enhanced 
data reduction approach is shown to be capable of 
improving the data-restore perfor- mance, speeding 
up the deduplication-only approach by a factor of 
2(2X) by employing delta compression to further 
eliminate redundancy and effectively enlarge the 
logical space of the restoration cache. 

Our preliminary results on the data-restore 
performance suggest that supplementing delta 
compression to dedupli- cation can effectively 
enlarge the logical space of the restora- tion cache, 
but the data fragmentation in data reduction systems 
remains a serious problem. We plan to further study 
and improve the data-restore performance of storage 
systems based on deduplication and delta 
compression in our future work. 
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