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Abstract—High utility itemsets (HUIs)mining is an emerging topic in data mining, which refers to discovering all itemsets having a

utility meeting a user-specifiedminimum utility threshold min_util. However, settingmin_util appropriately is a difficult problem for

users. Generally speaking, finding an appropriate minimum utility threshold by trial and error is a tedious process for users. Ifmin_util is

set too low, too many HUIs will be generated, which may cause the mining process to be very inefficient. On the other hand, ifmin_util

is set too high, it is likely that no HUIs will be found. In this paper, we address the above issues by proposing a new framework for top-k

high utility itemset mining, where k is the desired number of HUIs to be mined. Two types of efficient algorithms named TKU (mining

Top-K Utility itemsets) and TKO (mining Top-K utility itemsets in One phase) are proposed for mining such itemsets without the need to

setmin_util. We provide a structural comparison of the two algorithms with discussions on their advantages and limitations. Empirical

evaluations on both real and synthetic datasets show that the performance of the proposed algorithms is close to that of the optimal

case of state-of-the-art utility mining algorithms.

Index Terms—Utility mining, high utility itemset mining, top-k pattern mining, top-k high utility itemset mining
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1 INTRODUCTION

FREQUENT itemset mining (FIM) [1], [3], [8], [9], [18], [19],
[20], [28], [29] is a fundamental research topic in data

mining. However, the traditional FIM may discover a
large amount of frequent but low-value itemsets and lose
the information on valuable itemsets having low selling
frequencies. Hence, it cannot satisfy the requirement of
users who desire to discover itemsets with high utilities
such as high profits. To address these issues, utility min-
ing [2], [4], [7], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [22], [23], [25], [26], [27], [29], [34], [35], [36] emerges
as an important topic in data mining and has received
extensive attention in recent years. In utility mining, each
item is associated with a utility (e.g. unit profit) and an
occurrence count in each transaction (e.g. quantity). The
utility of an itemset represents its importance, which can
be measured in terms of weight, value, quantity or other
information depending on the user specification. An item-
set is called high utility itemset (HUI) if its utility is no less
than a user-specified minimum utility threshold min_util.
HUI mining is essential to many applications such as

streaming analysis [2], [11], [35], market analysis [13], [17],
[22], mobile computing [23] and biomedicine [4].

However, efficiently mining HUIs in databases is not an
easy task because the downward closure property [1], [8] used
in FIM does not hold for the utility of itemsets. In other
words, pruning search space for HUI mining is difficult
because a superset of a low utility itemset can be high util-
ity. To tackle this problem, the concept of transaction-
weighted utilization (TWU) model [13] was introduced to
facilitate the performance of the mining task. In this model,
an itemset is called high transaction-weighted utilization item-
set (HTWUI) if its TWU is no less than min_util, where the
TWU of an itemset represents an upper bound on its utility.
Therefore, a HUI must be a HTWUI and all the HUIs must
be included in the complete set of HTWUIs. A classical
TWU model-based algorithm consists of two phases. In the
first phase, called phase I, the complete set of HTWUIs are
found. In the second phase, called phase II, all HUIs are
obtained by calculating the exact utilities of HTWUIs with
one database scan.

Although many studies have been devoted to HUI min-
ing, it is difficult for users to choose an appropriate mini-
mum utility threshold in practice. Depending on the
threshold, the output size can be very small or very large.
Besides, the choice of the threshold greatly influences the
performance of the algorithms. If the threshold is set too
low, too many HUIs will be presented to the users and it is
difficult for the users to comprehend the results. A large
number of HUIs also causes the mining algorithms to
become inefficient or even run out of memory, because the
more HUIs the algorithms generate, the more resources
they consume. On the contrary, if the threshold is set too
high, no HUI will be found. To find an appropriate value
for the min_util threshold, users need to try different thresh-
olds by guessing and re-executing the algorithms over and
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over until being satisfied with the results. This process is
both inconvenient and time-consuming.

To precisely control the output size and discover the
itemsets with the highest utilities without setting the thresh-
olds, a promising solution is to redefine the task of mining
HUIs as mining top-k high utility itemsets (top-k HUIs). The
idea is to let the users specify k, i.e., the number of desired
itemsets, instead of specifying the minimum utility thresh-
old. Setting k is more intuitive than setting the threshold
because k represents the number of itemsets that the users
want to find whereas choosing the threshold depends
primarily on database characteristics, which are often
unknown to users.

Using a parameter k instead of the min_util threshold is
very desirable for many applications. For example, to ana-
lyze customer purchase behavior, top-k HUI mining serves
as a promising solution for users who desire to know “What
are the top-k sets of products (i.e., itemsets) that contribute
the highest profits to the company?” and “How to efficiently
find these itemsets without setting the min_util threshold?”.
Although top-k HUI mining is essential to many applica-
tions, developing efficient algorithms for mining such pat-
terns is not an easy task. It poses four major challenges as
discussed below.

First, the utility of itemsets is neither monotone nor anti-
monotone [1], [8]. In other words, the utility of an itemset
may be equal to, higher or lower than that of its supersets
and subsets. Therefore, many techniques developed in top-k
frequent pattern mining that rely on anti-monotonicity to
prune the search space cannot be directly applied to top-k
high utility itemset mining.

The second challenge is how to incorporate the concept
of top-k pattern mining with the TWU model. Although the
TWUmodel is widely used in utility mining, it is difficult to
adapt this model to top-kHUI mining because the exact util-
ities of itemsets are unknown in phase I. When a HTWUI is
generated in phase I, we cannot guarantee that its utility is
higher than other HTWUIs and that it is a top-k HUI before
performing phase II. To guarantee that all the top-k HUIs
can be captured in the set of HTWUIs, a naive approach is
to run the algorithm with min_util ¼ 0. However, this
approach may face the problem of a very large search space.

The third challenge is that the min_util threshold is not
given in advance in top-k HUI mining. In traditional HUI
mining, the search space can be efficiently pruned by the
algorithms by using a given min_util threshold. However,
in the scenario of top-kHUI mining, no min_util threshold is
provided in advance. Therefore, the minimum utility
threshold is initially set to 0 and the designed algorithm has
to gradually raise the threshold to prune the search space.
Such a threshold is an internal parameter of the designed
algorithm and is called the border minimum utility threshold
min_utilBorder in this paper. It is different from the external
parameter min_util that is given by users in advance. If an
algorithm cannot raise the min_utilBorder threshold effec-
tively and efficiently, it would produce too many intermedi-
ate low utility itemsets during the mining process, which
may degrade its performance in terms of execution time
and memory usage. Thus the challenge is to design effective
strategies that can raise the min_util threshold as high as
possible and as quickly as possible, and further reduce as

much as possible the number of candidates and intermedi-
ate low utility itemsets produced in the mining process.

The last challenge is how to effectively raise the
min_utilBorder threshold without missing any top-k HUIs. A
good algorithm is one that can effectively raise the threshold
during the mining process. However, if an incorrect method
for raising the threshold is used, it may result in some top-k
HUIs being pruned. Thus, how to raise the threshold effi-
ciently and effectively without missing any top-k HUI is a
crucial challenge for this work.

In this paper, we address all of the above challenges by
proposing a novel framework for top-k high utility itemset
mining, where k is the desired number of HUIs to be mined.
Major contributions of this work are summarized as follows:

First, two efficient algorithms named TKU (mining Top-K
Utility itemsets) and TKO (mining Top-K utility itemsets in
One phase) are proposed for mining the complete set of top-k
HUIs in databases without the need to specify the min_util
threshold. The TKU algorithm adopts a compact tree-based
structure named UP-Tree [25] to maintain the information of
transactions and utilities of itemsets. TKU inherits useful
properties from the TWUmodel and consists of two phases.
In phase I, potential top-k high utility itemsets (PKHUIs) are
generated. In phase II, top-kHUIs are identified from the set
of PKHUIs discovered in phase I. On the other hand, the
TKO algorithm uses a list-based structure named utility-list
[14] to store the utility information of itemsets in the data-
base. It uses vertical data representation techniques to dis-
cover top-kHUIs in only one phase.

Second, we investigate the properties of the TKU and
TKO algorithms and develop different strategies to effec-
tively raise the border thresholds in both algorithms. For
TKU, we propose five strategies PE, NU, MD, MC and SE to
effectively raise the border minimum utility threshold. For
TKO, we integrate the novel strategies RUC, RUZ and EPB
for pruning the search space.

Third, we conducted different kinds of experiments on
synthetic and real datasets to evaluate the performance of
the proposed algorithms and effectiveness of the proposed
strategies. Empirical results show that the performance of
the proposed algorithms is close to that of the state-of-the-
art utility mining algorithms UP-Growth [25] and HUI-
Miner [14] tuned with the optimal minimum utility
thresholds.

The remainder of this paper is organized as follows.
Section 2 introduces the background and related works of
top-k HUI mining. Section 3 and Section 4 respectively pres-
ent the proposed TKU and TKO algorithms. Experimental
result is reported in Section 5. Finally, conclusion and future
works are given in Section 6.

2 BACKGROUND AND PROBLEM DEFINITION

This section defines the problem of top-k high utility itemset
mining and then introduces related studies.

2.1 Problem Definition

Let be a finite set of distinct items I� ¼ fI1; I2; . . . ; Img. A
transactional database D ¼ {T1, T2, . . . , Tn} is a set of transac-
tions, where each transaction Tr2D is a subset of I� and has
an unique identifier r, called Tid. Each item Ij2Tr has a
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positive value Q(Ij, Tr), called its internal utility in Tr. Each
item Ij2I� is associated with a positive number P(Ij, D),
called its external utility. An itemset X ¼ {I1, I2, . . ., IL} is a set
of L distinct items, where Ij2I� and L is the length of X. An L-
itemset is an itemset of length L.

Definition 1 (Absolute utility of an item). The absolute util-
ity of an item Ij 2I� in a transaction Tr is denoted as EU(Ij, Tr)
and defined as P(Ij, D) � Q(Ij, Tr).

Definition 2 (Absolute utility of an itemset in a transac-
tion). The absolute utility of an itemset X in a transaction Tr

is defined as EU(X, Tr) ¼
P

Ij2X ðIj; TrÞ:
Definition 3 (Absolute utility of an itemset in a database).

The absolute utility of an itemset X in D is defined as EU(X)
¼P

Tr2D^X�Tr ðX; TrÞ:
Definition 4 (Transaction utility and total utility). The

transaction utility (TU) of a transaction Tr is defined as TU
(Tr) ¼ EU(Tr, Tr). The total utility of a database D is denoted
as TotalUDB and defined as

P
Tr2D TUðTrÞ:

Definition 5 (Utility of an itemset in a database). The (rela-
tive) utility of X is defined as U(X) ¼ EU(X)/ TotalUDB.

Definition 6 (High utility itemset). An itemset X is called high
utility itemset (HUI) iff U(X) is no less than a user-specified
minimum utility threshold min_util (0% � min_util �
100%). Otherwise, X is a low utility itemset An equivalent
definition is that X is high utility iff EU(X) � abs_min_util,
where abs_min_util ¼ min_util � TotalUDB.

Definition 7 (High utility itemset mining). Let d (0% � d �
100%) be the minimum utility threshold, the complete set of
HUIs in D is denoted as fHUI(D, d). The goal of HUI mining is
to discover fHUI(D, d).

Example 1. Let Table 1 be an example database containing
five transactions. Each row in Table 1 represents a trans-
action, where each letter represents an item and has a
purchase quantity (i.e., internal utility). The unit profit
(i.e., external utility) of each item is shown in Table 2. If
abs_min_util ¼ 30, the complete set of HUIs in Table 1
is {{BD}:30, {ACE}:31, {BCD}:34, {BCE}:31, {BDE}:36,
{BCDE}:40, {ABCDEF}:30}, where the number beside
each itemset is its absolute utility.

Because the utility of an itemset may be equal to, higher
or lower than that of its supersets and subsets, we cannot
directly use the anti-monotone property (also known as
downward closure property) to prune the search space. To
facilitate the mining task, Liu et al. introduced the concept
of transaction-weighted downward closure property [13], which
is based on the following definitions.

Definition 8 (Transaction-weighted utilization). The trans-
action-weighted utilization of an itemset X is the sum of the
transaction utilities of all the transactions containing X, which
is defined as TWU(X) ¼P

X�Tr^Tr2D TUðTrÞ.
Definition 9 (High TWU itemset). An itemset X is a high

TWU itemset iff TWU(X) � abs_min_util.

Property 1 (TWDC property). The transaction-weighted down-
ward closure (TWDC) property states that for any itemset X that
is not a high TWU itemset, all its supersets are low utility [13].

Rationale. LetX be an itemset that is not a high TWU item-

set and g(X) be the set of transactions containing X. Let Y be

a superset of X and g(Y) be the set of transactions containing

Y. Because Y�X, it follows that g(Y) � g(X), and thus that

TWU(X)¼P
Tr2D^r2gðXÞ EUðTr; TrÞ �

P
Ts2D^s2gðXÞ EUðY; TsÞ

¼ EU(Y). Because TWU(X) � EU(Y) and TWU(X) < abs_

min_util, it yields that EU(Y)< abs_min_util.

Example 2. The transaction utility of T1 in Table 1 is TU(T1)
¼ EU({A}, T1) þ EU({C}, T1) þ EU({D}, T1) ¼ (1 � 5 þ 1 �
1 þ 1 � 2) ¼ 8. The last column of Table 1 shows the
transaction utility of each transaction. The set of transac-
tions containing {G} is g({G}) ¼ {T2, T5}. The TWU of {G}
is TWU({G}) ¼ TU(T2) þ TU(T5) ¼ 38. If abs_min_util ¼
40, all the supersets of {G} are low utility.

Definition 10 (Top-k high utility itemset). An itemset X is
called top-k high utility itemset (top-k HUI) in D iff there are
less than k itemsets whose utilities are larger than EU(X) in
fHUI(D, 0).

Property 2. Let KH be the complete set of top-k HUIs in D. KH
may contain less than k itemsets when j fHUI(D, 0) j < k.
Besides, KH may contain more than k HUIs when some item-
sets have the same utility.

Definition 11 (Optimal minimum utility threshold). An
absolute minimum utility threshold d� is called optimal mini-
mum utility threshold iff there does not exist a threshold d >d�

such that j fHUI(D, d) j ¼ jKH j . An equivalent definition is
that d� ¼ min{U(X) jX2KH}.

Problem Statement. Given a transactional database D and the
desired number of HUIs k, the problem of top-k high utility
itemsets mining is to discover all the itemsets having a utility
no less than d� in D.

2.2 Related Works

This section introduces related works about top-k high util-
ity itemset mining, including high utility itemset mining, top-k
frequent pattern mining and top-k high utility itemset mining.

2.2.1 High Utility Itemset Mining

In recent years, high utility itemset mining has received lots
of attention and many efficient algorithms have been

TABLE 1
An Example Database

TID Transaction Transaction Utility (TU)

T1 (A,1)(C,1)(D,1) 8
T2 (A,2)(C,6)(E,2)(G,5) 27
T3 (A,1)(B,2)(C,1)(D,6)(E,1)(F,5) 30
T4 (B,4)(C,3)(D,3)(E,1) 20
T5 (B,2)(C,2)(E,1)(G,2) 11

TABLE 2
Profit Table

Item A B C D E F G

Unit Profit 5 2 1 2 3 1 1
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proposed, such as Two-Phase [13], IHUP [2], IIDS [17], UP-
Growth [25], d2HUP [15] and HUI-Miner [14]. These algo-
rithms can be generally categorized into two types: two-
phase and one-phase algorithms. The main characteristic of
two-phase algorithms is that they consist of two phases. In
the first phase, they generate a set of candidates that are
potential high utility itemsets. In the second phase, they cal-
culate the exact utility of each candidate found in the first
phase to identify high utility itemsets. Two-Phase, IHUP,
IIDS and UP-Growth are two-phase based algorithms. UP-
Growth is one of the state-of-the-art two-phase algorithms,
which incorporates four effective strategies DGU, DGN,
DLU and DLN for pruning candidates in the first phase.

One the contrary, the main characteristic of one-phase
algorithms is that they discover high utility itemsets using
only one phase and produce no candidates. d2HUP and
HUI-Miner are one-phase algorithms. d2HUP transforms a
horizontal database into a tree-based structure called CAUL
[15] and adopts a pattern-growth strategy to directly dis-
cover high utility itemsets in databases. HUI-Miner consid-
ers a database of vertical format and transforms it into
utility-lists [14]. The utility-list structure used in HUI-Miner
allows directly computing the utility of generated itemsets
in main memory without scanning the original database.

Although the above studies may perform well in some
applications, they are not developed for top-k high utility
itemset mining and still suffer from the subtle problem of
setting appropriate thresholds.

2.2.2 Top-k Pattern Mining

Many studies have been proposed to mine different kinds of
top-k patterns, such as top-k frequent itemsets [3], [19], [20],
top-k frequent closed itemsets [3], [28], top-k closed sequential
patterns [24], top-k association rules [6], top-k sequential rules
[5], top-k correlation patterns [31], [32], [33] and top-k cosine
similarity interesting pairs [38]. What distinguishes each top-k
pattern mining algorithm is the type of patterns discovered,
as well as the data structures and search strategies that are
employed. For example, some algorithms [5], [6] use a rule
expansion strategy for finding patterns, while others rely on
a pattern-growth search using structures such as FP-Tree
[19], [20], [28]. The choice of data structures and search
strategy affect the efficiency of a top-k pattern mining
algorithm in terms of both memory and execution time.
However, the above algorithms discover top-k patterns
according to traditional measures instead of the utility mea-
sure. As a consequence, they may miss patterns yielding
high utility.

2.2.3 Top-k High Utility Pattern Mining

The task of top-k high utility pattern mining was introduced
by Chan et al. [4]. But the definition of high utility itemset
used in their study is different from the one used in this
work. Chan et al.’s study has considered utilities of various
items, but quantitative values of items in transactions were
not taken into consideration. In [30], we have defined the
task of top-k high utility itemset mining by considering both
quantities and profits of items. This work has inspired a few
studies for mining top-k high utility patterns. Zihayat and
An [37] have proposed an efficient algorithm T-HUDS for

mining top-k HUIs over data streams. Yin et al. [36] have
proposed a new framework for mining top-k high utility
sequential patterns. Recently, Ryang and Yun extended [30]
to propose the REPT algorithm [21] with four strategies
PUD, RIU, RSD and SEP for top-k HUI mining. In REPT,
besides the parameter k, users need to set another parameter
N to control the effectiveness of RSD [21]. However, it is not
easy for users to choose an appropriate N value and the
choice of N greatly influences the performance of REPT (see
Section 5).

3 THE TKU ALGORITHM

In this section, we propose an efficient algorithm named
TKU (mining Top-k Utility itemsets) for discovering top-k
HUIs without specifying min_util. We first present its basic
version named TKUBase and then describe the TKU algo-
rithm, which includes several novel strategies.

3.1 The Baseline Approach TKUBase

The baseline approach TKUBase is an extension of UP-
Growth [25], a tree-based algorithm for mining HUIs. TKU-

Base adopts the UP-Tree structure of UP-Growth to maintain
the information of transactions and top-k HUIs. TKUBase is
executed in three steps: (1) constructing the UP-Tree, (2)
generating potential top-k high utility itemsets (PKHUIs)
from the UP-Tree, and (3) identifying top-k HUIs from the
set of PKHUIs.

3.1.1 UP-Tree Structure

Then, we briefly introduce the UP-Tree structure. For more
details about it, readers are referred to [25]. Each node N of
a UP-Tree has five entries: N.name is the item name of N; N.
count is the support count of N; N.nu is the node utility of N;
N.parent indicates the parent node of N; N.hlink is a node
link which may point to a node having the same item name
as N.name. The Header table is a structure employed to facili-
tate the traversal of the UP-Tree.

A header table entry contains an item name, an estimated
utility value, and a link. The link points to the first node in
the UP-Tree having the same item name as the entry. The
nodes whose item names are the same can be traversed effi-
ciently by following the links in header table and the node
links in the UP-Tree.

3.1.2 Construction of UP-Tree

A UP-Tree can be constructed by scanning the original data-
base twice. In the first scan, the transaction utility of each
transaction and TWU of each item are computed. Thus,
items and their TWUs are obtained. For example, Table 3
shows items and their TWUs for the database of Table 1.
Subsequently, items are inserted into the header table in
descending order of their TWUs. During the second data-
base scan, transactions are reorganized and then inserted

TABLE 3
Items and Their TWUs

Item A B C D E F G

TWU 65 61 96 58 88 30 38
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into the UP-Tree. Initially, the tree is created with a root R.
When a transaction is retrieved, items in the transaction are
sorted in descending order of TWU. A transaction after the
above reorganization is called reorganized transaction and its
transaction utility is called Reorganized Transaction Utility
(RTU). The RTU of a reorganized transaction Tr’ is denoted
as RTU(Tr’). When a reorganized transaction Tr’ ¼ {I1, I2, . . .,
IM} (Ij 2 I�, 1 � j �M) is retrieved, TKUBase calls the function
Insert_Reorganized_Transaction(N, Ij) and applies the strategy
Discarding Global Node utilities (DGN) [25] to insert Tr’.

The function Insert_Reorganized_Transaction (N, Ij) takes a
node N in the UP-Tree and an item Ij (Ij2Tr’, 1 � j � M) in
the reorganized transaction Tr’ as inputs. The function is
performed as follows:

1. If N has a child node ChN such that ChN.item ¼ Ij,
then increment ChN.count by 1; Otherwise, create a
new child node ChN with ChN.item ¼ Ij, ChN.count ¼
1, ChN.parent ¼ N and ChN.nu ¼ 0.

2. Increase ChN.nu by (RTU(Tr’)�
PM

i¼ðjþ1Þ EUðIi; T 0rÞ),
where Ij Tr’ and 1� j�M).

3. Call Insert_Reorgnized_Transaction(ChN, Ijþ1) if j �M.
After inserting all the reorganized transactions, the con-

struction of the UP-Tree is completed. Fig. 1 shows a UP-
Tree after inserting all the transactions in Table 1 when
abs_min_util ¼ 0. In Fig. 1, the node utility and support
count of node {C} are respectively 5 and 13.

3.1.3 Generating PKHUIs from the UP-Tree

The TKUBase algorithm uses an internal variable named bor-
der minimum utility threshold (denoted as min_utilBorder)
which is initially set to 0 and raised dynamically after a suf-
ficient number of itemsets with higher utilities has been cap-
tured during the generation of PKHUIs. The development
of the proposed method is based on the following defini-
tions and lemmas.

Lemma 1. Let P¼ hX1, X2, . . . , XMi be a set of itemsets (M � k),
where Xi is the ith itemset in P and EU(Xi)� EU(Xj)> 0, 8 i<
j. In other words, Xi is the itemset with the ith highest utility in
P. For any itemset Y, if EU(Y)< EU(Xk), Y is not a top-k HUI.

Rationale. According to Definition 10, if there exists k
itemsets whose utilities are higher than the utility of Y, Y is
not a top-kHUI.

Lemma 2. Let P¼ hX1, X2, . . . , XMi be a set of itemsets (M � k),
where Xi is the i-th itemset in P and EU(Xi) � EU(Xj) > 0, 8 i
< j. If dP ¼ EU(Xk), fHUI(D, d�) � fHUI(D, dP).

Rationale. Let KH be the complete set of top-k HUIs. If
jKH j � k, d� ¼ min{EU(X) jX2KH} (by Definition 11).
Because d� ¼ min{EU(X) jX2 KH} � min{EU(Xi) jXi2P, 1 � i
� k} ¼ EU(Xk) ¼ dP, d

� � dP and fHUI(D, d�) � fHUI(D, dP).

Example 3. Consider that k ¼ 4 and abs_min_util ¼ 0. Let P
be the set of all 1-itemsets {{A}:20, {D}:20, {B}:16, {E}:15,
{C}:13, G:7, F:5} inD, where the number beside each item-
set is its absolute utility. By Lemma 1, {C}, {G}, {F} are
unpromising to be the top-4 HUIs. Therefore abs_min_util
can be raised to the fourth highest utility value in P (i.e.,
15) and no top-kHUIs will be missed.

After raising abs_min_util, TKUBase applies the UP-
Growth search procedure with abs_min_util ¼ min_utilBorder
to generate PKHUIs. Though Lemma 1 provides a way to
raise min_utilBorder, it cannot be applied during the genera-
tion of PKHUIs in phase I. This is because the utilities of
PKHUIs are unknown during phase I. A solution to this
problem is to use a lower bound on the utility of PKHUIs
during phase I to raise min_utilBorder. A lower bound on the
utility of PKHUIs is provided by the following definitions.

Definition 12 (Minimum utility of an item). The minimum
utility of an item I 2 I� is denoted as miu(I) and defined as the
value EU(I, Ti) for which : 9 Tj 2 D such that 0 < EU(I, Tj)
< EU(I, Ti). An equivalent definition is that miu(I) ¼ min{EU
(I, Tr) jTr2D and r2g(I)}.

Definition 13 (Minimum utility of an itemset). The mini-
mum utility of an itemset X ¼ {I1, I2, . . . , IM} is defined as
MIU(X) ¼PM

i¼1 miuðIiÞ � SCðXÞ.
Example 4. Consider the database of Table 1. Table 4 shows

the mius of items of this database. The minimum utility
of item {B} is miu({B}) ¼ min{EU({B}, T3’), EU({B}, T4’), EU
({B}, T5’)} ¼ min{4, 8, 4} ¼ 4. The minimum utility of item-
set {BC} is MIU({BC}) ¼ [miu({B}) þ miu({C})]� SC({BC})
¼ [4þ1]� 3 ¼ 15.

Lemma 3. Let C¼ hX1, X2, . . . , XMi be a set of itemsets (M � k),
where Xi is the ith itemset in C and MIU(Xi) � MIU(Xj) > 0,
8i < j. In other words, Xi is the itemset with the ith highest
MUI value in C. For any itemset Y, if TWU(Y) < dMC ¼ min
{MIU(Xi) jXi 2 C, 1 � i � k}, then Y is not a top-k HUI.

Rationale. According to Definition 8, EU(Y) � TWU(Y). If
TWU(Y) < dMC, we have EU(Y) <dMC. Besides, 0 < EU(Y) <
MIU(Xi) � EU(Xi), 8Xi2C, 1 � i � k. According to Definition
10, if there exist k itemsets whose utilities are higher than the util-
ity of Y, Y is not a top-k HUI.

Lemma 4. Let C ¼ hX1, X2, . . ., XMi be a set of itemsets (M � k),
where Xi is the ith itemset in C and MIU(Xi) � MIU(Xj) > 0,
8i < j. If dMC ¼MIU(Xk), fHUI(D, d�) � fHUI(D, dMC).

Rationale. Let KH be the complete set of top-k HUIs. If jKH j
� k, d� ¼ min{EU(X) jX2KH} (by Definition 11). Because d� ¼
min{EU(X) jX2KH} � min{EU(Xi) jXi2C, 1 � i � k} � min

Fig. 1. A UP-Tree after inserting all the transactions in Table 1.

TABLE 4
Items and Their Mius

Item A B C D E F G

Miu 5 4 1 2 3 5 2
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{MIU(Xi) jXi 2C, 1 � i � k} ¼ MIU(Xk), we have d� � dMC.
Therefore, fHUI(D, d�) � fHUI(D, dMC).

Lemma 5. For any itemset X, if TWU(X)< abs_min_util� d�, X
and all its supersets are not top-k HUIs.

Definition 14 (Maximum utility of an item). The maximum
utility of an item I 2 I� is denoted as mau(I) and defined as the
value EU(I, Ti) for which :9 Tj 2 D such that EU(I, Tj) > EU
(I, Ti) > 0. An equivalent definition is that mau(I) ¼ max{EU
(I, Tr) jTr 2 D, r 2 g(I)}. Table 5 shows the mau of each item
in the database of Table 1.

Definition 15 (Maximum utility of an itemset). The maxi-
mum utility of an itemset X ¼ {I1, I2, . . ., IM} is defined as
MAU(X) ¼PM

i¼1 mauðIiÞ � SCðXÞ.
Lemma 6. For any itemset X, if MAU(X) < abs_min_util � d�,

X is not a top-k HUI

Rationale. According to Definition 15, we have EU(X) �
MAU(X). If MAU(X) < abs_min_util � d�, EU(X) < abs_
min_util � d�. By Definition 10, X is not a top-kHUI.

Lemma 7. For any itemset X, the relationship between MAU(X),
TWU(X), EU(X) and MIU(X) is MIU(X) � EU(X) � min
{MAU(X), TWU(X)}.

Definition 16 (Potential top-k high utility itemset). An
itemset is called Potential top-K High Utility Itemset (PKHUI)
if its estimated utility value (i.e., TWU) and MAU are no less
than themin_utilBorder threshold.

TKUBase integrates the UP-Growth search procedure to
find top-kHUIs. A detailed running example of the UP-Tree
construction and UP-Growth mining process can be found
in [25].

Property 3. In UP-Growth, each candidate X ¼ {I1, I2, . . . , IM} is
generated with its estimated utility value ESTU(X). This esti-
mated utility value has the following properties: (1) MIU(X)
� EU(X) � ESTU(X) � TWU(X); (2) EU(X) � min{ESTU
(X), MAU(X)}; (3) if ESTU(X) < abs_min_util, X and its
concatenations are low utility.

Based on the above lemmas and properties, we propose
ideas to raise min_utilBorder during the Phase I of TKUBase.
Fig. 2 gives the resulting pseudo code of TKUBase. Each time
a candidate itemset X is found by the UP-Growth search
procedure, the TKUBase algorithm checks whether its esti-
mated utility value ESTU(X) is no less than min_utilBorder. If
ESTU(X) is less than min_utilBorder, X and all its concatena-
tions are not top-k HUIs (Property 3). Besides, TKUBase

checks whether MAU(X) is no less than min_utilBorder (Line
5). If MAU(X) is smaller than min_utilBorder, X is not a top-k
HUI (Lemma 6). Otherwise, X is considered a candidate for
Phase II and it is outputted with min{ESTU(X), MAU(X)}
according to Property 3 (Line 6). If X is a valid PKHUI and
MIU(X) � min_utilBorder, MIU(X) can be used to raise

min_utilBorder by the proposed strategyMC (raising the thresh-
old by MUIs of Candidates) (Line 9-10), which is explained
thereafter.

To efficiently update min_utilBorder, we use a min-heap
structure named TopK-MIU-List to maintain the k highest
MIU values of PKHUIs found until now. Each time a
PKHUI X is found and its MIU is higher than min_utilBorder,
X is added into TopK-MIU-List. If there are less than k MIU
values in TopK-MIU-List, min_utilBorder will not change.
Once k MIU values are found and the k-th MIU value
(denoted as MIUk-th) in TopK-MIU-List is higher than min_u-
tilBorder, min_utilBorder is raised to MIUk-th in TopK-MIU-List
according to Lemma 3. Otherwise, if there exist more than k
MUI values in TopK-MIU-List, min_utilBorder is raised to
MIUk-th in TopK-MIU-List and the MIU values that are less
than MIUk-th in TopK-MIU-List are removed. The algorithm
continues searching for other PKHUIs until no candidate is
found by the UP-Growth procedure.

Strategy 1 (MC). Raising the threshold by MUIs of Candi-
dates. For any newly mined candidate itemset X, if MIU(X),
ESTU(X) and MAU(X) are no less than the current min_
utilBorder, then MIU(X) is added to TopK-MIU-List. If jTopK-
MIU-List j � k and MIUk-th > min_utilBorder, min_utilBorder can
be safely raised toMIUk-th.

3.1.4 Identifying Top-k HUIs from PKHUIs

After identifying PKHUIs, TKUBase calculates the utility of
PKHUIs by scanning the original database once, to identify
the top-k HUIs. This process is similar to that of Phase II in
[25]. However, in previous work [25], all the candidates
were considered. In this work, we only consider a candidate
itemset X if its estimated utility value reached after phase I
is no less than min_utilBorder, i.e., min{ESTU(X), MAU(X)} �
min_utilBorder.

3.2 The TKU Algorithm

In this section, we propose four strategies to effectively raise
min_utilBorder during different stages of the mining process.
The four strategies are incorporated in TKUBase to form the
advanced TKU algorithm.

3.2.1 Pre-Evaluation Step

Though TKUBase provides a way to mine top-k HUIs, min_
utilBorder is set to 0 before the construction of the UP-Tree.
This results in the construction of a full UP-Tree in memory,
which degrades the performance of the mining task. If

TABLE 5
Items and Their Maus

Item A B C D E F G

Mau 5 8 3 6 6 5 5

Fig. 2. The pseudo code of the TKUBase algorithm.
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min_utilBorder could be raised before the construction of the
UP-Tree and prune more unpromising items [25] in transac-
tions, the number of nodes maintained in memory could be
reduced and the mining algorithm could achieve better per-
formance. Based on this idea, we propose a strategy named
PE (Pre-evaluation Step) to raise min_utilBorder during the first
scan of the database.

Strategy 2 (PE: Pre-Evaluation). The strategy PE uses a
structure named Pre-Evaluation Matrix (PEM) to store lower
bounds of the utilities of certain 2-itemsets. Each entry in
PEM is denoted as PEM[x][y] and corresponds to the lower
bound of EU({x, y}), where x, y 2 I�. Initially, each value in
PEM is set to 0. When a transaction Tr ¼ {I1, I2, . . . , IM} (Ij 2
I�, 1 � i � M) is retrieved during the first database scan, the
utility of {I1} [ {Ii} (1 < i � M) in Tr is added to the value of
the corresponding entry of PEM[I1][Ii] in PEM. After scan-
ning all the transactions, if the k-th highest value in PEM is
higher than min_utilBorder, min_utilBorder can be raised to the
k-th highest value in PEM. The space complexity of the strat-
egy is O( j I� j 2/2), where j I� j is the number of distinct items
in the database.

Example 5. Consider the database of Table 1. When T1 ¼
{(A,1), (C,1), (D,1)} is retrieved, the corresponding entries
PEM[A][C], PEM[A][D] are accumulated with EU({AC},
T1) ¼ 6 and EU({AD}, T1) ¼ 7. The remaining transactions
in the database are processed by the same procedure.
After that, if min_utilBorder is lower than the k-th highest
value in PEM, min_utilBorder is set to the k-th highest value
in PEM. Fig. 3 shows the value of each entry in PEM after
scanning the database. If k ¼ 4, the fourth highest value
in PEM is PEM[B][E] ¼ 18. If min_utilBorder is less than
this value, min_utilBorder is raised to 18.

Notice that in TKUBase, the strategy DGU proposed in
[25] cannot be applied, because min_utilBorder is set to 0
before the construction of the UP-Tree. However, if we
apply the strategy PE to raise min_utilBorder during the first
database scan, DGU can be further applied to prune those
items whose TWUs are less than min_utilBorder, which
reduces the size of the UP-Tree and the number of candi-
dates produced in phase I.

3.2.2 Raising the Threshold by Node Utilities

We also propose a strategy called NU (raising the threshold by
Node Utilities), which is applied during the construction of
the UP-Tree. The strategy NU is developed based on the fol-
lowing lemmas.

Lemma 8. Let PATH ¼ hN1, N2, . . . , NM, Ri be a path from a
node N1 to the root R in UP-Tree and Ii 2 I� be the item name
of Ni, 1 � i � M. PATH ¼ hN1, N2, . . . , NM, Ri represents a
unique itemset X ¼ {I1, I2, . . . , IM} in the database. Besides,
the node utility of N1 is a lower bound on the utility of X.

Rationale. The UP-Tree is constructed by applying the
strategy DGN [25]. According to the rationale described in
[25], the utility of the itemset X ¼ {I1, I2, . . . , IM} is guaranteed
to be higher than the node utility of N1. Therefore, N1.nu �
EU({I1, I2, . . . , IM}).

Lemma 9. If there are M nodes in the UP-Tree, there are at least
M distinct itemsets whose utilities are higher than 0.

Rationale. By Lemma 8, each path from a node in the UP-
Tree to the root forms a unique path, which represents a
unique itemset whose utility is higher than zero in the data-
base. Therefore, M distinct nodes in the UP-Tree yield M
distinct itemsets whose utilities are higher than zero.

Lemma 10. Let SetNode ¼ hN1, N2, . . . , NMi be an ordered set
containing all nodes in the UP-Tree (M � k). Let Ni be the ith
node in SetNode and Ni.nu � Nj.nu > 0, 8i < j. If dNU ¼ Nk.
nu, then fHUI(D, d�) � fHUI(D, dNU).

Rationale. By Lemma 8, each path from a node Ni 2 Set-
Node to the root R represents a unique itemset Ni, 1 � i � M.
Let SetItemset ¼ hX1, X2, . . . , XMi be an ordered set of item-
sets that are represented by the nodes in SetNode, where EU
(Xi) � EU(Xj) > 0, 8i < j. Let KH be the complete set of top-k
HUIs in the database D. If jKH j � k, then d� ¼ min{EU(X)
jX2KH} (Definition 11). Because d� ¼ min{EU(X) jX2 KH} �
min{EU(Xi) jXi2SetItemset, 1 � i � k} � min{Ni.nu j Ni 2
NodeSet, 1 � i � k} ¼ dNU, we have d� � dNU and fHUI(D, d�) �
fHUI(D, dNU).

By Lemma 8, 9 and 10, if there are no less than k nodes in
the UP-Tree during its construction and the k-th highest
node utility in the UP-Tree is higher than the current min_
utilBorder, min_utilBorder can be safely raised to the k-th highest
node utility in the UP-Tree.

Example 6. Let the notation Na represents a node of the
UP-Tree such that a is the item stored in Na. If k ¼ 4,
when the first reorganized transaction T1

0 ¼ {(C,1),
(A,1), (D,1)} is inserted into the UP-Tree, the nodes
N{C}, N{A} and N{D} are created with node utilities 1, 6
and 8, which are respectively lower bounds on the util-
ities of itemsets {C}, {AC} and {DAC}. When the second
reorganized transaction T2’ ¼ {(C,6), (E,2), (A,2), (G,5)}
is inserted into the UP-Tree, there are more than four
nodes in the tree. By Lemma 10, min_utilBorder can be
raised to the fourth highest node utility in the current
UP-Tree.

Strategy 3 (NU: raising the threshold by Node Utilities). The
strategy NU is applied during the construction of the UP-
Tree (during the second database scan). If there are more
than k nodes in the current UP-Tree and the k-th highest node
utility value NUk-th is higher than min_utilBorder, min_
utilBorder can be raised to NUk-th. After inserting all reorgan-
ized transactions, the size of the constructed UP-Tree can be
further reduced by pruning items whose TWU values are
less than min_utilBorder in the UP-Tree.

3.2.3 Raising the Threshold by MIU Values of

Descendents

The third strategy that we propose is called MD (raising the
threshold by MIU values of Descendents). It is applied after the

Fig. 3. Pre-evaluation matrix.
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construction of the UP-Tree and before the generation of
PKHUIs.

Strategy 4 (MD: raising the threshold by MIU values of
Descendents). Let the notation Na represents a node of the
UP-Tree such that a is the item stored in N. For each node
Na under the root of UP-Tree, the algorithm traverses the
sub-tree under node Na once to calculate the support count
of the itemset {a[b} for every descendent node Nb of Na.
For each itemset {a[b}, the MIU value of {a[b} is calculated.
If the k-th highest MIU value is higher than min_utilBorder,
min_utilBorder can be safely raised to that value.

Example 7. Consider the UP-Tree depicted in Fig. 2 and
suppose k ¼ 4. The node under the root is N{C}. We tra-
verse the sub-tree under the node N{C} once and calculate
the MIU values of its descendents. For the descendent
N{A}, the total support count of {A} in the sub-tree of N{C}

is (1 þ 2) ¼ 3. Therefore, the MIU of {AC} isMIU({AC}) ¼
[miu({A}) þ miu({C})] � SC({AC}) ¼ [5þ4] � 3 ¼ 27.
Table 6 shows the MIU values of descendents of N{C}.

3.2.4 Raising the Threshold during Phase II

The fourth proposed strategy is called SE (raising the thresh-
old by Sorting and calculating Exact utility of candidates), which
is applied during the phase II of TKU.

Strategy 5 (SE: raising the threshold by Sorting and calculat-
ing Exact utility of candidates). Let C be the set of candidates
produced in Phase I. Candidates in C are sorted in descending
order of their estimated utilities, i.e., min{ESTU(X), MAU(X)}.
Thus, candidates with higher estimated utility values will
be considered before those having lower estimated utility
values. During the phase II, if the utility of a newly consid-
ered HUI X is larger than min_utilBorder, X and EU(X) are
inserted into a min-heap structure named TopK-HUI-List.
HUIs in TopK-HUI-List are ordered by decreasing utility. Then,
min_utilBorder is raised to the utility of the k-th HUI in TopK-
HUI-List, and HUIs having a utility lower than min_utilBorder
are removed from TopK-HUI-List. If the estimated utility of
the current candidate Y, i.e., min{ESTU(Y), MAU(Y)}, is less
than the raised min_utilBorder, Y and the remaining candidates
do not need to be considered anymore because the upper
bounds on their utilities are less than min_utilBorder.When the
algorithm completes, TopK-HUI-List captures all the top-k
HUIs in the database.

By this mechanism, itemsets with lower estimated utility
values may not be checked if the min_utilBorder has been pre-
viously raised. Thus, the I/O cost and execution time for
Phase II can be further reduced.

4. THE TKO ALGORITHM

The second algorithm that we propose is TKO (mining Top-k
utility itemsets in One phase). It can discover top-k HUIs in
only one phase. It utilizes the basic search procedure of

HUI-Miner and its utility-list structure [14]. Whenever an
itemset is generated by TKO, its utility is calculated by its
utility-list without scanning the original database. We first
describe a basic version of TKO named TKOBase and then
the advanced version, which includes several strategies to
increase its efficiency.

4.1 Construction of Utility-List Structure

In this section, we briefly introduce the utility-list structure
and related properties. For details about utility-lists, readers
are referred to [14]. In the TKOBase and TKO algorithms,
each item(set) is associated with a utility-list. The utility-lists
of items are called initial utility-lists, which can be con-
structed by scanning the database twice. In the first data-
base scan, the TWU and utility values of items are
calculated. During the second database scan, items in each
transaction are sorted in order of TWU values and the util-
ity-list of each item is constructed.

Table 7 shows an example database, where items in each
transaction are arranged in ascending order of TWU values.
Fig. 4 shows utility-lists of items for the database in Table 7.
The utility-list of an item(set) X consists of one or more
tuples. Each tuple represents the information of X in a trans-
action Tr and has three fields: Tid, iutil and rutil. Fields Tid
and iutil respectively contains the identifier of Tr and the
utility of X in Tr. Field rutil indicates the remaining utility of
X in Tr. The concept of remaining utility is based on the fol-
lowing definitions.

Definition 17 (Precede and succeed). The ascending order of
TWU is a total order such that an item Ii precedes an item Ij
denoted as Ii 	 Ij iff (1)TWU(Ii) < TWU(Ij) or (2) TWU(Ii)
¼ TWU(Ij) and Ii is smaller than Ij according to the lexico-
graphical order. If one of these conditions is not met, Ii is said
to succeed Ij (denoted as Ii 	 Ij).

Definition 18 (Concatenation of an itemset). Let X ¼ {x1, x2,
. . . , xu} (xi2I�, 1 � i � u) and Y ¼ {y1, y2, . . . , yv} (yj2I�, 1 �
j � v) be itemsets, Y is a concatenation of X iff X 
 Y and each
item yj =2 X succeeds all items in X.

Definition 19 (Appear after). Given a finite set of items I� ¼
{I1, I2, . . . , Im} and a total order I1 	 I2 	 . . . 	 Im on all
items (Definition 17). Suppose that items in itemsets and
transactions are arranged according to this total order. An
item Ij 2 I� appears after an itemset X ¼ {x1, x2, . . . , xL} in a

TABLE 6
MIU Values of Descendents of Node N{C}

Descendent N{E} N{A} N{B} N{D} N{G} N{F}

SC 4 3 3 3 2 1
MIU 16 18 15 9 3 6

TABLE 7
Transactions for Constructing Utility-Lists

TID Transaction Transaction Utility (TU)

T1 (D,1)(A,1)(C,1) 8
T2 (G,5)(A,2)(E,2)(C,6) 27
T3 (F,5)(D,6)(B,2)(A,1)(E,1)(C,1) 30
T4 (D,3)(B,4)(E,1)(C,3) 20
T5 (G,2)(B,2)(E,1)(C,2) 11

Fig. 4. Initial utility-lists.
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transaction Tr iff Ij 2 Tr and x1 	 x2 	 . . . 	 xL 	 Ij. The set
of all the items appearing after X in Tr is denoted as Tr/X.

Definition 20 (Remaining utility of an itemset in a transac-
tion). The remaining utility of an itemset X in a transaction
Tr is defined as RU(X, Tr) ¼

P
Ii2Tr=X EUðIi; TrÞ.

Definition 21 (Remaining utility of an itemset in a data-
base). The remaining utility of an itemset X in a database D is
defined as RU(X) ¼P

Tr2D RUðX;TrÞ.
Definition 22 (Utility-list structure). The utility-list of an

itemset X, denoted as ul(X) is a list containing j g(X) j tuples
of the form htid, iutil, rutili. Each tuple is called an element
and maintains the information of X in a transaction Tr, where
r2g(X). An element with respect to the transaction Tr contains
the information hr, EU(X, Tr), RU(X, Tr)i.

Example 8. Consider the database in Table 7. The remaining
utility of {D} in T1 is RU({D}, T1) ¼ EU({A}, T1) þ EU({C},
T1) ¼ (5þ1) ¼ 6. The remaining utility of {D} in the data-
base is RU({D}) ¼ RU({D}, T1) þ RU({D}, T3) þ RU({D},
T4) ¼ (6þ13þ14) ¼ 33. The remaining utility of {DE} is
RU({DE}) ¼ RU({DE}, T3) þ RU({DE}, T4) ¼ (1þ3) ¼ 4.

Property 4. In the utility-list of an itemset X, the sum of all its
iutil values is the utility of X.

Property 5. Let X be an itemset and Y �X be any concatenation
of X. If the sum of all the rutil and iutil values in the utility-
list of X is less than a threshold d, the utility of Y must be less
than d.

Rationale. If X 
 Y, g(Y) � g(X). If a transaction Tr contains
both X and Y, (Y–X) � (Tr /X) and (Tr /Y) � (Tr /X) (Definition
19). Let a ¼ X[(Tr /X) and b ¼ Y[(Tr /Y). Because Y ¼ X[(Y–
X), we have b ¼ X [ (Y–X) [ (Tr/Y). Since (Y–X) and (Tr /Y) are
subsets of (Tr /X), (Y–X) [ (Tr /Y) � (Tr /X), which yields b � a.
Besides, EU(a, Tr) ¼ EU(X, Tr) þ EU(Tr /X, Tr) ¼ EU(X, Tr) þ
RU(X, Tr) and EU(b, Tr) ¼ EU(Y, Tr) þ EU(Tr /Y, Tr) ¼ EU(Y,
Tr) þ RU(Y, Tr). If b � a, EU(X, Tr) þ RU(X, Tr) � EU(Y, Tr)
þ RU(Y, Tr) � EU(Y). Since g(Y) � g(X), EU(X) þ RU(X) �
EU(Y) þ RU(Y) � EU(Y). If (EU(X) þ RU(X)) < d, we have EU
(Y) < d.

4.2 The TKOBase Algorithm

The TKOBase algorithm takes as input the parameter k and a
transactional database D in horizontal format. But if a data-
base has already been transformed into vertical format such
as initial utility-lists, TKOBase can directly use it for mining
top-kHUIs.

TKOBase initially sets the min_utilBorder threshold to 0 and
initializes a min-heap structure TopK-CI-List for maintaining
the current top-k HUIs during the search. The algorithm
then scans D twice to build the initial utility-lists F-ULs.
Then, TKOBase explores the search space of top-k HUI using
a procedure that we name TopK-HUI-Search. It is the combi-
nation of a novel strategy named RUC (Raising threshold by
Utility of Candidates) with the HUI-Miner search procedure
[14]. During the search, TKOBase updates the list of current
top-k HUIs in TopK-CI-List and gradually raises the min_u-
tilBorder threshold by the information of TopK-CI-List. When
the algorithm terminates, the TopK-CI-List captures the com-
plete set of top-kHUIs in the database.

For each L-itemset X ¼ {x1, x2, . . . , xL} generated by the
search procedure, if its utility is no less than min_utilBorder,
the proposed RUC strategy is applied to raise min_utilBorder,
RUC is performed as follows. First, X is added into TopK-CI-
List. Then, if EU(X) is no less than min_utilBorder and there
are more than k itemsets already in TopK-CI-List, min_utilBor-
der is raised to the utility of the k-th itemset in TopK-CI-List.
The remaining itemsets having a utility lower than min_
utilBorder are removed. This ensures that all and only the top-
k HUIs are kept. After the above process, the strategy raises
the border minimum utility threshold.

Fig. 5 shows the pseudo code of TopK-HUI-Search proce-
dure. It continues mining itemsets that are concatenations
of an itemset X if the sum of iutils and rutils of X is no less
than min_utilBorder (Line 6). Two ordered sets Class[X] and
ULS[X] are created to respectively store the concatenations
of X and their utility-lists (Line 7). For each itemset Y ¼ {y1,
y2, . . . , yL} in Class[P] (yL 	 xL and P ¼ {y1, y2, . . . , yL-1}), we
create a candidate itemset Z ¼ X [ Y by concatenating X
with yL and uses the Construct procedure to construct util-
ity-list of Z (i.e., ul(Z)) (Line 9-10). Then, Z and ul(Z) are
respectively added to Class[X] and ULS[X] (Line 11-12).
After processing each itemset in Class[P], the procedure
TopK-HUI-Search is called with X, Class[X], min_utilBorder
and TopK-CI-List to consider (Lþ1)-itemsets that are concat-
enations of X. This recursive process continues until no can-
didate itemset is found.

Strategy 6 (RUC: Raising the threshold by the Utilities of Can-
didates). This strategy can be incorporated with any one-
phase mining algorithm where itemsets are found with their
utilities. It adopts the TopK-CI-List structure to maintain top-
k HUIs, where itemsets are sorted by descending order of
utility. Initially, TopK-CI-List is empty. When an itemset X is
found by the search procedure and its utility is no less than
min_utilBorder, X is added to TopK-CI-List. If there are more
than k itemsets already in TopK-CI-List, min_utilBorder can be
safely raised to the utility of the k-th itemset in TopK-CI-List.
After that, itemsets having a utility lower than the raised
min_utilBorder are removed from TopK-CI-List.

Given two itemsets X and Y and their prefix P, during the
search process of TopK-HUI-Search, the utility-list of the
itemset Z ¼ X[Y, denoted as ul(Z), is obtained by applying

Fig. 5. The pseudo code of TopK-HUI-search.
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the Construct procedure. The procedure consists of two
cases and is performed as follows.

Case 1. If X ¼ {x1} and Y ¼ {y1} are 1-itemsets, where x1 	 y1.
Let Z ¼ X[Y ¼ {x1, y1} be a 2-itemset obtained by
concatenating X with y1. The utility-lists ul(X) and ul(Y)
are constructed during the initial database scans. The
utility-list of Z is obtained by the following process. For
each transaction Tr2g(X)\g(Y), an element hTr, EU(Z,
Tr), RU(Z, Tr)i is created in ul(Z), where EU(Z, Tr) is the
sum of the iutil values in elements associated with Tr in
ul(X) and ul(Y), and where RU(Z, Tr) is the rutil value
associated with Tr in ul(Y). In brief, EU(Z, Tr) ¼ EU(x1,
Tr) þ EU(y1, Tr) and RU(Z, Tr) ¼ EU(y1, Tr).

Case 2. If X ¼ {x1, x2, . . . , xL-1} and Y ¼ {y1, y2, . . . , yL-1} are
(L-1)-itemsets (L � 2), where xi ¼ yi (1 � i < L-1) and
xL�1 	 yl�1. Let Z ¼ X[Y ¼ {x1, x2, . . . , xL-1, yL-1} be an
L-itemset obtained by concatenating X with yL. Let P ¼
X\Y ¼ {x1, x2, . . . , xL-2} be the common prefix of X and
Y. Given the utility-lists ul(X), ul(Y) and ul(P), the util-
ity-list of Z is obtained by the following process. For
each transaction Tr2g(X)\g(Y), an element hTr, EU(Z,
Tr), RU(Z, Tr)i is created in ul(Z), where EU(Z, Tr) is the
sum of the iutil values in elements associated with Tr in
ul(X) and ul(Y) minus the iutil value of the element asso-
ciated with Tr in ul(P), and where RU(Z, Tr) is the rutil
value associated to Tr in ul(Y). In brief, EU(Z, Tr) ¼ [EU
(X, Tr)þEU(Y, Tr)]-EU(P, Tr) and RU(Z, Tr) ¼ EU(Y, Tr).

4.3 The TKO Algorithm and Effective Strategies

We incorporate four strategies to improve the efficiency of
TKOBase. The resulting algorithm is named TKO. The first
two strategies are PE andDGU, which have been previously
presented in Section 3. The third and fourth strategies are
based on the following definitions and properties.

Definition 23 (Z-element). An element is called Z-element iff
its rutil value is equal to zero. Otherwise, the element is called
NZ-element. The set of all Z-elements in the utility list of X is
denoted as ZE(X).

For example, the utility list of {DBC} consists of two
Z-elements ZE({DBC}) ¼ {hT3, 17, 0i, hT4, 17, 0i}.
Property 6. Let NZEU(X) be the sum of iutil values of NZ-

elements of an itemset X. If [NZEU(X) þ RU(X)] < min_
utilBorder, all the concatenations of X are not top-kHUIs.

Strategy 7 (RUZ: Reducing estimated utility values by using
Z-elements). The RUZ strategy is applied during the genera-
tion of candidate itemsets in the TopK-HUI-Search proce-
dure. For any candidate X generated by the TKO algorithm,

it is not necessary to explore the search space of concatena-
tions of X if [NZEU(X) þ RU(X)] is less than min_utilBorder
(Property 6). This strategy is achieved by replacing Line 6 of
Fig. 5 with the following code: If [NZEU(X) þ RU(X)] � d.

Strategy 8 (EPB: Exploring the most Promising Branches
first). The EPB strategy aims at generating the candidate
itemsets with the highest utility first. The reason is that if
itemsets with higher utility are found earlier, TKO can raise
its min_utilBoarder higher and earlier to prune the search
space. Consider Lines 8–9 in Fig. 5, let Class[P] ¼ {X1, X2,
. . . , XM} be the set of itemsets that share the same prefix P,
where the last item of Xi precedes that of Xj (1 � i < j � M).
For each itemset Xj in Class[P], let R ¼ {Xjþ1, X_jþ2, . . . , XM}
denotes the itemsets in Class[P] whose last items precedes
Xj. The TKO algorithm processes itemsets in R one by one
in decreasing order of their estimated utility value (i.e., the
sum of utility and remaining utility). The idea is to always
try to extend the itemset having the largest estimated utility
value first because it is more likely to generate itemsets hav-
ing a higher utility and thus to allow to raise min_utilBorder
more quickly for pruning the search space.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms. Experiments were performed on a computer
with a 3.40 GHz Intel Core Processor and 4 GB of memory,
running Windows 7. All the algorithms are implemented in
Java. Both synthetic and real datasets were used in the
experiments. Foodmart was acquired from Microsoft Food-
Mart 2000 database [40]; Retail, Mushroom, Chess and Acci-
dents were obtained from the FIMI Repository [39];
Chainstore, a large dataset, was obtained from NU-Mine-
Bench 2.0 [18]. Foodmart and Chainstore already contain
unit profits and purchase quantities. For other datasets, unit
profits of items are generated between 1 and 1,000 by using
a log-normal distribution and quantities of items are gener-
ated randomly between 1 and 5, as the settings of [25], [26],
[27]. Synthetic datasets were generated from the data gener-
ator in [1]. Table 8 shows characteristics of the datasets.

5.1 Performance Evaluation of TKUBase and TKU

In this section, we compare the performance of TKU with
UP-Growth [25] (one of the current best two-phase HUI
mining algorithms). To evaluate the performance of the pro-
posed strategies, we prepared three versions of TKU that we
respectively name TKU, TKUNoSE and TKUBase as shown in
Table 9. Because UP-Growth has not been designed for min-
ing top-k HUIs, it cannot be directly compared with TKU.
To compare them, we considered the scenario where users
would choose the optimal parameters for UP-Growth to
produce the same amount of patterns as TKU (denoted as
UP(Optimal)).

TABLE 9
Strategies Used by the Algorithms

Algorithm Phase I Phase II

PE NU MD MC SE

TKU Y Y Y Y Y
TKUNoSE Y Y Y Y
TKUBase Y Y

TABLE 8
Characteristics of Datasets

Dataset #Trans. Avg. Length of Trans. #Items Type

Foodmart 4,141 4.4 1,559 Sparse
Retail 88,162 10.3 16,470 Sparse
Chainstore 1,112,949 7.2 46,086 Large
Mushroom 8,124 23 119 Dense
Chess 3,196 37 76 Dense
Accident 340,183 33.8 468 Dense
T12I8D100K 100,000 12 1,000 Sparse
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5.1.1 Performance Evaluation on Sparse Datasets

Fig. 6 shows the results on Foodmart. In Fig. 6a, the runtime
of TKU for phase I is closed to that of UP(Optimal). TKUBase

has the worst performance among all the algorithms. Fig. 6b
shows min_utilBorder values reached by TKU and TKUBase

after completing phase I, as well as the optimal threshold
values used by UP-Growth. In Fig. 6b, the min_utilBorder val-
ues reached by TKU are closer to the optimal values than
those reached by TKUBase. This behavior is explained by the
fact that TKUBase does not apply the strategies PE, NU and
MD. Thus, it constructs a full UP-Tree using min_utilborder ¼
0. Since raising the threshold for TKUBase strictly depends
on the MC strategy, its runtime is the longest. The ineffec-
tiveness of raising the threshold for TKUBase also influences
the number of candidates generated in phase I. Table 10
shows the number of candidates generated by the algo-
rithms in phase I. In Table 10, the number of candidates pro-
duced by TKUBase is over 1,000 times larger than that of
TKU when k is less than 1,000.

The reason is that strategies PE, NU andMD of TKU effec-
tively raise the threshold at different stages. Fig. 6c. shows
the runtime of the algorithms for Phase II. The performance
of TKUNoSE is worse than TKU because the latter uses the
strategy SE, which reduces the number of candidates that
need to be checked in Phase II. Fig. 6 d shows the overall run-
times of the algorithms. TKU is over 100 times faster than
TKUBase, and only about twice less thanUP (Optimal).

5.1.2 Performance Evaluation on Dense Datasets

Fig. 7a shows the runtime of the algorithms for phase I. The
runtime of TKU is close to that of TKUBase. This is because
for dense datasets the estimated utility values of itemsets
are much larger than their utilities. Thus the thresholds

cannot be raised effectively in phase I. Fig. 7b shows the
thresholds reached by the algorithms. In Fig. 7b, when k is
larger than 1, the thresholds reached by TKU are close to
that of TKUBase. Table 10 shows the number of candidates
generated by the algorithms in phase I.

In Table 10, we see that less candidates are produced by
TKU than by TKUBase. Fig. 7c shows the runtime of the algo-
rithms for Phase II. The runtime of TKUNoSE is the worst.
This is because that, without using the SE strategy, TKUNoSE

needs to check all the candidates to determine which item-
sets are top-k HUIs. When k is set to 5,000, the runtime of
TKUNoSE is too long to be executed (over 10,000 seconds).
Fig. 7d shows the total runtime of the algorithms. In Fig. 7d,
TKU is still more efficient than TKUBase.

5.1.3 Performance Evaluation on Large Datasets

Fig. 8 shows the performance of the algorithms on a very
large dataset Chainstore. Because the runtime of TKUBase on
this dataset is very slow (e.g., over 24 hours when k ¼ 1), we
instead use UP-Growth with a low minimum utility thresh-
old (0.01 percent) as the baseline (denoted as UP(Low) in
the experiments). The number of HUIs generated with
min_util ¼ 0.01% is about 3,800. Fig. 8a shows the runtime
of the algorithms for phase I. Since the threshold of UP
(Low) is fixed, its runtime remains the same when k is

Fig. 6. Performance of the algorithms on Foodmart.

TABLE 10
Number of Candidates

Mushroom Foodmart

K TKU TKUBase TKU TKUBase

1 427 508,462 1,379 2,466,459
10 597,301 713,793 1,503 2,494,446
100 803,377 920,040 2,456 2,537,225
1,000 1,540,583 1,657,403 39,289 2,585,300

Fig. 7. Performance of the algorithms on Mushroom.

Fig. 8. Performance of the algorithms on Chainstore.
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varied. In Fig. 8a, the runtime of TKU is worse than UP
(Low) when k > 200. The reason is that TKU performs more
operations to apply strategies to raise the threshold step by
step. Fig. 8b shows the runtime for Phase II of the algo-
rithms. In Fig. 8b, TKU is slightly slower than UP(Low).
Fig. 8c shows the total runtime of the algorithms. Globally,
TKU is much faster than UP(Low). This is because UP(Low)
needs to check all candidates in Phase II, whereas TKU only
needs to check some of them thanks to strategy SE. Fig. 8d
shows the number of candidates checked by the algorithms
in Phase II. Since TKUNoSE checks all candidates, its perfor-
mance is the worst. Besides, although TKU generates much
more candidates in phase I, the number of candidates that
need to be checked by TKU is close to that of UP(Optimal)
in Phase II. This is because TKU avoids checking some can-
didates by using the SE strategy.

5.2 Performance Comparison of the REPT, TKU,
and TKO Algorithms

In this section, we evaluate the performance of the proposed
algorithms TKU and TKO against REPT [21] and two state-
of-the-art HUI mining algorithms UP-Growth [25] and
HUI-Miner [14]. Here, HUI-Miner(Opt) and UP-Growth
(Opt) respectively represents HUI-Miner and UP-Growth
tuned with the optimal thresholds. Besides, REPT with var-
ied N ¼ y (i.e., the parameter for the RSD strategy [21]) is
denoted as REPT(N ¼ y).

5.2.1 Performance Comparison on Dense Datasets

Figs. 9a, 9b and 9c show the runtime of the algorithms
on three dense datasets Mushroom, Chess and Accidents
with varied k respectively. In these figures, TKO has the
best performance among top-k HUI mining algorithms.
For example, on the Chess dataset, TKO only spends 23

seconds to complete the mining process, while REPT and
TKU take more than 900 seconds. This is because TKO is
a one-phase algorithm while TKU and REPT are two-
phase algorithms. Because dense datasets generally con-
tain lots of long itemsets and transactions, TKU and
REPT tend to highly overestimate the upper bounds on
utilities of generated candidates. However, whenever an
itemset is produced by TKO, TKO immediately calculates
its exact utility by the RUC and RUZ strategies, which
allows TKO to efficiently and effectively raise the border
thresholds. This avoids generating too many intermedi-
ate low utility or candidate itemsets during the mining
process. On the contrary, whenever a candidate is gener-
ated by REPT or TKU in phase I, its exact utility is
unknown. Thus, REPT and TKU cannot effectively raise
the border minimum utility threshold and suffers from
very long runtimes on dense datasets.

5.2.2 Performance Comparison on Sparse Datasets

Figs. 9d, 9e and 9f show the runtime of the algorithms on
three sparse datasets Foodmart, Retail and Chainstore
under varied k. In these figures, the one-phase algorithm
TKO generally has the best performance. For two-phase
algorithms, REPT runs slightly slower than TKU when N
is set to 10. When a smaller N is set for REPT, the RSD
strategy used in REPT cannot effectively raise the border
minimum utility threshold and thus it produces more
candidates and runs slower than TKU. When N is set
appropriately, REPT may run faster than TKU. For exam-
ple, on Retail dataset, when N is set to 1,000, REPT is
faster than TKU. However, setting an appropriate N for
REPT may be difficult for users who are not domain
experts. Besides, the selection of N has major influence
on the performance of REPT, especially on large datasets.
For example, on the Chainstore dataset, when a too large
N (i.e., N ¼ 5,000) is set for REPT, REPT becomes very
inefficient because it spends a lot of time enumerating 2-
itemsets consisting of promising items from each transac-
tion by using the RSD strategy. On the contrary, when a
too small N is set (i.e., N � 1,000) for REPT, the RSD
strategy used in REPT cannot effectively raise the thresh-
old and causes REPT to suffer from a large number of
candidates and a long runtime for Phase II.

5.3 Memory Usage of the Algorithms

Figs. 10a and 10b respectively show the memory usage of
the algorithms on Retail and Chainstore. In Fig. 10, TKO
generally uses less memory than TKU and REPT. This is
because TKU and REPT are two-phase algorithms. When
they could not effectively raise the border minimum utility

Fig. 9. Runtime of REPT, TKU, and TKO.

Fig. 10. Memory consumption of REPT, TKU, and TKO.
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thresholds, they may consider too many candidates and
local UP-Trees during the mining process, which causes
them to consume much more memory than TKO. Besides,
the memory consumption of REPT(N ¼ 5,000) is higher
than that of TKU. This is because REPT maintains not only a
global UP-Tree in memory but also a RSD matrix. When
there are many promising items and N is set too large for
REPT, the RSD matrix could be very large and make REPT
uses more memory.

5.4 Scalability of the Algorithms under Different
Parameter Settings

Then, we test the scalability of the algorithms under differ-
ent parameter settings. In the experiments, k is set to 5,000.
Fig. 11a shows the runtime of the algorithms on
T12I8D100KQ5 when the number of distinct items is varied
from 2K to 10K. Fig. 11b shows the runtime of the algo-
rithms on T12I8N1KQ5 when the database size is varied
from 100K to 500K. As shown in Fig. 11, the proposed algo-
rithms have good scalability under different parameter
settings.

6 CONCLUSION AND FUTURE WORKS

In this paper, we have studied the problem of top-k high
utility itemsets mining, where k is the desired number of
high utility itemsets to be mined. Two efficient algo-
rithms TKU (mining Top-K Utility itemsets) and TKO (min-
ing Top-K utility itemsets in One phase) are proposed for
mining such itemsets without setting minimum utility
thresholds. TKU is the first two-phase algorithm for min-
ing top-k high utility itemsets, which incorporates five
strategies PE, NU, MD, MC and SE to effectively raise
the border minimum utility thresholds and further prune
the search space. On the other hand, TKO is the first
one-phase algorithm developed for top-k HUI mining,
which integrates the novel strategies RUC, RUZ and EPB
to greatly improve its performance. Empirical evalua-
tions on different types of real and synthetic datasets
show that the proposed algorithms have good scalability
on large datasets and the performance of the proposed
algorithms is close to the optimal case of the state-of-the-
art two-phase and one-phase utility mining algorithms
[14], [25].

Although we have proposed a new framework for top-k
HUI mining, it has not yet been incorporated with other
utility mining tasks to discover different types of top-k high
utility patterns such as top-k high utility episodes, top-k closedþ

high utility itemsets, top-k high utility web access patterns and
top-k mobile high utility sequential patterns. These leave wide
rooms for exploration as future work.
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