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Abstract —As a typical latent factor model, Matrix Factorization (MF) has demonstrated its great effectiveness in recommender
systems. Users and items are represented in a shared low-dimensional space so that the user preference can be modeled by linearly
combining the item factor vector V' using the user-specific coefficients U. From a generative model perspective, U and V' are drawn
from two independent Gaussian distributions, which is not so faithful to the reality. Items are produced to maximally meet users’
requirements, which makes U and V strongly correlated. Meanwhile, the linear combination between U and V forces a bijection
(one-to-one mapping), which thereby neglects the mutual correlation between the latent factors. In this paper, we address the upper
drawbacks, and propose a new model, named Correlated Matrix Factorization (CMF). Technically, we apply Canonical Correlation
Analysis (CCA) to map U and V' into a new semantic space. Besides achieving the optimal fitting on the rating matrix, one component
in each vector (U or V) is also tightly correlated with every single component in the other. We derive efficient inference and learning
algorithms based on variational EM methods. The effectiveness of our proposed model is comprehensively verified on four public
datasets. Experimental results show that our approach achieves competitive performance on both prediction accuracy and efficiency

compared with the current state of the art.

Index Terms —Probabilistic Graphical Model, Recommender systems, Matrix Factorization, Canonical Correlation Analysis

1 INTRODUCTION

THe prevalence of e-commerce has strongly propelled
the popularity of recommender systems. Practice has
proven that robust and accurate recommendations would
increase both satisfaction for users and revenue for item
providers. Previous work has focused on two different kinds
of inputs for recommender systems. The most convenient
is the high quality explicit feedback, where users’ ratings
directly reflect their preferences on items. In most cases,
negative and positive attitudes distribute uniformly in the
whole dataset, which provides comprehensive profiles for
the items. For example, users in Netflix give explicit star
ratings to movies to indicate their personal preferences.
However, explicit ratings are always difficult to obtain or
even not available in many applications. More often, users
interact with items through implicit feedback, which contains
more diverse types, such as the purchase history, browsing
history or even mouse movements. In other words, implicit
data is a natural byproduct of users” behavior, which makes
it more abundant and also enables new innovations in
recommendation. But different from explicit feedback, users
avoid to interact with items they do not like [1], which leads
to the natural scarcity of negative data in implicit feedback
(also known as the one-class problem [2]). Only modeling
the observable positive data would result in biased repre-
sentations of users’ preferences. Broadly speaking, implicit
feedback provides better expressiveness than explicit feed-
back, but it’s also more challenging to be well utilized.
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Among the various methods, matrix factorization is the
most popular and effective algorithm, in which a user rating
is modeled by linearly combining the item factor vector V'
using user-specific coefficients U [3]. The idea behind such
models is that the preference of a user is determined by a rel-
atively small number of unobservable factors. Early work on
MF-based algorithms formulates recommendation as a rat-
ing prediction problem. Since most real-world datasets are
extremely sparse, directly solving the matrix factorization
is computationally intractable. To speed up the calculation,
researchers apply the low-rank approximations based on
minimizing the sum-square distance using Singular Value
Decomposition (SVD). In other words, such algorithms
dismiss the large volume of missing data, and learn the
model parameters only based on the non-zero values with
the stochastic gradient descent method. On account of its
great effectiveness and efficiency, tremendous amount of
work has been devised, such as NSVD [4] and SVD++ [5].
To overcome the one-class problem, researchers [6], [7], [8],
[9] propose to treat the missing data as negative feedback
according to the items’” population. The basic hypothesis of
such work is that popular items have higher probability to
be exposed to users, which makes the missing of ratings
more probable to come from deliberate choices. Instead of
learning the optimal fitting on the training data, Tikhonov
regularization [10] (or called ridge regression) is usually
added to the optimization task to avoid overfitting. Inspired
by this idea, many studies [11], [12], [13] try to incorpo-
rate external knowledge, such as social ties, geographical
information and user trust into MF by adding different
regularizations.

Due to the remarkable improvement brought by the reg-
ularization terms, researchers want to know whether there is
any theoretical interpretation for them. Salakhutdinov et al.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2840993, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 2017 2

CC4

N(Nm Uu) — N(va Uv)

Items are produced to meet
users’ preferences

- [ ]
- Inherent Correlation
——— =
- - '

Users prefer different
kinds of items

[3] propose that the objective function for MF is equivalent
to maximizing the log-posterior of a probabilistic generative
model, named probabilistic matrix factorization (PMF). The
regularization terms actually come from the two Gaussian
priors for U and V/, which implicitly indicates that the priors
are important factors for accurate recommendation. Wallach
et al. [14] analyze another very famous graphical model for
recommendation, named Latent Dirichlet Allocation (LDA)
[15]. Different from PMF, LDA introduces two Dirichlet pri-
ors in the generative process. They have demonstrated that
the prior structure substantially increases the robustness of
the model. Moreover, asymmetric Dirichlet priors would
result in significantly better performance than symmetric
ones. Blei et al. [16] further propose the Correlated Topic
model, which simply replaces the Dirichlet distribution of
LDA with Gaussian prior. CTM aims to capture the mutual
correlation between the latent factors, and it reports obvious
improvement over LDA. In a nutshell, appropriate and
informative priors in probabilistic graphical models can
significantly benefit the final recommendation performance.
However, in the generative process of PMF, we find
that U and V' are drawn from two independent Gaussian
distributions with zero means and constant variances, which
means that the priors encode very little information. Mean-
while, U and V are assumed to be conditionally indepen-
dent, which is not so faithful to the reality. The vectors
U and V implicitly indicate the users” preferences and the
item features. Items are produced to maximally meet users’
requirements, thus there exists strong correlation between
them. Besides the optimal fitting on the rating matrix, we
should also incorporate such valuable prior knowledge. In
other words, our model aims to replace the simple L2-
regularization with a better one so that the correlation infor-
mation can be properly incorporated. However, correlation
only is a statistical concept, thus it is impractical to directly
add it to the objective function. In this paper, we propose to
encode such information into the priors of U and V, which
is equivalent to modifying the regularization terms. Further-
more, MF-based models assume that the ratings are drawn
from a Gaussian distribution with its mean parametrized
by the dot product between U and V. This forces a bijection
(one-to-one mapping) between the user and the item factors,
and neglects the mutual correlation between latent factors.
In this paper, we address the aforementioned draw-
backs of traditional matrix factorization, and propose a pure
generative model, named Correlated Matrix Factorization
(CMF). We introduce Canonical Correlation Analysis (CCA)
[17] to capture the prior semantic association between the
user and the item factors. CCA is a well-known machine
learning algorithm, which introduces a new latent factor to
maximize the correlation between two random sets. In the

Fig. 1. The prototype of our proposed model

probabilistic interpretation of CCA, variables in the two ran-
dom sets are drawn from two different normal distributions
(Section 3.2) with their means decided by the shared corre-
lation factor. Coincidentally, U and V are also assumed to be
drawn from two normal distributions. Thus we can naturally
combine CCA and MF by regarding U and V as the two
shared Gaussian distributions. In other words, U and V are
drawn from two correlated Gaussian distributions, and the
model infers all the parameters from data. With Canonical
Correlated Analysis (CCA), the correlation between U and
V' is maximized along with optimization process. CCA also
relaxes the constrain that the dimensions of U and V' have
to be the same. In reality, we can always describe the prefer-
ences of users with countable features, but assign relatively
more attributes for items. Setting different dimensions for U
and V' would be more reasonable. With CCA, the ratings are
measured as the maximized semantic correlation between U
and V rather than the simple inner product, which makes
the model more expressive. With these improvements, the
recommendation for unseen items would be more accurate.
The prototype of our model is illustrated in Figure 1.

The inefficiency is always the main reason that limits the
practice of PGMs. After investigating some existing work,
we find that the inefficiency mainly comes from two aspects:
one is the update of parameters without analytical solutions,
the other is the traversal over the whole rating matrix.
The gradient descent or Newton-Raphson methods are al-
ways applied to calculate parameters without analytical
solutions, but they contains inner loops, which dramatically
increases the time complexity. In this paper, we apply some
math skills, and derive analytical updating formulas for all
parameters to approximate the true posterior distribution.
Since the missing values are treated as negative data, a
traversal over all data can not be avoided. But inspired
by the techniques applied in weighted matrix factorization
[7], we memoize some independent terms in the update
equations so that only the non-zero entries need to be
visited. Experiments show that our model converges very
fast, and each step has acceptable computational burden.

The experimental evaluation is comprehensively con-
ducted on four different public datasets. The main contri-
butions of this paper are as follows:

« It proposes a novel model, named Correlated Matrix Fac-
torization (CMF). CMF achieves outstanding recommen-
dation performance and competitive efficiency compared
to the state-of-the-art algorithms with implicit feedback.

o Canonical Correlation Analysis (CCA) is introduced to el-
egantly model the prior correlation between the user and
the item factors (U and V). It also enables us to measure
the semantic association between U and V rather than the
simple dot product in traditional MF.

o We derive efficient mean-field variational EM algorithm
for approximate posterior inference. Some elaborate
tricks are applied to accelerate the learning phase.

o Comprehensive evaluations on four different datasets are
conducted to compare the proposed model with state-of-
the-art baselines.

The rest of this paper is organized as follows: Section 2
introduces the related work. Section 3 summarizes the tra-
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ditional methods applied in recommender systems. Section
4 describes the details of our proposed CMF model, and
gives several methods to accelerate the parameter learning.
Section 5 shows the experimental results compared with
other baselines. Conclusions are given in Section 6.

2 RELATED WORK

Matrix factorization has become very popular in recom-
mender systems on account of its outstanding effectiveness
and efficiency. For both explicit and implicit feedback, MF-
based models have been widely applied. However, due
to the convenience of acquisition and challenge in model-
ing, more and more studies have put their emphasis on
implicit data. Different from explicit feedback which con-
tains comprehensive opinions of users, implicit feedback
is inherently lack of negative opinions. Therefore, how to
better handle missing data is an obligatory task confronted
by most previous work. Two different strategies have been
proposed, which are sample based learning [2], [8], [18] and
whole-data based learning [7], [19], [20]. The first strategy
randomly samples negative instances from the missing data,
while the second one treats all missing values as negative
instances. Both strategies have their pros and cons: sample-
based methods are more efficient, but have risk in losing
valuable information; whole-based methods retain all data,
but may overwhelm valid observations. Hu et al. [7] apply
a uniform weight to all missing entries in the user-item
matrix. Though achieving an obvious improvement, it is
not so faithful to the latent semantics of data. Differently,
Rendle et al. [18] subsample the missing items at a lower
rate in order to reduce their influence on the estimation.
To better introduce negative feedback, He et al. [8] propose
a new popularity-aware weighting strategy which assigns
the missing values with different confidence according to
the popularity. The basic idea of this method is that pop-
ular items have higher probability to be exposed to users,
thus the non-selection is more probable to indicate dislike
rather than unknown. Other than effectiveness, efficiency
is another concern of many previous studies [8], [21], [22],
[23]. Pilaszy et al. [21] propose a fast approximation of the
Alternating Least Squares (ALS) technique [24] which is an
instantiation of Coordinate Descent (CD) method. Rendle
et al. [22] improve it to element-wise Alternating Least
Squares (eALS) which is K times faster than ALS, where
K is the number of latent factors. Though very useful in
practical applications, such researches contribute very little
to the models’ prediction accuracy. Since negativeness is
meaninglessness in reality, Lee et al. [25] propose the Non-
negative Matrix Factorization (NMF) which is demonstrated
to better capture the parts-based representations of data
[26]. Lin et al. [27] propose the Projected Gradient Meth-
ods for NMF which presents better convergence properties
than the traditional multiplicative update approach applied
in [26]. To further improve the performance of MF-based
models, Rendle et al. [28] introduce kernel functions to
replace the dot product between factor vectors. Zhang et al.
[29] similarly introduce kernels into NMEF, and propose the
kernel NMF (KNMF) model. A kernel function enables us
to efficiently compute the correlation of data in a higher-
dimensional space, and makes it possible to model the

nonlinear interactions between latent factors. Besides the
kernel functions, Canonical Correlation Analysis (CCA) [30]
is another kind of algorithm which can effectively model
the semantical correlation between two sets of random vari-
ables. Miao et al. [31] apply CCA to rank target documents
according to the strength of their semantic associations with
the source document. It aims to explore the corresponding
relation between document pairs, such as questions and
answers, disease symptoms and diagnoses. Dhillon et al.
[32] leverage CCA to compute the correlation between the
past and future views of the data on a large unlabeled
corpus to find the common latent structure. Li et al. [33]
apply CCA to capture the interdependency between two
unrelated embedding vectors so that they can be integrated
as a consensus one. All these studies show that CCA is
powerful in capturing the semantical correlation between
two vectors of variables. Ding et al. [34] propose the Non-
negative matrix tri-factorization (NMTF) model which adds
two orthogonality constraint in NMF and factorizes the rat-
ing matrix into three latent factors. They have demonstrated
that their model is equivalent to conduct simultaneous K-
means clustering of the rows and columns. Wang et al.
[35] propose a similar tri-factorization (MTF) method, and
they incorporate two linear transformation matrices into the
matrix co-factorization framework so that the the matrix
factorization of user ratings is regularized by that of social
network. However, Rendle et al. [18] propose that though
most methods are designed for the item prediction task of
personalized ranking, none of them is directly optimized for
ranking. Thus they [6], [18] present a generic optimization
criterion BPR-OPT derived from the maximum posterior es-
timation to approximate the optimal personalized ranking.
Collaborative Less-is-More Filtering (CLiMF) [36] is another
ranking-based model which optimizes a smoothed version
of the Reciprocal Rank [37] via a lower bound. Different
from BPR, CLiMF puts more emphasis on the relevant items
in the top positions of a recommendation list. Such work
leverages some push techniques such as p-norm push [38] to
get accurate rankings at the top of the list. Christakopoulou
et al. [39] propose an improved ranking-based model. In
their work, they introduce a family of collaborative ranking
algorithms to improve accuracy at the top of the ranked list
for each user while learning the ranking functions collabo-
ratively. Volkovs et al. [40] propose to utilize the advantages
of neighbor approaches, and transform the observed rating
matrix into a score matrix by applying neighborhood simi-
larity rescaling. They show that factorizing the score matrix
produces more accurate user and item representations than
analyzing the original rating matrix. Though very different
in methods, all the aforementioned algorithms are based on
the conventional matrix factorization framework.

From the Bayesian perspective, there exists another train
of thought which absorbs matrix factorization as parts of
their probabilistic models. The fundamental of such studies
is the probabilistic interpretation of MF (also called PMF)
[3]. In PME, both the user and the item feature vectors are
drawn from Gaussian priors. The inner product between
them is treated as the expectation of the observable ratings,
which are also drawn from a Gaussian. The brevity of
PMF makes it easy to incorporate external knowledge into
recommendation, such as social relationship [41], associated
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meta-information [42], [43] and geographical records [44],
[45]. Auxiliary external knowledge [42] also enables such
models to better deal with the cold-start problem. Fresh
users with no ratings are recommended with taste-similar
items according to their profiles built from the meta infor-
mation such as the comments. Besides matrix factorization,
the probabilistic factor-based methods also resort to the
topic modeling techniques, such as LDA [15], PLSA [46], [47]
and HDP [48]. However, such models only incorporate the
interactions in the rating matrix, and are not well designed
for the missing values. Meanwhile, the intractable model
inference always leads to unmanageable inefficiency. In this
paper, we propose a pure generative model which absorbs
the advantages of MFE. Experiments show that it achieves
outstanding effectiveness and efficiency compared with the
current state of the art.

3 BACKGROUND

In this section, we introduce the conventional matrix fac-
torization solution to recommendation, and analyze its lim-
itations from the probabilistic point of view. We offer some
insights in Canonical Correlation Analysis, and describe our
strategy in combining it with matrix factorization.

3.1 Matrix Factorization

Let R € RM*XN denote the user-item interaction matrix,
where M and N are the numbers of users and items, re-
spectively. We use i € {1, ..., M } as the index for users, and
j € {1,..., N} as the index for items. The rating of the user
17 on the item ¢ is r;;. Matrix factorization maps both users
and items into a latent feature space of dimension K, and
represents the user i with a latent factor vector U; € R¥ and
the item j with a latent feature vector V; € RX. We conduct
the prediction of whether the user ¢ will like the item j with
the inner product between their latent representations

~ T
iy = Ui Vj

In general, the best approximation of R to R with respect
to least-square is achieved by the singular value decompo-
sition (SVD). The most common approach applied here is to
minimize the regularized square error loss
argmin » (rij — Uy V;)? + Al [U|* + Ao V3|2
]

with the gradient descent method, where A\, and A, are reg-
ularization parameters. From the Bayesian perspective, the
matrix factorization can be interpreted with an equivalent
probabilistic model [3]. In probabilistic matrix factorization
(PMF), we have the following generative process

1. For each user i € {1,..., M}

- draw the user’s latent vector U; ~ N(0,02If)
2. Foreachitem j € {1, ..., N}

- draw the item’s latent vector V; ~ N(0, 021 k)
3. For each entry (4,7) in R

- draw the rating r;; ~ N (U!'V},0,)

Fig. 2. lllustrations of (a) Matrix Factorization (b) Correlated Matrix
Factorization

From the probabilistic interpretation, we can obtain a deeper
insight into the matrix factorization model. As depicted in
Figure 2(a), both users and items are mapped to the latent
space with the same dimension. Meanwhile, there exists a
bijection (one-to-one mapping) between the latent factors,
of which the inner product is regarded as the expectation of
the ratings. The red lines in Figure 2(a) identify the inherent
interaction between a specific user and an item. Note that
the user latent factors and the item latent features are
distinguishing. The reason is that the latent user factors are
drawn from a Gaussian distribution which is parameterized
by o, which only affects the latent factor of users and has
no relation with the items’. The same goes for o,. Thus we
can decompose the probability p(r|u,v) as

p(7’|u, U) = p(U|O’u)p(V|O'v)p(T|U, V)

Since Ik is a K-dimensional identity matrix with ones on
the main diagnose, the correlation between latent factors is
totally neglected. Meanwhile, the inner product between U
and V only allows the-same-factor interactions. From the
Bayesian point of view, topic model such as LDA [15] is
another train of thought for recommendation. Different from
PMEF, topic models introduce the latent topics to capture the
low-dimensional features. For implicit feedback, only the
non-interactions in R are regarded as valid observations,
and topic models aim to maximize the likelihood that the
users consume the items. For any specific interaction be-
tween v and v, the probability can be denoted as follows:

p(vlu) = > p(v]2)p(z|u).

However, the large portion of non-interactions can hardly
be incorporated by topic models, otherwise the parameter
estimation phase would be extremely slow. This is also
an important reason why topic models do not perform
as well as MF-based models in recommendation. Figure
2(b) illustrates the prototype of our model, which is an
improvement over traditional matrix factorization. Instead
of calculating the inner product between the user and the
item latent factors, we apply CCA to capture the semantic
correlation between them. CCA also allows U and V' to have
different dimensions. The techniques applied in MF-based
models can be easily applied in our model to accelerate the
learning phase so that the missing values can be efficiently
taken into consideration as negative evidences.
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3.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a famous machine
learning algorithm, and our previous work [49] has demon-
strated its great effectiveness in discovering the semantic
correlation between two kinds of heterogeneous sources.
However, to make the paper easy to understand, we first
briefly introduce the probabilistic interpretation of CCA.
Given two random sets of variables x; and x5, CCA is
concerned with finding a pair of linear transformations so
that one component within each set of transformed variables
is correlated with a single component in the other set. Mean-
while, the correlation between x; and x5 is maximized in the
transformed space. Bach et al. [17] provide a probabilistic
interpretation of CCA, which enables the use of local CCA
models as components of a larger probabilistic model.

Suppose 1 € R™! and x5 € R™?, both of which depend
on the latent correlation factor y € R”. The generative
process of CCA can be described as follows:

y~N(0,Ir), min{myi,mq} > L >1
5171|y ~N(T1y+u1,\111), T1 S leXL,\Ill ~ 0
Taly ~ N(Toy + pio, U2), To € R™*F Wy =0

A very important feature that CCA possesses is that it
can capture the correlation between two sets in different
dimensional spaces. In our model, this feature enables us to
represent users and items with different numbers of factors
in exploring the rating matrix. Meanwhile, the semantical
association between U and V is maximized in the latent
correlation space. In other words, besides looking for the op-
timal fit, CCA encourages the positive correlation to be more
positive, and the negative correlation to be more negative
from a statistical point of view. This implicitly enhances the
modeling of both positive and negative feedback in the rar-
ing matrix. Positive correlation leads to interactions, while
negative correlation encourages non-interactions. Both are
very important patterns for accurate recommendation. By
incorporating the correlation between U and V, CCA im-
plicitly changes the regularization terms to improve the
expressive power and the generalization ability of matrix
factorization.

4 MODELING IMPLICIT FEEDBACK

In this section, we give the details of our proposed Cor-
related Matrix Factorization (CMF), which is an instanti-
ation of Probabilistic Graphical Model (PGM). The model
description that follows assumes the reader is familiar with
Bayesian network and statistical inference, which have al-
ready been widely used in topic modeling [15], [16] and
many other machine learning fields.

4.1 Correlated Matrix Factorization

One advantage of latent factor models is that they reduce
the dimension of data, and aggregate the large number of
observable variables to relatively small number of under-
lying concepts. In other words, it recognizes the patterns
underlying the data, and applies them for further predic-
tion. Traditional matrix factorization represents users and
items in a shared latent low-dimensional space with two
latent vectors, U and V, drawn from two independent

J’U, 0’0 Tua /uua \I}u Tva ﬂv: \IJU

& N N
M M

o T, T,

g, Cij

Fig. 3. The graphical model of Probabilistic Matrix Factorization (Left)
and Correlated Matrix Factorization (Right)

Gaussians. In this paper, we place U and V' into two differ-
ent latent spaces with different dimensions. Applying CCA
as components of our model, we introduce a new latent
correlation factor y to priorly couple U and V, meanwhile
their correlation is maximized. In fact, y lies in a new space
which captures the semantic association between U and
V. ri; is measured in the new semantic space, and it is
denoted as the distance between the transformed U and
V. With y playing as the intermediary, users and items
more tightly interact with each other. To better incorporate
the missing values as negative evidences, we introduce a
weight variable c;;, which is similar to the work of Hu et
al. [7]. Specifically, c¢;; indicates different confidence levels
in observing an interaction r;; between the user i and the
item j, and an observable value always owns higher weight
than the missing ones. The potential cause is that not taking
any positive action on an item can stem from many other
reasons beyond not liking it, such as being unaware of the
existence of the item.

The directed graphical model of CMF is depicted in Fig-
ure 3. Following the notations defined in Section 3, we add
some new symbols in our model. Let K be the dimension of
the user factor U, and T be the dimension of the item factor
V. L is the dimension of the latent correlation factor y in
CCA. The generative process of CMF is as follows:

1. Draw the L-dimensional Gaussian correlation factor:
y~N(0,IL)
2. For each user i € {1,..., M}
- draw the user’s latent vector:
Ui ~ N(Toy + pi, ¥o); Ty € REXL W =0
3. For eachitem j € {1,..., N}
- draw the item’s latent vector:
Vi ~ N(Toy + po, Wo); Ty € RTXE W, 2 0
4. For each entry (i,j) in R
- draw the rating r;; ~ N (UI'T, TIV;, 0?%)

x* The weight variable is defined as ¢;; = 1 + ar;; where
«v is a constant.
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We make the following notes for the Correlated Matrix
Factorization:

(1) The generative steps (step 1, 2 and 3) form the main
body of CCA. The maximum likelihood estimation lead to
the maximum of correlation between U and V. Meanwhile,
the generative steps (step 2, 3 and 4) constitute the skeleton
of matrix factorization. Thus U and V' are also endowed
with the patterns underlying the rating matrix. With U and
V' playing as the shared parts, we elegantly combine MF
and CCA to a unified model.

(2) The model parameters in CMF comprise the parame-
ter set © = {T, Ty, ftu, fo, Vi, Uy, U, V'}. In our model, the
parameters 7', and 7, are matrices with dimensions K x L
and T x L respectively. They linearly transform U and V
from their own spaces to the space of y (step 2 and 3). The
random variable y forms the variable set ® = {y}. The
observable variable is the whole rating matrix R. ¢;; can
be interpreted as a weight parameter to indicate different
confidence levels of observing r;;. In other words, the non-
interactions (i.e., 7;; = 0) are associated with lower confi-
dence than the observable interactions. In our experiments,
a;; = 30 can always generate good results.

The following equation gives the probability that R
arises from the CMF model given the model parameters ©

M N
p(R|©) = /p(y) [TrWily) [T pWily) [ [ p(ri;|U. V)dy.
Y i=1 j=1 i,

Now our task turns to find the optimal model parameters
© which can maximize the posterior probability given the
observed ratings:

arg max logp(R|O)

However, it is computationally intractable since the random
variable y is continuous, and tightly coupled with both U
and V. Traditional EM algorithm will not work since we
cannot calculate the expected value of the log likelihood
function with respect to y in the E-step. In this paper, we
resort to the variational EM algorithm [50] which has been
widely applied by Blei et al. [15]. To achieve better efficiency,
we give analytical solutions for all parameters, and apply
some memoizing methods to accelerate the learning phase.

4.2 Variational Inference and Parameter Estimation

Though the unified CMF model is elegant in modeling
implicit feedback, posterior inference is the key challenge to
use it. In this paper, we make use of variational EM methods
to efficiently obtain an approximation of the posterior dis-
tribution. The derivation is complicated, but it considerably
reduces the computational burden when executing.

4.2.1 Variational Inference, E-step

In the E-step, we update the posterior distribution over the
unobservable variable set ® = {y}. According to the mean-
field variational method, each latent variable is assigned
with a simple distribution with free parameters so that the
approximation is close in the Kullback-Leibler divergence to
the true posterior. In this paper, we introduce a factorized

distribution ¢(®) in which the latent variables are indepen-
dent of each other. Since we only have one latent variable y,
we have ¢(®):

y~N(©,%)

where § € RF and ¥ € RXE, Now we have a new set of
variational parameters § = {7, X}. Following Wainwright
et al. [50], we bound the log likelihood using Jensen’s
inequality. That is

logp(R|©) > E,(log p(R, ©|0,6)) + H(q)

where p(R, ®|0,0) is the log likelihood function for the
complete data which contains both latent variables and
observable ratings. H(q) is the entropy of the variational
distribution ¢(®). The lower bound of the log likelihood
can be expanded as follows:

M N

log p(R|O) > Y E,(logp(Usly)) + > Eq(log p(V;ly))
i—1 j=1
M N

+ Z ZEq(logp(mﬂUia Vi) + Eq(log p(y)) + H(q).
- M

We can further expand the upper equation with respect

to the model parameters © and the variational parameters

0. Each term on the right-hand side can be expanded as
follows:

L 1 1

Eq(logp(y)) = 7 log(2m) — Str(X) — 557y

where tr(X) returns the trace of the input matrix X.

Ey(log p(Uily)) = — - log(2) ~ £ log(|¥W.)

1 _

- Q(Tuy + fu, — Ui)T\Ijul(Tuy + o, — Ul)
1

- 5tr(TuzTuT\y;l)

where | U, | denotes the determinant of matrix ¥,,. This term
is expanded by utilizing the property of matrix normal
distribution X ~ MN(M,U,V) of which E(XTBX) =
Vir(UBT)+MTBM. Similarly, we can easily expand the log
likelihood for V; with respect to the variational parameters
as

Ey(log p(V;ly)) = — log(2r) — 2 loa(|¥.)

1 _
- §(Tvy+,uv - VJ) \IJvl(Tvy+Hv - VJ)

1
- §tr(TvaEqJ;1).

The rating r;; is drawn from a univariate normal distribu-
tion, and the variance is a global scalar. Here we have

1 1
E,(log p(rij|Us, V;)) = —5 log(27) — 5 log(c?)
1
202

The entropy of the variational distribution ¢(®) is

(rij — Ul T V)

H(q) = 5 lo&(|S)
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We substitute the expansions of all terms into the log likeli-
hood function, and maximize the lower bound by taking the
partial derivatives with respect to the variational parameters
0 and setting them zero. The update equations for the
variational parameters d={7, X} are listed as follows:

Y =WMTrv'T, + NTTWO T, + 19)7! )
M N

g = (YT U = ) + Y TT (Vi ) )
i=0 j=0

where ¥’ denotes the updated value of 3, or we can directly
substitute the update equation of ¥ into that of . We can
easily find that both > and ¥ can be efficiently updated
with an L-dimensional matrix inversion O(L?) and two
independent traversals over all users and items O(M + N).
Since L is always very small, the calculation is very fast.

4.2.2 Parameter Estimation, M-step

In this step, we fit the model by finding maximum like-
lihood estimates for each of the model parameters © based
on the updated wvariational parameters §. Specifically, we
calculate the partial derivatives with respect to each model
parameter and set them zero. The update equations are
listed as follows:

1 M
u = 75 Ui_Tu7
p M;( )

M
v, = TuETg + % ;(Tug + pos = Ui)(Tuy + o — Ui)T
4)
1 N
Hy = N 2;(% - Tvg)
j=

S
<
Il

N
1 ) )
TET + 5> (Tvy + o = Vi) (Tol + o — V)"
=1

©)
The update equations for {f,, ¥, } and {x,, ¥, } have very
similar form, and we only need to traverse over the users
and items respectively. Since both K and 7' are relatively
small, the matrix operations are very fast. For the user i, the
update equation for Uj; is

N

_ Cij _ _ _

Ui =0 + Y ST ViV TT) ™ 05 (1 + 1)
j=1

N
CijTij
+ ; “LETTIV).

(6)
Clearly, the computational bottleneck lies in the summation
over all data portion in the second term, which requires
a traversal over the whole rating matrix. To accelerate the
calculation, we substitute the expression of ¢;;, and rewrite
the second term by separating the observed data part.
= Cij Ty T T _ L T = T T
> UTIIVVITT] = ST, [>T

Jj=1

J=1

1 N N
= ;TUTE[Z ViVt + O‘ZTUVJ'VJ'T} T,T;

j=1 j=1

By this reformulation, the major computation (the
Z;V: , V;V;" term that iterates over all items) is independent
of user ¢. A naive implementation that repeatedly computes
it is unnecessary when updating the latent factor for dif-
ferent users. By memoizing it, we can achieve a significant
speed-up. Furthermore, the terms, 7,7,/ V; and V;V;", can
also be pre-calculated and cached so that the iteration over
the observed data only needs a simple summation.
Similarly, we can derive the update rules for Vj:

M
V=0 Y ST [ e+ )
+ % ST, T U]
2 o2 tvluli
@)
The second term can also be reformulated as follows, and
similar memoizing methods can be applied.

" M
> UTTIUUTTTY = ST S esUlT | Ty
— =1

1

o2

M M
7,77 [ SN UUT + o) rile-UZ—T} 1,77
i=1 i=1
By taking the first derivative with respect to T),, we have

M
VT = (WU~ )y — O (S + "))
i=1

M N
+ 30 B (ry UV T, - UUT LT V')

i=1j=1

If we set this equation zero, we have

M N
1 7 Cij T T T
MU T (S+g57) + > SUUITLTIV, V)T,
i=1 j=1
M N oo
=3 [V U = m)i" + Y LUV T
i=1 j=1

Since T, is wrapped by two different square matrices,
finding the analytical solution becomes difficult. However,
the upper equation can be generalized as a linear function
to solve X:

P
> AXB;=E
i=1
where A; € R™*"™ and B; € R"*"™. Now X € R™*" is the
parameter that we want to calculate. Previous work [51],
[52] has devoted a lot in efficiently solving such problem.
The most general method for solving this equation is based
on the Kronecker product. In this approach, the equation
can be rewritten as

{32 (40 B ulx) = vl)

=1

where v(X) = (2T, 2%, ... 2L)T, with 2] the i-th row of
X. The symbol ® denotes the Kronecker product. Now the
unique solution can be easily obtained by means of the

inversion of an mn X mn matrix.
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In our model, we use T} to denote the summation
>P  A@B], and apply T# to denote the matrix E. The
details of T} 5 and T can be dented as follows:

T, = MU (54557 +ZZ S U e(TIV,VIT,)

=1 j= 1
u = —1 -T al CijTij T
Th = ; (02 (U = )7 + ;1 “LAU VT

where T4 5 € RELXKL and T3
analytically computed as

€ REE Thus v(T,) can be

v(T) = (Thp) "o (TE) ®)
where T, can be easily obtained by reshaping v(T,). The
matrix inversion has the time complexity O((K L)?). Since
both K and L are relatively small, the calculation is effi-
cient. However, when we compute 77} 5, the computational
bottleneck still exists. In the second term of the 7'} 5 update
equation, we have to iterate over all the data to obtain
the summation. An inner Kronecker product makes the
computation extremely time consuming. To speed up the
calculation, we substitute the expression of ¢;;, and rewrite
the second term by separating the observed data part.

ZZ—; (UUT) @ (TIV;VIT,) =

M N N
i S wiuh e [ZTUTVJ-VJTTU +a Y g (TIV;VIT,)].
i=1 j=1 j=1
Now the major computation (the =7, 7' V; V" T, term that
iterates over all items) is 1ndependent of user {, thus it can be
pre-calculated and cached. The Kronecker product is moved
from the inner loop to the outer one, and only needs to be
executed M times.
Similarly, we can derive the update rules for T’;:

N
vT, :Z (\Ij;l(vj - Nv)gT -

+§;§; ”(”VUTT - VVIT,TIUUTT, )
i=1j

U2 + g3"))

The matrices T3 5 and T’y have the same definition of T 5
and 7T'%. We only change the superscript to match it with 7,.
Now we have the equations

TSp = NUS'@(S+55" o (T VUl T,)

g—i[

where T ; € RTLXTL and TE € R”L. Thus v(T,) can be
analytically computed as

o(T,) = (Thg) 'v(Th) ©)

Algorithm 1: Learning algorithm for CMF model

Input:

Rating Matrix R, Model Parameters O, Variational
Parameters §, the maximal number of iterations n,
and the convergence threshold e

Output:

The learned model parameters © and the learned
variational parameters ¢

Initialize © and ¢ with random values
fortr=1—ndo
Update variational parameters ¢ with Eq. (2)-(3)
Update model parameters © with Eq. (4)-(9)
Calculate lower bound of log-likelihood with Eq. (1)
if (Increase of the log-likelihood) < e then
L break

return © and v for further evaluations

The second term of T} ; can also be reformulated as follows,
and similar memoizing methods can be applied.

ZZ —; (V; V) @ (TTU.UTT,) =

N

1

—Z AT [ZTT UUl'T, —|—aZT” TIUUIT,)|
= i=1

As dep1cted in Algorithm 1, we 1terat1vely execute the E-

step and M-step until all the parameters converge.

5 EXPERIMENT

In this section, we present both quantitative and qualitative
evaluations for our proposed model with some state-of-the-
art baselines. We adopt the leave-one-out [18], [8], [53] pro-
tocol to evaluate the prediction accuracies. This means that
the latest interaction of each user is held out for prediction,
and the models are trained on the remaining data. As we
want to solve an implicit feedback task, we remove the
rating scores from the datasets, and each entry is marked
as 0/1 indicating whether the user has consumed the item.
For implicit feedback, predicting which item a user may
consume is always more important than directly giving the
rating scores. For example, we would not like to know how
many times a user has viewed a item, but want to know
whether he will buy it. Therefore, we apply two ranking-
based metrics Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG). The ground-truth item is defined
as the leave-out one. Since there is only one test item for each
user, we truncate the ranked list at 100 to ensure a relatively
large HR and NDCG. HR measures whether the ground
truth item is present in the ranked list, and NDCG accounts
for the position of hit. We report the scores averaged by
all test interactions. Specifically, we denote rank(i, j) as the
rank of item j in the user i’s predicted list and y'**' as the
set of all items in the held-out test set.

o HR is computed as follows:

. 7) <
HR — Z 1(rank(i, j) <

jeytest |yt€5t|

100)

where 1(-) is the indicator function which returns one
only when the input is true.
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TABLE 1
Statistics of the evaluation datasets

Dataset  Review# Item# User# Sparsity
Yelp 731671 25677 25915 99.89%
Flixster =~ 1838118 11730 31606 99.50%
MovieLens 1000209 6040 3706 95.53%
Ciao 40189 1141 13226 99.73%

e NDCG emphasizes the importance of the top ranks by
logarithmically discounting ranks, which is computed as

follows:
>

jeytest

log(7 + 1)

D =
NDCG log(rank(i,j) + 1)

|ytest|

where 7 denotes the perfect ranking of the test item which
is always set 1 in the experiments.

Previous work has investigated many different trains of

thought in offering recommendation when dealing with

implicit feedback. Therefore, we elaborately choose four
typical state-of-the-art baselines for comparison:

o WMF [7]: Weighted Matrix Factorization is the conven-
tional baseline for collaborative filtering with implicit
data. It assigns different weights to the observable and
missing data to indicate different confidence levels in
observing them. It reports great improvements over many
traditional methods such as PMF [3].

o FastALS [8]: FastALS is an efficient MF-based model
which adopts the element-wise Alternating Least Squares
(eALS) technique. The main contribution of this work
is that it assigns variably weighted values to the large
portion of missing data according to the items’ popularity.
It also demonstrates that its popularity-aware weighting
strategy has the same intuition with negative sampling
[6].

o BPR [18]: Different from MF-based models, Bayesian
Personalized Ranking (BPR) directly optimizes the pair-
wise ranking between positive and negative observations
by maximizing the posterior estimator derived from the
Bayesian analysis of the recommendation problem. To
achieve better efficiency, it subsamples positive-negative
pairs from the rating matrix, and applies stochastic gradi-
ent descent (SGD) to learn the model parameters.

o LDA [15]: Latent Dirichlet Allocation (LDA) is a conven-
tional unsupervised topic model. The latent factor (known
as topic) reveals the semantic relationships between the
document and the word, which can be analogically re-
placed by the user and the item in recommendation prob-
lems. Previous work [54] has also demonstrated its great
efficiency in offering personalized recommendations.

e SRFRM [35]: Social Regulatory Factor Regression Model
(SRFRM) incorporates two linear transformation matrices
into the matrix co-factorization framework so that the
matrix factorization of user ratings is regularized by that
of social network. If we neglect the social information,
SRFRM boils down to a Matrix tri-factorization (MTF)
model which factorizes the rating matrix into three factors
U, W and V. W is a linear transformation matrix which
allows U and V' to have difference dimensions.

5.1 Datasets and Settings

Datasets: We apply our model on four publicly available
datasets: Yelpl, Flixster?, MovieLens® and Ciao*. These
four datasets have been widely used in the evaluations
of previous work [8]. The items in Yelp mainly consist of
crowd-sourced reviews about local businesses. Movies and
TV shows form the main components of items in the other
three datasets. To achieve practical and meaningful results,
we follow the common practice [8], [18], and remove users
with less than 10 interactions. The statistics of the four
processed datasets are shown in Table 1.

Parameter Settings: A mixture between EM and a Monte
Carlo sampler is utilized to effectively learn the parameters
of the LDA model. Thus we do not need to alter them. WMF,
FastALS and BPR are implemented according to the details
given in the original papers, and the parameters are set
with the suggested strategies given by the original papers.
In most cases, such settings achieve the best performance.
In our model, only the three dimensional parameters K,
T and L need to be predefined before the learning phase,
and we always set them the same value for fair comparison
with the baselines. To further investigate the influence of the
latent correlation factor y, we also assign L with different
values when fixing K and 7T'. The variational EM algorithm
relaxes us from tunning both the model and the variational
parameters. By fitting the data, they can be learned to
achieve the best performance. All models are implemented
with the same programming language, and executed on the
same machine for a better comparison on efficiency.

5.2 Comparison with Other Models

In this part, we investigate both the convergence speed and
prediction accuracy of different models on the four datasets.
The number of latent factors is fixed to 20 in consideration
of both effectiveness and efficiency. Figure 4 depicts the
Hit Ratio and NDCG with respect to different numbers of
iterations. Each metric is averaged across all the users. We
can see that the HR and NDCG have very similar variation
patterns, and a higher hit ratio always indicates a larger
NDCG score. Therefore, we do not distinguish the two
metrics in the following analysis. We notice that CMF consis-
tently achieves the best performance on all the datasets after
convergence (the standard errors are on the order of 10~%).
We further conduct the one-sample paired t-test to verify
that the improvement is statistically significant (p-value <
0.01) for both metrics. This result indicates the improvement
of our model is trustable. Meanwhile, CMF converges very
fast just after a few iterations, which is much faster than
LDA, BPR and FastALS. WMF obtains very competitive
results, and it is just a little worse than CMF on Yelp and
MovieLens. Since we set K, T, and L the same value, we be-
lieve the advantages of CMF over WMF mainly come from
the correlation that we introduce to priorly couple the user
and the item factors. On all the datasets, SRFRM achieves
much worse results than other methods. Though SRFRM
introduces a transition matrix and allows more degrees of

1. http:/ /www.yelp.com/dataset_challenge

2. http:/ /www.cs.ubc.ca/~jamalim/datasets/
3. http://grouplens.org/datasets/movielens/
4. http:/ /www.librec.net/datasets.html
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Fig. 4. Prediction accuracy of different models in each iteration (K=20)
) ) ) ) Yelp Movielens
freedom, it neglects the large portion of non-interactions.
For implicit feedback, only considering the interactions ’ 026
would lose much valuable information underlying the data. o
We also find that the performance of SRFRM decreases 028
extremely fast with less latent factors. The reason may be o= g
that SRFRM applies a logistic function to bound the value of o T
UV to the range (0, 1), which significantly decays the fitting o
ability of MF. Since the results of SRFRM are not in an order S0
of magnitude with other baselines in the following experi- R
ments, we do not plot SRFRM for clarity. On Ciao dataset,
the advantage of CMF in p?edICtIOI:I becomes 0bV1.ous. This Fig. 5. Prediction accuracy with different numbers of K and T
may come from the small size of Ciao dataset, which offers
limited information for other models to mine the underlying Yelp . Movielens oo
patterns. However, CMF measures the distance between the 020¢
user and the item factors at semantic level, which is more 0.18} 0.05 027y 100
expressive and can better fit the data. FastALS performs just .2, | looan  Sozsf 10058
a little worse than WMF on Yelp and Flixster. Technically, 2014 L 2 {0054 &
. . = J 0.251
the only difference between FastALS and WMF is that % 003z = 10.052
. . . . 0.12F
FastALS mtroduces' a popul;?rlty.—aware weighting strategy Jo.02 ozaf o Looso
to generate non-uniform weighting values for the missing oor 023, 2 Nece
1—~0.01 - 1—0.048

data. This strategy is based on an intuitive assumption
that the unselected popular items have higher probability
to come from the deliberate choices of users, so they are
more probable to be negative evidences. However, many
objective factors such as the price can affect the choices of
users. The strategy may be effective only on some specific
datasets, but applying it on others may deteriorate the
model’s performance. Thus on MovieLens and Ciao, we
observe a large margin between WMF and FastALS. BPR
achieves very different performance on the four datasets. In
most cases, it converges much slower than the other models.
On MovieLens, it performs much better than FastALS and
LDA, and it is also competitively compared with WMF and
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CME. But on Yelp and Ciao, BPR obtains much worse results
than WMF and CMF, and its performance is similar to that of
LDA. On Flixster, BPR gets bad prediction accuracy which is
also turbulent with the iterations. The main reason may be
that BPR is a sample-based method which aims to optimize
the pair-wise ranking between the positive and negative
samples. One important factor that affects the performance
of BPR is the proportion of valuable samples which are
randomly generated. On small datasets, BPR may work
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well. However, on big datasets, the pair-wise sample space ey
becomes incredibly large, and the number of valid samples 0300 0.07{ == Yelp
. . . . . =>& Flixster
may vary in different iterations, which makes BPR less 0275 -B- Ciao
reliable than other models. LDA, as a typical probabilistic o5 006
graphical model (PGM), shows satisfying results on all the E““ 3
datasets. However, it is still less effective than state-of-the- =, 2 oos
. I
art MF-based models. The main reason may be that we can e
hardly efficiently incorporate the missing data as negative 4
: . .. . 0.150
evidences into PGMs. A small modification of the model
. . (e . . . 0.03 4
structure would lead to significant changes in the learning L ! ! ! ! ! ! ! ‘ ‘
4 8 12 16 20 4 8 12 16 20

algorithms of LDA, and a large training set would also
make the learning phase extremely slow. The cache-based
techniques applied in MF-based models can not be used by
PGMs to accelerate the parameter learning either.

5.3 Different Numbers of Latent Factors

In this part, we investigate the influence of different num-
bers of latent factors on CMF and the other four baselines. In
Figure 5, we provide a 3d plot to illustrate the performance
of our model with different numbers of K and 7', and we set
L = min(K,T). We can easily find that solely increasing K
or T'indeed improve the recommendation performance, but
the benefit is less remarkable than increasing L. Therefore,
we observe obvious slope in Figure 5, and the values across
the diagnose increase the fastest. Though setting U and
V' different dimensions does not significantly affects the
prediction accuracy, it still offers the flexibility to allow more
degrees of freedom. In Figure 7, the dimensional parameters
K, T and L in CMF are set the same value for fair com-
parison with other models. Figure 7 shows the prediction
accuracy with varying numbers of factors. One of the most
important and interesting observations is the performance
of CMF on Ciao dataset. We can find that other than CMF,
all other models achieve a peak performance when the

Number of Latent Correlation Factors Number of Latent Correlation Factors

Fig. 8. Prediction accuracy of CMF with different numbers of latent
correlation factors (K = 20 and T' = 20)

number of latent factors K is set around 8. The reason is
very simple. Since the size of Ciao is relatively small, a
large K might have the risk of overfitting, which would
deteriorate the baselines’ performance in predicting unseen
data. However, CMF measures the distance of the latent
factors in a semantic space, which endows it with a better
expressive power. Therefore, its performance consistently
increases, and presents a very different tendency with WME
We can also see that CMF consistently outperforms other
baselines on Flixster. On Yelp dataset, FastALS obtains the
best performance when K is smaller than 12. However, the
performance of WMF and CMF improves very rapidly with
the increasing of K. When K is larger than 12, CMF gets
the best results. This observation shows that the popularity-
aware weighting strategy introduced in FastALS indeed has
some positive impact on the model’s performance, but the
influence is very limited. On Flixster, BPR obtains the worst
prediction accuracy with the lowest HR and NDCG when
K is larger than 12. This is consistent with the observations
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Fig. 9. Prediction accuracy of different models in the top-N ranked list

in the previous section, and the increasing of K seems to
have little influence on its performance. The main reason
may still come from the sampling strategy applied in BPR,
and the large search space makes it hard for BPR to find
the best model parameters. On MovieLens, BPR obtains the
best performance when K is smaller than 16. However, BPR
seems to benefit the least from the increasing of K, and
CMF rapidly outperforms BPR when K reaches 20. WMF
still shows its great power in recommendation, and it is just
a little worse than our model in most cases. On all the four
datasets, LDA obtains acceptable and reliable results. When
K is small, it is competitive to the MF-based models, and
just a little worse than WME. But when K increases, the
margin becomes larger. The reason may be that LDA does
not distinguish the latent factors, and different latent factors
may represent the same concept. Therefore, the performance
of LDA will not prominently benefit from the increasing of
K as MF-based models do. In Figure 6, we further investi-
gate the influence of o on the final prediction accuracy. Due
to the limitation of space, we only illustrate the results on
Yelp and Movielens, which reports totally different patterns.
On Yelp dataset, we find that the accuracy reaches the peak
values when o = 40, and the results keep stable with
larger a. On Movielens, we find that both HR and NDCG
decrease fast when a becomes larger than 10. However,
setting a relatively small positive o would significant benefit
the prediction accuracy on both datasets. Since a mainly
relies on the dataset, there is no good strategy in choosing
the best-performing values. The recommended method is
conducting some heuristic approaches such as grid-search.
Figure 8 depicts the prediction accuracy of CMF with
different numbers of latent correlation factors y. In this ex-
periment, we fix K = 20 and 7" = 20. We can easily find that
the final results of CMF increase rapidly with more latent
correlation factors on all the four datasets. This observation

demonstrates that the introduced latent correlation factor y
really matters in modeling the semantic association between
U and V. In practical applications, we can assign 7" a large
value, which indicates that the items own a large number
of attributes. K is always set a relatively small number,
and the size of L must be selected in consideration of both
efficiency and effectiveness. In Figure 8, we can find that the
increasing speed (i.e., the gradient of the lines) of both HR
and NDCG reaches its peak value between 8 and 12, thus
setting L = K /2 may be a reasonable choice for CMF.

5.4 Top-N and Efficiency Analysis

In the previous experiments, we truncate the ranked list at
100, and apply the top-100 items to calculate the average
HR and NDCG scores. In this part, we truncate the ranked
list at different sizes N, and investigate the performance of
each model with different N's. Obviously, a larger N would
surely lead to a better result. But a more powerful model
would make its advantage greater with the increasing of N,
which, in other words, indicates a denser hit at different
pieces of the top-N ranked list. More specifically, when N
increases, the margin between the hit radios (and NDCG)
of different models should become larger if a model is
inherently more powerful than another. Figure 9 illustrates
the performance of different models truncated at different
Ns. The same as the observations in previous experiments,
CMF achieves the best performance on all the four datasets.
Meanwhile, we can also see that the margin between CMF
and other baselines becomes larger when N increases. This
means that CMF obtains the denser hit at each piece of
the ranked list, thus its prediction accuracy increases faster
than other baselines. We notice that the increasing speed of
LDA declines faster than MF-based models, which means a
sparser hit at the tail of the ranked list. We can also find that
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TABLE 2
Training time per-iteration of different models with varying latent factors K

Yelp

K 4 8 12 16 20
CMF 2.88s 3.81s 8.45s 13.92s  59.99s
WMF 8.71s 15.86s  23.83s  29.85s  34.71s
FastALS 1.49s 2.87s 3.05s 3.97s 5.36s

Flixster

K 4 8 12 16 20
CMF 2.84s 3.98s 6.43s 15.85s 40.72s
WMF 6.94s 12.65s 18.01s  24.38s  30.58s
FastALS 3.90s 7.81s 9.26s 10.90s 13.30s

MovieLens
K 4 8 12 16 20
CMF 1.57s 2.53s 2.89s 5.09s 10.29s
WMF 2.36s 3.45s 5.33s 6.81s 8.595
FastALS 2.26s 3.26s 4.49s 6.03s 7.10s
Ciao
K 4 8 12 16 20
CMF 0.33s 0.89s 2.42s 5.65s 12.42s
WMF 0.37s 0.71s 1.25s 1.60s 2.25¢
FastALS 0.18s 0.30s 0.44s 0.59s 0.65s

CMF almost achieves linear growth with the increasing of
N, which means that the density of hits is balanced in the
ranked list.

Efficiency is another important criteria in developing
recommender systems. The same as MF-based models, CMF
only needs a traversal over the observed data by resorting
to some memoizing strategies. Furthermore, since we have
derived analytical solutions for all the parameters, and the
update equation of each latent factor (U; or Vj) is inde-
pendent of each other, we can easily achieve an efficient
and parallelized implementation for CMF. Since there are
too many update equations in our model, we do not give
the detailed time complexity analysis. Here we compare
the efficiency of different models empirically, and show the
actual training time per iteration in Table 2. As we can
see, CMF achieves competitive efficiency compared with
the other MF-based models, WMF and FastALS. When K
is smaller than 16, CMF performs the best on MovieLens
and Flixster. In most cases, CMF is faster than WMF, and
just a little slower than FastALS. However, one drawback
of CMF is that when K becomes large, the running time
increases dramatically. The reason comes from the Kro-
necker product which leads to the inversion of an mnxmn
matrix in updating the transforming matrices, T, and T,.
However, precious work [52], [51] has already derived very
efficient algorithms which reduce the time complexity to the
inversion of an m xm matrix. In this paper, we only give the
general but inefficient method for derivation clarity. Even
so, the running time is acceptable for practical applications.

6 CONCLUSION

This paper proposes a novel model named Correlated Ma-
trix Factorization (CMF) for personalized recommendation
with implicit feedback. CMF elegantly combines MF and
CCA into a unified model so that the prior correlation
between the user and the item factors is well captured.
Meanwhile, the ratings are measured as the semantic as-
sociation between U and V rather than a simple inner prod-
uct, which makes CMF more expressive in modeling the
underlying semantics of data. Comprehensive evaluations
on four different datasets show that CMF is competitive,
usually better than existing state-of-the-art baselines. With
increasing work focusing on recommender systems, we

believe that our proposed model is promising to advance
the researches in this field.
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