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Abstract—In recent years, wireless sensor networks have been widely used in healthcare applications, such as hospital
and home patient monitoring. Wireless medical sensor networks are more vulnerable to eavesdropping, modification,
impersonation and replaying attacks than the wired networks. A lot of work has been done to secure wireless medical
sensor networks. The existing solutions can protect the patient data during transmission, but cannot stop the inside
attack where the administrator of the patient database reveals the sensitive patient data. In this paper, we propose a
practical approach to prevent the inside attack by using multiple data servers to store patient data. The main contribution
of this paper is securely distributing the patient data in multiple data servers and employing the Paillier and ElGamal
cryptosystems to perform statistic analysis on the patient data without compromising the patients’ privacy.
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1 INTRODUCTION

wireless sensor network (WSN) consists of

spatially distributed autonomous sensors to
monitor physical or environmental conditions, such
as temperature, sound, pressure, etc. and to coopera-
tively pass their data through the network to a main
location. The development of wireless sensor net-
works was motivated by military applications such
as battlefield surveillance; today such networks are
used in many industrial and consumer applications,
such as industrial process monitoring and control,
machine health monitoring, and so on.

Healthcare applications are considered as promis-
ing fields for wireless sensor networks, where
patients can be monitored in hospitals and even
at home using wireless medical sensor networks
(WMSNSs). In recent years, many healthcare ap-
plications using WSNs have been developed, such
as CodeBlue [20]. Alarm-Net [30], UbiMon [24],
MEDIiSN [14], and MobiCare [4]. A typical ex-
ample of healthcare applications with WSNs is
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Alarm-Net [30] developed in University of Virginia
for assisted-living and residential monitoring. The
architecture of Alarm-Net is shown in Fig. 1.
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Alarm-Net is composed of mobile body network,
emplaced sensor network, AlarmGate applications,
back-end systems, and user interfaces as follows:

« Mobile body network has wireless sensor de-
vices worn by a patient which provide phys-
iological sensing. Data from the mobile body
network is transmitted through the emplaced
sensors to user interfaces or back-end systems.

« Emplaced sensor network has devices deployed
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in the living space to sense environmental
quality or conditions, such as temperature, dust,
motion, and light. Emplaced sensors maintain
connections with mobile body networks as they
move through the living space.

o AlarmGate applications serve as application-
level gateways between the wireless sensor
networks and IP networks. These nodes allow
user interfaces and a connection to a back-end
database for long-term storage of data.

« Back-end systems provide online analysis of
sensor data and long-term storage of data.

« User interfaces allow any legitimate user of the
system to query sensor data.

Wireless medical sensor networks certainly im-
prove patient’s quality-of-care without disturbing
their comfort. However, there exist many potential
security threats to the patient sensitive physiological
data transmitted over the public channels and stored
in the back-end systems. Typical security threats to
healthcare applications with WSNs can be summa-
rized as follows.

Eavesdropping is a security threat to the patient
data privacy. An eavesdropper, having a powerful
receiver antenna, may be able to capture the patient
data from the medical sensors and therefore knows
the patient’s health condition. He may even post the
patient’s health condition on social network, which
can pose a serious threat to patient privacy.

Impersonation is a security threat to the patient
data authenticity. In a home care application, an
attacker may impersonate a wireless rely point while
patient data is transmitting to the remote location.
This may lead to false alarms to remote sites and
an emergency team could start a rescue operation
for a non-existent person. This can even defeat the
purpose of wireless healthcare.

Modification is a security threat to the patient
data integrity. While the patient data is transmitted
to the physician, an adversary may capture the
physiological data from the wireless channels and
alter the physiological data. After the attacked data
(i.e., altered data) is sent to the physician, it could
endanger the patient.

Data breach is a security threat to the patient
data privacy. A data breach is an incident in which
sensitive, protected or confidential patient data has
potentially been viewed, stolen or used by an in-
dividual unauthorized to do so. For example, a
malicious patient database administrator may use
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the patient data (such as, patient identity) for their
personal benefit, such as for medical fraud, fraudu-
lent insurance claims, and sometimes this may even
pose life-threatening risks.

To protect the wireless medical sensor networks
against various attacks, a lot of work has been
done. In 2012, a survey on the recently published
literature on secure healthcare monitoring using
wireless sensor networks was conducted by Kumar
and Lee [16]. Current solutions are built on either
secret-key encryption or public-key encryption as
follows:

« Secret-key based solutions assume that the se-
cret keys for encryption and authentication are
deployed in the medical sensors and the servers
in advance. A secret key cryptosystem, such
as AES [1], is used for encryption, while the
message authentication code (MAC) is used for
authentication. Typical examples of secret-key
based solutions include [7], [12], [15], [26],
[29], [31], [32]. These solutions are usually
efficient. However, the distribution of the secret
keys are less efficient than the public-key based
solutions.

o Public-key based solutions assume that a
public-key cryptosystem, such as Diffie-
Hellman key exchange protocol [8] or RSA
[27], is used to establish a secret key for
encryption on the basis of the public keys.
Typical examples of public-key based solutions
include [11], [13], [17], [19], [21], [22]. These
solutions facilitate key distribution and update.
However, they are usually inefficient and not
directly applicable to the wireless medical sen-
sor networks, where the sensors have limited
computation and communication capabilities.

In addition, in order to protect patients’ privacy,
k-anonymity has been used to make each patient
indistinguishable from other k-1 similar patients in
wireless medical sensor data before releasing the
data for medical research [2].

Most of current solutions focus on how to protect
the wireless medical sensor networks against the
outside attacks, where the attacker does not know
any information about the secret keys. The outside
attacks can be effectively prevented by encryption,
authentication and access control.

In 2013, Yi et al. [31] gave a secret-key based
solution to protect the wireless medical sensor net-
works against the inside attacks, where the attacker
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may be a malicious administrator of the patient
database. In the solution, the Sharemind system [3]
composed of three data servers is used to store the
patient data and each sensor shares three different
secret keys with the servers. When a medical sensor
sends a patient data (e.g. temperature reading) to
the Sharemind system, it splits the patient data
into three numbers such that the sum of them is
equal to the original data and submits them, re-
spectively, to the three data servers via three secure
channels. Sharemind is a data processing system
capable of performing computations on input data
without compromising its privacy. The three servers
in Sharemind can cooperate to process some queries
on the patient data from the users (e.g., doctors,
nurses, medical professionals) without seeing the
patient data. The solution can protect the patient
data privacy as long as the number of the compro-
mised data servers is at most one. If two of the three
data servers are compromised by the inside attack,
the solution becomes insecure.

In this paper, we further improve the security of
the solution given by Yi et al. [31]. Like [31], we
assume that the wireless medical sensor network
is composed of some medical sensors, three data
servers, and some users. Each sensor sends the
patient data to the three data server in the same way
as [31]. Unlike [31], the three data servers process
the queries, such as statistical analysis on the patient
data, from the users on the basis of the Paillier
[25] and ElGamal [10] cryptosystems instead of
the Sharemind system [3]. The patient data privacy
can be preserved as long as at least one of three
data servers is not compromised. Even if two data
servers are compromised but one data server is not
compromised, our solution is still secure.

Our contributions in this paper can be summa-
rized as follows.

o To prevent the patient data from the inside
attacks, we propose a new data collection pro-
tocol, where a sensor splits the sensitive patient
data into three components according to a ran-
dom number generator based on hash function
and sends them to three servers, respective, via
secure channels.

« To keep the privacy of the patient data in data
access, we propose a new data access protocol
on the basis of the Paillier cryptosystem. The
protocol allows the user (e.g., physician) to
access the patient data without revealing it to
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any data server.

o To preserve the privacy of the patient data
in statistical analysis, we propose some new
privacy-preserving statistical analysis protocols
on the basis of the Paillier and ElGamal cryp-
tosystems. These protocols allow the user (e.g.,
medical researcher) to perform statistical anal-
ysis on the patient data without compromising
the patient data privacy.

These contributions are essentially different from
the solution given in [31], which relies on the Share-
mind system for data analysis without considering
the collusion of data servers.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the basic building blocks by which
our solution is constructed. Section 3 describes
our solution. Security and performance analysis is
carried out in Section 4. Conclusions are drawn in
the last section.

2 PRELIMINARIES

Two basic building blocks of our solution are the
Paillier and the ElGamal public key cryptosystems,
which are described in this section.

2.1 Paillier Public-Key Cryptosystem

The Paillier encryption scheme [25], named after
and invented by Pascal Paillier in 1999, is a proba-
bilistic public key encryption algorithm. It is com-
posed of key generation, encryption and decryption
algorithms as follows.

2.1.1 Key generation
The key generation algorithm works as follows.
o Choose two large prime numbers p and g

randomly and independently of each other such
that

ged(pg, (p—1)(g—1)) =1
o Compute
N =pgA=lem(p—1,9—1)

where [cm stands for the least common multi-
ple.

o Select random integer g where g € Z3, and
ensure N divides the order of g by checking
the existence of the following modular multi-
plicative inverse:

p = (L(g*(modN?)))™" (mod N)
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where function L is defined as
u—1
N

Note that the notation a/b does not denote the
modular multiplication of a times the modular mul-
tiplicative inverse of b but rather the quotient of a
divided by b.

The public (encryption) key pk is (IV, g).

The private (decryption) key sk is (A, p).

If using p, ¢ of equivalent length, one can simply
choose

g=N+1X=¢(N),u=p(N)"'(mod N)
where N = pg and p(N) = (p—1)(¢ —1).

L(u) =

2.1.2 Encryption
The encryption algorithm works as follows.

« Let m be a message to encrypt, where m € Zy.
« Select random r where r € Zj,.
o Compute ciphertext as:

g™ - r™(mod N?) (1)

C =

2.1.3 Decryption
The decryption algorithm works as follows.

o Let ¢ be the ciphertext to decrypt, where the
ciphertext ¢ € Z .
o Compute the plaintext message as:

L(c*mod N?)) - p(mod N) (2)

m =

2.1.4 Homomorphic Properties

A notable feature of the Paillier cryptosystem is its
homomorphic properties. Given two ciphertexts

E(my, pk) = g™ rY (mod N?)
E(ms, pk) = ™13’ (mod N?)

where 71, 7y are randomly chosen for Z},, we have
the following homomorphic properties.

The product of two ciphertexts will decrypt to the
sum of their corresponding plaintexts,

D(E(mq, pky) - E(mg, pks)) = my + ma(mod N)

The product of a ciphertext with a plaintext rais-
ing g will decrypt to the sum of the corresponding
plaintexts,

D(E(my,pky) - ¢"™) = my + ma(mod N)
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An encrypted plaintext raised to a constant &
will decrypt to the product of the plaintext and the
constant,

D(E(my,pk1)*) = kmi(mod N)

However, given the Paillier encryptions of two
messages, there is no known way to compute an
encryption of the product of these messages without
knowing the private key.

2.2 ElGamal Public-Key Cryptosystem

The ElGamal encryption scheme [10], named after
and invented by Taher ElGamal in 1985, is a proba-
bilistic public key algorithm. It is composed of key
generation, encryption and decryption algorithms as
follows.

2.2.1 Key Generation
The key generator works as follows.

« Generate a cyclic group G, of large prime order
q, with generator g.

e Choose a random = € {l,...,q — 1} and
compute

y = g° 3)

The public (encryption) key pk is (G, q,g,v).
The private (decryption) key sk is z.

2.2.2 Encryption
The encryption algorithm works as follows.

« Let m be a message to encrypt, where m € G.
« Choose a random r € {1,...,q — 1}.
« Compute the ciphertext ¢ = (A, B), where

A =49 “4)
B = m-y" 5)
2.2.3 Decryption
The decryption algorithm works as follows.
« Let ¢ = (A, B) be a ciphertext to decrypt.
o Compute
m = B/A" (6)

The decryption algorithm produces the intended
message, since

B/AI — m‘yT/ng
m'gCL’T‘/g’I"$
= m
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2.2.4 Homomorphic Property

ElGamal encryption scheme has homomorphic
properties. Given two encryptions (A, B;) =
(¢g",my™) and (As, Bs) = (g™, mey™), where
r1, 79 are randomly chosen from {1,2,--- ,¢q — 1}
and my, my € (G, one can compute

(AluBl)(A27B2) (A1A27B1B2>

= (99", (my™)(may™))
(9772, (mymg)y™*72)

which is the encryption of mms,.

3 PRIVACY-PRESERVING WIRELESS

MEDICAL SENSOR NETWORK
3.1 Our Model

Like most of healthcare applications with wireless
medical sensor network, our architecture has four
systems as follows.

o A wireless medical sensor network which
senses the patient’s body and transmits the
patient data to a patient database system;

o A patient database system which stores the
patient data from medical sensors and provides
querying services to users (e.g., physicians and
medical professionals);

o A patient data access control system which is
used by the user (e.g., physician) to access the
patient data and monitor the patient;

« A patient data analysis system which is used by
the user (e.g., medical researcher) to query the
patient database system and analyze the patient
data statistically.

There may be a middleware between the wireless
medical sensor network and the patient database
system. If so, the role of the middleware is sim-
ply forwarding the encrypted patient data to the
database system.

In our model, the patient database system is
composed of multiple database servers. We assume
that all data servers are semi-honest, often called
“honest but curious”. That is, all data servers run our
protocol exactly as specified, but may try to learn
as much as possible about the patient data from
their views of the protocol. In addition, we assume
that at least one data server is not compromised by
attackers. For simplicity, we assume that the number
of data servers is three. In fact, it can be any number
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Fig. 2. Our Model

more than three. The architecture of our model with
three data servers can be shown in Fig. 2.
The security requirements for our model include:

o Data collection security: In the wireless med-
ical sensor network, each medical sensor can
securely send the patient data to the distributed
database system.

o Data store security: In the distributed patient
database system, the patient data cannot be
revealed even if two of three data servers are
compromised by the inside attackers.

o Data access security: In the patient access
control system, only the authorized user can
get access to the patient data. The patient data
cannot be disclosed to any data server during
the access.

« Data analysis security: In the patient data anal-
ysis system, the authorized user can get the
statistical analysis results only. The patient data
cannot be disclosed to any data server and even
to the user during the statistical analysis.

Our model considers two types of attacks, the
outside attack and the inside attack. The outside
attacker does not know any secret key in our system,
but attempts to learn the patient data from the
views of our protocol, or modify the patient data, or
impersonate a medical sensor. The inside attacker
is a malicious data server or a coalition of two
malicious data servers who know some secret keys
in our system and attempt to learn the patient data.

3.2 Data Collection Protocol

There is an initial deployment phase between each
medical sensor and each data server. For each
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medical sensor, three secret keys are pre-deployed
and pre-shared with three data servers, respectively.
Each secret key is used to create a secure channel
between the sensor and one data server. In addition,
one more secret key is pre-deployed in each sensor
in order to generate random numbers. Note that
different medical sensors are deployed with different
secret keys.

When a medical sensor sends a sensitive nu-
merical patient data p (e.g., temperature reading)
to the distributed patient database, to prevent any
data server from understanding the patient data and
revealing the patient privacy (the inside attack), the
medical sensor splits the patient data p (an integer)
into three integers «, 3, v such that a+/5+~y = p and
sends them to the three data servers through three
secure channels, respectively, as shown in Fig. 3.

2 1l
T Server
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p ﬁ NI Server
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Server
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Distributed
Database
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Fig. 3. Data Collection

Assume that the medical sensor sends a sequence
of sensitive numerical patient data pq, ps,--- (each
has less than 32 bits) to the three data servers,
it firstly generates a sequence of random numbers
ai,by,as, by, - - (each has 40 bits) with SHA-3 [28]
(r =40 and ¢ = 160) as shown in Fig. 4, where K
is the random number generation secret key and the
initial vector [V includes the current time stamp,
the size of both K and IV is 80 bits.

Let |a;| (|Bi]) be the first 32 bits of a; (b;).
The sign of «; (5;) is positive if a; (b;) is even
and otherwise negative. Then the medical sensor
computes

Vi =pi — ;=
fore=1,2,---
Let A; = {patient ID, data attribute, data unit},
the medical sensor sends { A;, a;} to S; through the

6
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Fig. 4. Random Number Stream Generation

secure channel for Sj, and {4;, 3;} to Sy through
the secure channel for Sy, and {A;, v;} to S5 through
the secure channel for Ss, for i =1,2,---.

Each data server will create a database to store the
patient data. The database structure looks like the
patient’s identity, the attribute of the data, the unit of
the data, the share of the data and etc. For example,
a record of the database in S; may look like {David
Jones, temperature, celsius degree, o; = 317481,
12/12/2014, 9:31AM}.

As long as the three data server do not put their
shares together, the privacy of the patient data can
be protected. Note that our model assumes that at
least one data server is not compromised.

Remark. The patient data may be decimal numbers
with several digits after the point. In this case, the
sensor should convert it to an integer and sends the
shares of the data together with the unit of the data
to three data servers, respectively.

3.3 Access Control Protocol

There is an initialization phase before any user
(physician) can get access to the patient data. In this
phase, the user generates a public and private key
pair (pk, sk) for the Paillier cryptosystem [25] as
described in Section 2.1 and a signature verification
and signing key pair (pk*, sk*) for the Digital Sig-
nature Standard (DSS) [9]. For security reason, the
size of N in the Paillier cryptosystem is required to
be more than 1024 bits. Assume that there exists a
Public Key Infrastructure (PKI), where there exists a
Certificate Authority (CA) which certifies the public
keys (pk, pk*) for the user in a digital certificate. In
addition, we assume that the user establishes three
secure channel with three data servers, respectively.

To get access to the patient data, the user sends
a request including the patient’s identity, the data
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attribute, the signature of the user on the query, and
the certificate of the user to the three data servers
through the three secure channels, respectively.

Remark. We use the secure channels for the user
to submit his queries because the patient’s personal
information in the queries needs to be protected
against outside attackers.

If the user’s request passes the signature verifi-
cation and meets the access control policies, the
three servers find the shares of the data «,f,~y
according the patient’s identity and the attribute of
the data. Then the three data servers and the user
run Algorithm 1.

Remark. We require each data server to verify the
signature of the user and check the access control
policies. The verification and check can be trusted
because at least one data server is not compromised.

Algorithm 1 Patient Information Retrieval
Input: o, 3, v, pk, sk
Output: p=a+ [+~
1: The data server S; picks a random 7, € Z} and
computes

Cy = Encrypt(a, pk) = g°ri’ (mod N?)

and sends ('] to the data server Ss.
2: The data server S; picks a random 7, € Z}; and
computes

Cy = Encrypt(8, pk) = ¢°r3 (mod N?)

and sends C'C, to the data server Ss.
3: The data server S picks a random 73 € Z}, and
computes

Cs = Encrypt(v,pk) = ¢"r3' (mod N?)

and replies C;C5C’5 to the user.
4: The user computes

p = Decrypt(C1CyCs, sk)

5: return p

Due to the homomorphic properties of the Paillier
cryptosystem, we have

C1CyC3 = E(a,pk)E(SB, pk)E(v, pk)
= (") (¢"r)(g"r3 ) (mod N?)
= ga+5+’y<’l"17’27"3)N(m0d N2>

= E(a+ p+,pk)

7

Therefore,

p = Decrypt(C1C5C3, sk) = a+ 5+~

3.4 Statistical Analysis Protocols

Our system supports not only access control to the
patient data but also privacy-preserving statistical
analysis on the patient data for medical research,
where the three data servers cooperate to help the
medical researcher analyze the patient data without
revealing the patient privacy.

3.4.1 Average Analysis Protocol

When a user queries the average of n patient
data 1,9, - ,x,, where z; = «a; + 3; + 7; for
1=1,2,--- ,n and o4, 5;,; are stored in the three
data servers, respectively, he submits his query with
his signature and certificate to the three servers. If
the signature of the user is genuine and the access
control policies permit the user to access the average
of n patient data, the three servers and the user run
Algorithm 2.

Algorithm 2 Average Computation
Input: (o, B;, ;) fori=1,2,---  n, pk,sk
Output: 7= )" z;/n
1: The data server S; picks a random 7, € Z} and
computes

C, = Encrypt(z a;, pk) = gzt cipN
i=1
and sends C] to the data server S,.

2. The data server Sy picks a random 7, € Z}; and
computes

CQ = Encrypt(z 61'7]7]?) — gZ?:l @'Té\f

i=1
and sends C';C5 to the data server Ss.

3: The data server S5 picks a random 73 € Z}, and
computes

C3 = Encrypt(z i, pk) = g2i=1 Yig

=1

and replies C;C5C’5 to the user.
4: The user computes

T = Decrypt(C1CyCs, sk) /n

5. return T
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Due to the homomorphic properties of the Paillier
cryptosystem, we have

C105C5 = (g=rM)(g= i) (9= 1Y) (mod N?)
= gZ(aﬁ’BZﬂ’)(rlrQrg) (mod N?)
= E(in,pk‘)

Therefore,

T = Decrypt(C1CyCs, sk) /n = Z x;/n

i=1

3.4.2 Correlation Analysis Protocol

When a user queries the correlation of two mea-
sures of patient data, X = (xy,29, -+ ,7,) and
Y = (y1,%2, -+ ,yn), Where (z;, ;) belongs to one
patient and x; = o; + 5; +; and y; = o, + B + )
for i = 1727"' » T and (a27 ) (5175) (717’71/) are
stored in the three data servers, respectively, he
submits his query with his signature and certificate
to the three servers. If the signature of the user is
genuine and the access control policies permit the
user to access the correlation of two measures X
and Y for the n patient data, the three servers and
the user run Algorithm 3.

In Algorithm 3, r;, 7, are randomly chosen by the
data server S; from Zy.

Due to the homomorphic properties of the Paillier
cryptosystem, we have

CiCiCis (Ci1CinCia) P (e )N
= (g (ryrarg) V)Y (P )N
= g™ ((rirars) " rirgry)”
= E(zy;,pk)
Therefore,

= E(Z %yi,pk)
Z TiY;

In Algorithm 3, let o = o, B! = ﬁi and 7, = v,
the user can obtain s,2 = > ., z?. Let a; = af,
p; = [ and v; = 7}, the user can obtain s,2 =
Z?Zl yf In addition, by Algorithm 2, the user can
obtain s, =Y " x; and s, = > | y;.

Finally, the user can compute the correlation of
the two measures X and Y, namely,

- Ny T — )Ty Yi
bV = (e -

= Decrypt(C, pk) =

Qo vi)?

Algorithm 3 Product Computation

Input: (o, 3, 7), (o,
pk, sk
Output: s,, = > " x;y;
22 Fori=1ton

L LetC =1
3: S1 computes and sends Cj; to Ss.

1) for i =

Cy = Encrypt(ay, pk) = g*ry (mod N?)
4: Sy computes and sends C;;Cjs to Ss.
Cio = Encrypt(B:, pk) = ¢%ry (mod N?)
5. S3 computes and sends C;;C;2Ci3 to Sy, Ss.
Cis = Encrypt(v;, pk) = g”"rév(mod N2)
6: S1 computes and sends C}; to Ss.
! = (CinCiaCis) 7™ (mod N?)
7. So computes and sends C,C’, to Ss.
Cly = (CiyCinCig) iy (mod N?)
8: S3 computes
i3 = (Cilci2Ci3)%{7’éN<mOd N?)
C + C},Cl,ClC(mod N?)

9: End For ¢
10: S5 replies C' to the user.
11: The user computes

Suy = Decrypt(C, sk)

12: return s;,

In Algorithm 3, if the user can get the intermedi-
ate encryption results, e.g., C;;, C; and Cj3, he can
obtain the individual patient data, e.g., x;, because
he has the decryption key. To prevent the user from
learning the individual patient data, we provide an
improved solution on the basis of a combination of
the Paillier and the ElGamal cryptosystems.

Like the Paillier cryptosystem [25], the three
data servers randomly choose large primes p, ¢ and
compute N = pq. Like the ElGamal cryptosystem
[10], the three data servers choose a generator
g = a?® D@ (mod N?) with order of g, where
a is a random integer and g # 1. Each of the
three data server and the user randomly chooses the
private key sk; € Z; and computes the public key
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pk; = g°*(mod N?), where i = 1,2, 3,4. Then the
three data servers and the user run Algorithm 4.

Algorithm 4 Improved Product Computation
Input: (o, Bi, i), (o, Bi,7) for i@ = 1,2,--- |n
N, g, pk;, sk;, 1=1,2,3,4
Output: s,, = > " Ty
1 Let A=B=1,g; = (N + 1)?, pk = [[_, pk
2: Fori=1ton
3. S computes and sends (A;1, B;1) to Ss.

Ap = g™ (mod NQ), By = g7"pk"™ (mod NQ)

4: Sy computes and sends (A;; A2, Bi1 Biz) to Ss.
Aip = g (mod N?), Bis = ¢"'pk™ (mod N?)
5. S3 computes and sends (A;, B;) to Sy, .Ss.
Ais = g™ (mod N?), Bz = ¢{"pk"™ (mod N?)
A; = AgApAi(mod N?)
B; = By BisBiz(mod N?)

6: S; computes and sends (A, B};) to Ss.

Al = A% g™ (mod N?), By = B pk™ (mod N?)

7. Sy computes and sends (A%, Ay, Bl Bly) to Ss.
Aly = Al g (mod N*), Bl = B/ pk" (mod N?)
8: S3 computes
Aly = Al g (mod N?), By = B'pk™ (mod N?)
A AL AL AL A(mod N?)
B + B}, Bl,B/;B(mod N?)

9: End For ¢

10: S3 sends A to 51,5

11: Sy sends Dy = A**(mod N?) to Ss.

12: Sy sends Dy = A**2(mod N?) to Ss.

13: S3 computes D3 = A**(mod N?) and replies
the user with (A, C'), where

C = B/(DngDg)(mOd N2)
14: The user computes
D = A% (mod N?), s,, = L(C/D(mod N?))/p

15: return s,

In Algorithm 4, r;, r; are randomly chosen by the
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data server S; from Z; = {1,2,--- ,q — 1}.

Due to the homomorphic properties of the ElGa-
mal cryptosystem, we have

Ay A Al

o Bi vl Lot
(A;"g")(Ajg 2)(14:9 2)

= (AilAizAig)a’li+5z{+’Y§gT/1+r§+r§
(gT1 ggs )yigT/1+Té+Té

(ritra+rs)yi+(ry+ry+ry)

g

(B pk™s) (B pk™) (B} pk™)
(Bil Bi2Bi3)a2+B,ﬁ+’%pk_Ti+T'/2+Té
(grpk™ gy k™ gy ph" )Vipki a4

giczyzpk (ridratra)yi+(ri+ry+rs)

I ! R/
BilBiQBiB

Therefore,
(A, B) = (¢", g7 """ pk")

for some r, which is an ElGamal encryption of
>, x;y;. Furthermore, we have

C/D = B/(D\DsDsD)
4
= gk /([T o)™
_ (1+N)p2?1xz;1
= 1+(pixiyi)]\f(mod N?)
i=1
Therefore,
sey = L(C/D(mod N*?))/p

1+ (pd i zy)N — 1

Np
Z LilYi
i=1

Note that >  x;y; is usually much less than
q even for large n because x;y; is about 64 bits,
but ¢ is required to be at least 512 bits. Therefore,
Py x;y; is much less than N = pq.

3.4.3 \Variance Analysis Protocol

When a user queries the variance of n patient
data 1,9, ,x,, where z; = «a; + 3; + 7; for
1=1,2,--- ,n and o4, 5;,; are stored in the three
data servers, respectively, he submits his query with
his signature and certificate to the three servers.
If the signature of the user is genuine and the
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access control policies permit the user to access the
variance of n patient data, the user runs Algorithm 2
and Algorithm 3 or 4 with the three data servers to

— n n 2 .
getT =) " x;/nand s,z =) ! x7, respectively.
Then the user computes the variance

e
\/ZZ 22+ (1— 2n)72

n—1

3.4.4 Regression Analysis Protocol

When a user queries the linear relationship y =
kx + b of two measures of patient data, X =
(x1,m0,++ ,x,) and Y = (y1,y2, - ,Yn), Where
(3, 95) belongs to one patient and x; = o; + 5; +
and y; = o, + 5. + v, for i = 1,2,--- 'n, and
(e, o), (s, 5 ), (7i,7;) are stored in the three data
servers, respectively, he submits his query with
his signature and certificate to the three servers.
If the signature of the user is genuine and the
access control policies permit the user to access
the linear relationship of two measures X and Y
for the n patient data, the user runs Algorithm 2
and Algorithm 3 or 4 with the three data servers to
obtain s, = > 1| Tiy Sy = D iy Yir Sa2 = 9 gy T3,
Sey = Y1 LY, respectively. Then the user com-
putes

o= Y TiYi — D Ti Y Yi
ny xi — (3 x)?
h o— Yy — kY

n

4 SECURITY AND PRIVACY ANALYSIS
4.1 Security Analysis

In our architecture as shown in Fig. 2, there are
three parts of communications as follows.

o The communications between the medical sen-
sors and the three servers;

o The communications between the user (e.g.,
physicians or medical professional) and three
Servers;

o The communications among the three servers.

In our solution, the communication between each

medical sensor and each data server is through a
secure channel, which is implemented by a secret-
key cryptosystem. The patient data over the secure
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channel is encrypted with the secret key pre-shared
between the sensor and the data server. Without the
secret key, the attacker cannot eavesdrop the patient
data.

Because the medical sensors are usually low-
power and low-cost, we can choose the lightweight
encryption scheme and the message authentication
code (MAC) generation scheme proposed in [31] for
the secure channel. Both schemes are built on the
smallest version of the SHA-3 with r = 40, ¢ = 160,
which can provide a security level sufficient for
many applications. In addition, the random numbers
in our data collection protocol are also generated
with SHA-3 as shown in Fig. 4.

By the lightweight encryption scheme and the
MAC generation scheme [31], we can achieve data
confidentiality, authenticity and integrity between
each medical sensor and each data server.

In our solution, the communication between the
user and each data server is also through a secure
channel. Because the three data servers and the
user’s computing device are usually much more
powerful in computation and communication than
the medical sensors, we choose the Advanced En-
cryption Standard (AES) [1] for the secure channel.
The secret key can be established by a public
key cryptosystem, such as the Diffie-Hellman key
exchange protocol [8] or RSA [27]. The public keys
of users and three data servers are certified by a
Certificate Authority (CA) in a Public Key Infras-
tructure (PKI). In addition, we choose the Digital
Signature Standard (DSS) [9] for data authentication
and integrity.

By AES and DSS, we can achieve data confiden-
tiality, authenticity and integrity between the user
and each data server.

In our solution, the communications among three
data servers can be also through secure channels.
Like the secure communication between the user
and the data servers, any two of the three data
servers can establish a secret key with a public key
cryptosystem. Then the communication between the
two data servers can be encrypted with AES based
on the secret key.

In our model, the three data servers are assumed
to be semi-honest. Otherwise, the user can never
obtain correct patient data and statistical analysis
results. To ensure data authenticity and integrity in
the communications among the three data servers,
we choose the Digital Signature Standard (DSS) [9].
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4.2 Privacy Analysis

In the data collection protocol, the medical sensor
splits the patient data into three numbers and sends
them to the three data servers, respectively, through
secure channels. Two of the three numbers are
generated by SHA-3 with a secret key K and an
initial vector IV as shown in Fig. 4. The key
is pre-deployed and known to the medical sensor
only. Any inside attacker, including each data server,
cannot guess the two random numbers without the
secret key. As long as at least one data server is not
compromised by the inside attack, none can reveal
the patient data during data collection.

In the access control protocol (Algorithm 1) and
the statistical analysis protocols (Algorithms 2 and
3), the patient data is always encrypted by the public
key of the user. Without the private key of the user,
even if two data servers are compromised by the
inside attacks, the attacker can never obtain the
patient data. Algorithms 1-3 are useful when the
user is permitted to get access the patient data,
but does not have a secure environment to protect
patient data in local statistical analysis.

In Algorithm 4, all intermediate statistical data
are encrypted by the common public key pk =
Hle pk;. Because p and ¢ are public, the user may
attempt to decrypt the encrypted intermediate data
by the decryption manner of the Paillier cryptosys-
tem, e.g., raising B;;, B;, ng, B to the power of ¢
to remove the effect of pk”. However,

B! =

‘ (gicipkr1+r2+r3)q(mod N2)
= (N + 1P (mod N?)
= 1+ 2;pqN(mod N?)

= 1 (mod N?)

In the same way, we can see that ij = ngq =
B? = 1(mod N?). Therefore, this attack cannot get
any information about the patient data. In addition,
because Af; = A = A7 = A7 = 1, any
attacker cannot determine the random exponents in
Aij, Ay, A, A like the Paillier decryption.

Even if the user can get the encrypted interme-
diate data, he cannot decrypt it without cooperation
with all three data servers. Note that we assume that
at least one data server is not compromised by the
inside attack. Until the end of the algorithm, the user
is not allowed to decrypt the final statistical result.
Therefore, Algorithm 4 can be used when the user
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is not permitted to know the individual patient data
in the statistical analysis.

5 PERFORMANCE ANALYSIS

In our data collection protocol, we can use the
lightweight encryption scheme and MAC generation
scheme proposed in [31]. In addition, our random
number stream generation scheme is also based on
SHA-3. All security mechanisms in the sensor can
be implemented with the same SHA-3. This design
is suitable for wireless sensor networks where area
is particularly important since it determines the cost
of the sensors.

Our access control protocol is built on the Paillier
cryptosystem [25], where the dominated computa-
tion is the modular exponentiation, i.e., a*(mod N?)
where © € Z}. In Algorithm 1, each data server
computes two modular exponentiations and ex-
change |N?| = 2|N| bits, where |N]| is the length of
N. The user computes one modular exponentiation
and exchanges 2| N| bits.

Our average analysis protocol is also built on
the Paillier cryptosystem. In Algorithm 2, the com-
putation and communication complexities for each
data server and the user are the same as those in
Algorithm 1.

In our correlation analysis protocol, with the
help of the three data servers, the user compute
Sz, 8y by Algorithm 2 and compute s,,, 5,2, 5,2 by
Algorithm 3 or Algorithm 4 and then computes
the correlation 7,,. Algorithm 3 is based on the
Paillier cryptosystem and can be used when the
user is permitted to access the individual patient
data. Algorithm 4 is based on the combination of
the ElGamal and Paillier cryptosystems and can be
used when the user is not permitted to access any
individual patient data.

In Algorithm 3, each data server computes 4n
modular exponentiations and exchanges 8| N|n bits
in average, where n is the number of patients.
The user computes one modular exponentiation
and exchanges 2|N| bits. In Algorithm 4, each
data server computes 8n modular exponentiations
and exchanges 20|N|n bits in average. The user
computes one modular exponentiation and exchange
4|N| bits. The computations of modular exponen-
tiation in Algorithms 3 and 4 are different. In
Algorithm 3, we compute a”(mod N?) where = €
Zy, denoted as Exp. In Algorithm 4, we compute
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Protocols Each Data Server User
Comp. Comm. Time Comp. Comm Time
Access Control 2 Exp. 2 |N 2.68 ms 1 Exp. 2 |N 1.34 ms
Average Analysis 2 Exp. 2 |N 2.68 ms 1 Exp. 2 |N 1.34 ms
Correlation Analysis 1 (12n + 4) Exp. (2dn+4) |[N| | 2.68 m 5 Exp. 10 |[N| | 6.7 ms
Variance Analysis 1 (4n + 2) Exp. (8n+2) [N| | 0.89 m 2 Exp. 4 |N| | 2.68 ms
Regression Analysis 1 (8n + 4) Exp. (16n+2)|N|] | 1.79 m 4 exp. 8 |[N| | 2.68 ms
Correlation Analysis 2 | 24n exp. + 4 Exp | (60n+4) |[N| | 2.68 m | 3 exp.+ 2 Exp. | 16 |N| | 4.69 ms
Variance Analysis 2 8n exp. + 2 Exp. | (20n+2) [N| | 0.89m | 1exp. +1 Exp. | 6 |N| | 2.01 ms
Regression Analysis 2 | 16n exp. + 4 Exp. | (40n+4)|N| | 1.79 m | 2 exp. +2 Exp. | 12 |[N| | 4.02 ms
TABLE 1

Performance Analysis

a*(mod N?) where x € Z,, denoted as exp. It is
estimated that Exp.~ 2-exp.

For simplicity, our statistical analysis protocols
based on Algorithms 3 and 4 are denoted as
statistical analysis 1 and 2, respectively. In our
correlation analysis 1, each data server computes
3-4n 4+ 2 -2 = 12n 4+ 4 Exp. and exchanges
3-8|N|n+2-2|N| = (24n+4)|N| bits in average.
The user computes 5 Exp. and exchange 10|V
bits. In our correlation analysis 2, each data server
computes 3 - 8n exp. +2-2 Exp. =24n exp. + 4 Exp.
and exchanges 3-20|N|n+2-2|N| = (60n+4)| V|
bits in average. The user computes 3 exp. +2 Exp.
and exchange 16|N| bits.

In our variance analysis protocol, the user com-
putes T by Algorithm 2 and s,2 by Algorithm 3 or
4 and then computes the variance. In the variance
analysis 1, each data server computes 4n + 2 Exp.
and exchanges (8n + 2)|N| in average. The user
computes 2 Exp. and exchange 4|N| bits. In the
variance analysis 2, each data server computes 8n
exp. + 2 Exp. and exchanges (20n + 2)|N| in
average. The user computes 1 exp. + 1 Exp. and
exchange 6|N| bits.

In our regression analysis protocol, the user
computes s, s, by Algorithm 2 and s,2,s,, by
Algorithm 3 or 4 and then determines the line. In
the regression analysis 1, each data server computes
8n+4 Exp. and exchanges (16n+4)|N| in average.
The user computes 4 Exp. and exchange 8| V| bits.
In the regression analysis 2, each data server com-
putes 16n exp. + 4 Exp. and exchanges (40n+4)| V|
in average. The user computes 2 exp. + 2 Exp. and
exchange 12| V| bits.

The performance of all of our protocols are
summarized in TABLE 1.

With reference to Crypto++ 5.6.0 Benchmarks

[5], a modular exponentiation with a 1024-bit mod-
ulus takes about 0.67 milliseconds. Note that it is
coded in C++, compiled with Microsoft Visual C++
2005 SP1 (whole program optimization, optimize
for speed), and runs on an AMD Opteron 8354
2.2 GHz processor under Linux. Based on this
result, in the Paillier cryptosystem with a 1024-bit
modulus, one modular exponentiation takes about
1.34 milliseconds if we use the Chinese remainder
theorem to compute a®(mod N?) = a®(mod p*q?).
Taking the most expensive correlation analysis 1 for
n = 10,000 as an example, assuming that the three
data servers are connected by a 100-gigabit network,
the total computation and communication times are
estimated to be 2.68 minutes and 1 second, respec-
tively. Our algorithms support parallel computation.
If each data server runs 10 computers in parallel,
the total running time of our correlation analysis
1 for n = 10,000 can be reduced to 16 seconds.
The estimated time for access control and other data
analyses for n = 10,000 are listed in TABLE 1 as
well.

6 CONCLUSION

In this paper, we have investigated the security and
privacy issues in the medical sensor data collection,
storage and queries and presented a complete solu-
tion for privacy-preserving medical sensor network.
To secure the communication between medical sen-
sors and data servers, we used the lightweight
encryption scheme and MAC generation scheme
based on SHA-3 proposed in [31]. To keep the
privacy of the patient data, we proposed a new data
collection protocol which splits the patient data into
three numbers and stores them in three data servers,
respectively. As long as one data server is not
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compromised, the privacy of the patient data can be
preserved. For the legitimate user (e.g., physician)
to access the patient data, we proposed an access
control protocol, where three data servers cooperate
to provide the user with the patient data, but do
not know what it is. For the legitimate user (e.g.,
medical researcher) to perform statistical analysis on
the patient data, we proposed some new protocols
for average, correlation, variance and regression
analysis, where the three data servers cooperate
to process the patient data without disclosing the
patient privacy and then provide the user with
the statistical analysis results. Security and privacy
analysis has shown that our protocols are secure
against both outside and inside attacks as long as
one data server is not compromised. Performance
analysis has shown that our protocols are practical
as well.

Unlike [31], our solution can preserve the patient
data privacy as long as one of three data server is
not compromised. [31] requires that the number of
the compromised data servers is at most one.
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