
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 1

CloudArmor: Supporting Reputation-based
Trust Management for Cloud Services

Talal H. Noor, Quan Z. Sheng, Member, IEEE, Lina Yao, Schahram Dustdar, Senior Member, IEEE,
and Anne H.H. Ngu

Abstract—Trust management is one of the most challenging issues for the adoption and growth of cloud computing. The highly
dynamic, distributed, and non-transparent nature of cloud services introduces several challenging issues such as privacy, security,
and availability. Preserving consumers’ privacy is not an easy task due to the sensitive information involved in the interactions
between consumers and the trust management service. Protecting cloud services against their malicious users (e.g., such users
might give misleading feedback to disadvantage a particular cloud service) is a difficult problem. Guaranteeing the availability of
the trust management service is another significant challenge because of the dynamic nature of cloud environments. In this article,
we describe the design and implementation of CloudArmor, a reputation-based trust management framework that provides a set of
functionalities to deliver Trust as a Service (TaaS), which includes i) a novel protocol to prove the credibility of trust feedbacks and
preserve users’ privacy, ii) an adaptive and robust credibility model for measuring the credibility of trust feedbacks to protect cloud
services from malicious users and to compare the trustworthiness of cloud services, and iii) an availability model to manage the
availability of the decentralized implementation of the trust management service. The feasibility and benefits of our approach have
been validated by a prototype and experimental studies using a collection of real-world trust feedbacks on cloud services.

Index Terms—Cloud computing, trust management, reputation, credibility, credentials, security, privacy, availability.

F

1 INTRODUCTION

THE highly dynamic, distributed, and non-
transparent nature of cloud services make the

trust management in cloud environments a significant
challenge [1], [2], [3], [4]. According to researchers at
Berkeley [5], trust and security are ranked one of the
top 10 obstacles for the adoption of cloud computing.
Indeed, Service-Level Agreements (SLAs) alone are
inadequate to establish trust between cloud consumers
and providers because of its unclear and inconsistent
clauses [6].

Consumers’ feedback is a good source to assess
the overall trustworthiness of cloud services. Several
researchers have recognized the significance of trust
management and proposed solutions to assess and
manage trust based on feedbacks collected from par-
ticipants [7], [6], [8], [9]. In reality, it is not unusual
that a cloud service experiences malicious behaviors
(e.g., collusion or Sybil attacks) from its users [6], [10].
This paper focuses on improving trust management
in cloud environments by proposing novel ways to
ensure the credibility of trust feedbacks. In particular,

• Talal H. Noor, is with the College of Computer Science and Engineering,
Taibah University, Yanbu, Medinah 46421-7143, Saudi Arabia.
E-mail: tnoor@taibahu.edu.sa

• Quan Z. Sheng and Lina Yao are with the School of Computer Science,
The University of Adelaide, Adelaide SA 5005, Australia.

• Schahram Dustdar is with the Distributed Systems Group, Vienna Uni-
versity of Technology, Austria. Anne H.H. Ngu is with the Department
of Computer Science, Texas State University, USA.

we distinguish the following key issues of the trust
management in cloud environments:

• Consumers’ Privacy. The adoption of cloud com-
puting raise privacy concerns [11]. Consumers can
have dynamic interactions with cloud providers,
which may involve sensitive information. There are
several cases of privacy breaches such as leaks of
sensitive information (e.g., date of birth and ad-
dress) or behavioral information (e.g., with whom
the consumer interacted, the kind of cloud services
the consumer showed interest, etc.). Undoubtedly,
services which involve consumers’ data (e.g., inter-
action histories) should preserve their privacy [12].

• Cloud Services Protection. It is not unusual that a
cloud service experiences attacks from its users.
Attackers can disadvantage a cloud service by giv-
ing multiple misleading feedbacks (i.e., collusion
attacks) or by creating several accounts (i.e., Sybil
attacks). Indeed, the detection of such malicious be-
haviors poses several challenges. Firstly, new users
join the cloud environment and old users leave
around the clock. This consumer dynamism makes
the detection of malicious behaviors (e.g., feedback
collusion) a significant challenge. Secondly, users
may have multiple accounts for a particular cloud
service, which makes it difficult to detect Sybil
attacks [13]. Finally, it is difficult to predict when
malicious behaviors occur (i.e., strategic VS. occa-
sional behaviors) [14].

• Trust Management Service’s Availability. A trust man-
agement service (TMS) provides an interface be-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 2

tween users and cloud services for effective trust
management. However, guaranteeing the availabil-
ity of TMS is a difficult problem due to the un-
predictable number of users and the highly dy-
namic nature of the cloud environment [7], [6],
[10]. Approaches that require understanding of
users’ interests and capabilities through similarity
measurements [15] or operational availability mea-
surements [16] (i.e., uptime to the total time) are
inappropriate in cloud environments. TMS should
be adaptive and highly scalable to be functional in
cloud environments.

In this paper, we overview the design and the imple-
mentation of CloudArmor (CLOud consUmers creDi-
bility Assessment & tRust manageMent of clOud seR-
vices): a framework for reputation-based trust manage-
ment in cloud environments. In CloudArmor, trust is
delivered as a service (TaaS) where TMS spans several
distributed nodes to manage feedbacks in a decentral-
ized way. CloudArmor exploits techniques to identify
credible feedbacks from malicious ones. In a nutshell,
the salient features of CloudArmor are:

• Zero-Knowledge Credibility Proof Protocol (ZKC2P).
We introduce ZKC2P that not only preserves the
consumers’ privacy, but also enables the TMS to
prove the credibility of a particular consumer’s
feedback. We propose that the Identity Manage-
ment Service (IdM) can help TMS in measuring
the credibility of trust feedbacks without breaching
consumers’ privacy. Anonymization techniques are
exploited to protect users from privacy breaches in
users’ identity or interactions.

• A Credibility Model. The credibility of feedbacks
plays an important role in the trust management
service’s performance. Therefore, we propose sev-
eral metrics for the feedback collusion detection
including the Feedback Density and Occasional Feed-
back Collusion. These metrics distinguish mislead-
ing feedbacks from malicious users. It also has
the ability to detect strategic and occasional be-
haviors of collusion attacks (i.e., attackers who
intend to manipulate the trust results by giving
multiple trust feedbacks to a certain cloud service
in a long or short period of time). In addition,
we propose several metrics for the Sybil attacks
detection including the Multi-Identity Recognition
and Occasional Sybil Attacks. These metrics allow
TMS to identify misleading feedbacks from Sybil
attacks.

• An Availability Model. High availability is an impor-
tant requirement to the trust management service.
Thus, we propose to spread several distributed
nodes to manage feedbacks given by users in a
decentralized way. Load balancing techniques are
exploited to share the workload, thereby always
maintaining a desired availability level. The num-
ber of TMS nodes is determined through an op-

erational power metric. Replication techniques are
exploited to minimize the impact of crashing TMS
instances. The number of replicas for each node
is determined through a replication determination
metric that we introduce. This metric exploits par-
ticle filtering techniques to precisely predict the
availability of each node.

The remainder of the paper is organized as follows.
Section 2 briefly presents the design of CloudArmor
framework. Section 3 introduces the design of the Zero-
Knowledge Credibility Proof Protocol, assumptions and
attack models. Section 4 and Section 5 describe the
details of our credibility model and availability model
respectively. Section 6 reports the implementation of
CloudArmor and the results of experimental evalua-
tions. Finally, Section 7 overviews the related work and
Section 8 provides some concluding remarks.

2 THE CLOUDARMOR FRAMEWORK

The CloudArmor framework is based on the service
oriented architecture (SOA), which delivers trust as a
service. SOA and Web services are one of the most
important enabling technologies for cloud computing in
the sense that resources (e.g., infrastructures, platforms,
and software) are exposed in clouds as services [17],
[18]. In particular, the trust management service spans
several distributed nodes that expose interfaces so that
users can give their feedbacks or inquire the trust re-
sults. Figure 1 depicts the framework, which consists of
three different layers, namely the Cloud Service Provider
Layer, the Trust Management Service Layer, and the Cloud
Service Consumer Layer.

The Cloud Service Provider Layer. This layer consists
of different cloud service providers who offer one or
several cloud services, i.e., IaaS (Infrastructure as a
Service), PaaS (Platform as a Service), and SaaS (Soft-
ware as a Service), publicly on the Web (more details
about cloud services models and designs can be found
in [19]). These cloud services are accessible through
Web portals and indexed on Web search engines such
as Google, Yahoo, and Baidu. Interactions for this layer
are considered as cloud service interaction with users and
TMS, and cloud services advertisements where providers
are able to advertise their services on the Web.

The Trust Management Service Layer. This layer consists
of several distributed TMS nodes which are hosted in
multiple cloud environments in different geographical
areas. These TMS nodes expose interfaces so that users
can give their feedback or inquire the trust results in a
decentralized way. Interactions for this layer include: i)
cloud service interaction with cloud service providers, ii)
service advertisement to advertise the trust as a service
to users through the Internet, iii) cloud service discovery
through the Internet to allow users to assess the trust
of new cloud services, and iv) Zero-Knowledge Credibility
Proof Protocol (ZKC2P) interactions enabling TMS to

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 3

�
Fig. 1. Architecture of the CloudArmor Trust Management Framework

prove the credibility of a particular consumer’s feed-
back (details in Section 3).

The Cloud Service Consumer Layer. Finally, this layer
consists of different users who use cloud services. For
example, a new startup that has limited funding can
consume cloud services (e.g., hosting their services in
Amazon S3). Interactions for this layer include: i) service
discovery where users are able to discover new cloud
services and other services through the Internet, ii) trust
and service interactions where users are able to give
their feedback or retrieve the trust results of a particular
cloud service, and iii) registration where users establish
their identity through registering their credentials in
IdM before using TMS.

Our framework also exploits a Web crawling ap-
proach for automatic cloud services discovery, where
cloud services are automatically discovered on the In-
ternet and stored in a cloud services repository. Moreover,
our framework contains an Identity Management Service
(see Figure 1) which is responsible for the registration
where users register their credentials before using TMS
and proving the credibility of a particular consumer’s
feedback through ZKC2P.

3 ZERO-KNOWLEDGE CREDIBILITY PROOF
PROTOCOL (ZKC2P)
Since there is a strong relation between trust and iden-
tification as emphasized in [20], we propose to use
the Identity Management Service (IdM) helping TMS in
measuring the credibility of a consumer’s feedback.
However, processing the IdM information can breach
the privacy of users. One way to preserve privacy is
to use cryptographic encryption techniques. However,
there is no efficient way to process encrypted data [11].
Another way is to use anonymization techniques to
process the IdM information without breaching the pri-
vacy of users. Clearly, there is a trade-off between high
anonymity and utility. Full anonymization means better

privacy, while full utility results in no privacy pro-
tection (e.g., using a de-identification anonymization
technique can still leak sensitive information through
linking attacks [21]).

Thus, we propose a Zero-Knowledge Credibility Proof
Protocol (ZKC2P) to allow TMS to process IdM’s infor-
mation (i.e., credentials) using the Multi-Identity Recog-
nition factor (see details in Section 4.2). In other words,
TMS will prove the users’ feedback credibility without
knowing the users’ credentials. TMS processes cre-
dentials without including the sensitive information.
Instead, anonymized information is used via consistent
hashing (e.g., sha-256). The anonymization process cov-
ers all the credentials’ attributes except the Timestamps
attribute.

3.1 Identity Management Service (IdM)

Since trust and identification are closely related, as
highlighted by David and Jaquet in [20], we believe that
IdM can facilitate TMS in the detection of Sybil attacks
against cloud services without breaching the privacy of
users. When users attempt to use TMS for the first time,
TMS requires them to register their credentials at the
trust identity registry in IdM to establish their identities.
The trust identity registry stores an identity record rep-
resented by a tuple I = (C, Ca, Ti) for each user. C is the
user’s primary identity (e.g., user name). Ca represents
a set of credentials’ attributes (e.g., passwords, postal
address, and IP address) and Ti represents the user’s
registration time in TMS. More details on how IdM
facilitates TMS in the detection of Sybil attacks can be
found in Section 4.2.

3.2 Trust Management Service (TMS)

In a typical interaction of the reputation-based TMS, a
user either gives feedback regarding the trustworthi-
ness of a particular cloud service or requests the trust

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 4

assessment of the service1. From users’ feedback, the
trust behavior of a cloud service is actually a collection
of invocation history records, represented by a tuple H
= (C, S, F , Tf), where C is the user’s primary identity, S
is the cloud service’s identity, and F is a set of Quality
of Service (QoS) feedbacks (i.e., the feedback represent
several QoS parameters including availability, security,
response time, accessibility, price). Each trust feedback
in F is represented in numerical form with the range
of [0, 1], where 0, 1, and 0.5 means negative, positive,
and neutral feedback respectively. Tf is the timestamps
when the trust feedbacks are given. Whenever a user
c requests a trust assessment for cloud service s, TMS
calculates the trust result, denoted as Tr(s), from the
collected trust feedbacks as follows:

Tr(s) =
∑|V(s)|

c=1 F(c, s) ∗ Cr(c, s, t0, t)
|V(s)|

∗ (χ ∗ Ct(s, t0, t))
(1)

where V(s) denotes the trust feedbacks given to cloud
service s and |V(s)| represents the total number of
trust feedbacks. F(c, s) are trust feedbacks from the
cth user weighted by the credibility aggregated weights
Cr(c, s, t0, t) to allow TMS to dilute the influence of
those misleading feedbacks from attacks. F(c, s) is held
in the invocation history record h and updated in
the corresponding TMS. Ct(s, t0, t) is the rate of trust
result changes in a period of time that allows TMS to
adjust trust results for cloud services that have been
affected by malicious behaviors. χ is the normalized
weight factor for the rate of changes of trust results
which increase the adaptability of the model. More
details on how to calculate Cr(c, s, t0, t) and Ct(s, t0, t)
are described in Section 4.

3.3 Assumptions and Attack Models

In this paper, we assume that TMS is handled by a
trusted third party. We also assume that TMS commu-
nications are secure because securing communications
is not the focus of this paper. Attacks such as Man-in-
the-Middle (MITM) is therefore beyond the scope of this
work. We consider the following types of attacks:

• Collusion Attacks. Also known as collusive mali-
cious feedback behaviors, such attacks occur when
several vicious users collaborate together to give
numerous misleading feedbacks to increase the
trust result of cloud services (i.e., a self-promoting
attack [22]) or to decrease the trust result of cloud
services (i.e., a slandering attack [23]). This type of
malicious behavior can occur in a non-collusive way
where a particular malicious user gives multiple
misleading feedbacks to conduct a self-promoting
attack or a slandering attack.

• Sybil Attacks. Such an attack arises when ma-
licious users exploit multiple identities [13], [22]

1. We assume a transaction-based feedback where all feedbacks are
held in TMS

to give numerous misleading feedbacks (e.g., pro-
ducing a large number of transactions by creating
multiple virtual machines for a short period of
time to leave fake feedbacks) for a self-promoting
or slandering attack. It is interesting to note that
attackers can also use multiple identities to dis-
guise their negative historical trust records (i.e.,
whitewashing attacks [24]).

4 THE CREDIBILITY MODEL

Our proposed credibility model is designed for i) the
Feedback Collusion Detection including the feedback den-
sity and occasional feedback collusion, and ii) the Sybil
Attacks Detection including the multi-identity recogni-
tion and occasional Sybil attacks.

4.1 Feedback Collusion Detection
4.1.1 Feedback Density
Malicious users may give numerous fake feedbacks to
manipulate trust results for cloud services (i.e., Self-
promoting and Slandering attacks). Some researchers sug-
gest that the number of trusted feedbacks can help
users to overcome such manipulation where the num-
ber of trusted feedbacks gives the evaluator a hint
in determining the feedback credibility [25]. However,
the number of feedbacks is not enough in determining
the credibility of trust feedbacks. For instance, suppose
there are two different cloud services sx and sy and
the aggregated trust feedbacks of both cloud services
are high (i.e., sx has 89% positive feedbacks from 150
feedbacks, sy has 92% positive feedbacks from 150 feed-
backs). Intuitively, users should proceed with the cloud
service that has the higher aggregated trust feedbacks
(e.g., sy in our case). However, a Self-promoting attack
might have been performed on cloud service sy , which
means sx should have been selected instead.

To overcome this problem, we introduce the con-
cept of feedback density to support the determination
of credible trust feedbacks. Specifically, we consider
the total number of users who give trust feedbacks
to a particular cloud service as the feedback mass, the
total number of trust feedbacks given to the cloud
service as the feedback volume. The feedback volume is
influenced by the feedback volume collusion factor which
is controlled by a specified volume collusion threshold.
This factor regulates the multiple trust feedbacks extent
that could collude the overall trusted feedback volume.
For instance, if the volume collusion threshold is set
to 15 feedbacks, any user c who gives more than 15
feedbacks is considered to be suspicious of involving in
a feedback volume collusion. The feedback density of
a certain cloud service s, D(s), is calculated as follows:

D(s) =
M(s)

|V(s)| ∗ L(s)
(2)

where M(s) denotes the total number of users who give
feedback to cloud service s (i.e., the feedback mass).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 5

�
���� ���� ��������� ����� �����

Fig. 2. Occasional Attacks Detection

|V(s)| represents the total number of feedbacks given
to cloud service s (i.e., the feedback volume). L(s)
represents the feedback volume collusion factor, calculated
as follows:

L(s) = 1 +

 ∑
h∈V(s)

|Vc(c,s)|∑
c=1

∑
|Vc(c,s)|>ev(s)

|Vc(c, s)|
|V(s)|

(3)

This factor is calculated as the ratio of the number of
feedback given by users |Vc(c, s)| who give feedbacks
more than the specified volume collusion threshold
ev(s) over the total number of trust feedbacks received
by the cloud service |V(s)|. The idea is to reduce the
value of the multiple feedbacks which are given from
the same user.

For instance, consider the two cloud services in the
previous example, sx and sy where sx has 89% and
sy has 92% positive feedbacks, from 150 feedbacks.
Assume that the Feedback Mass of sx is higher than sy
(e.g., M(x) = 20 and M(y) = 5) and the total number
of trust feedbacks of the two services is |Vc(c, x)| = 60
and |Vc(c, y)| = 136 feedbacks respectively. We further
assume that the volume collusion threshold ev is set
to 10 feedbacks. According to Equation 2, the Feedback
Density of sx is higher than sy (i.e., D(x) = 0.0953 and
D(y) = 0.0175). In other words, the higher the Feedback
Density, the more credible are the aggregated feedbacks.

4.1.2 Occasional Feedback Collusion

Since collusion attacks against cloud services occur spo-
radically [14], we consider time as an important factor
in detecting occasional and periodic collusion attacks
(i.e., periodicity). In other words, we consider the total
number of trust feedbacks |V(s)| given to cloud service
s during a period of time [t0, t]. A sudden change in
the feedback behavior indicates likely an occasional
feedback collusion because the change of the number
of trust feedbacks given to a cloud service happen
abruptly in a short period of time.

To detect such behavior, we measure the percentage
of occasional change in the total number of feedbacks
among the whole feedback behavior (i.e., users’ behav-
ior in giving feedbacks for a certain cloud service). The
occasional feedback collusion factor Of (s, t0, t) of cloud
service s in a period of time [t0, t], is calculated as

follows:

Of (s,t0, t) = 1−

(∫ t

t0
|V(s, t)| dt

)
−
(∫ t

t0
∆f (s, t)dt

)
∫ t

t0
|V(s, t)| dt

where∆f (s, t) =

Cµ (|V(s, t)|) if |V(s, t)| ≥

Cµ (|V(s, t)|)
|V(s, t)| otherwise

(4)

where the first part of the numerator represents the
whole area under the curve which represents the feed-
back behavior for the cloud service s (i.e., a

∪
a′, b

∪
b′

and c
∪

c′ in Figure 2). The second part of the numerator
represents the intersection between the area under the
curve and the area under the cumulative mean of the to-
tal number of trust feedbacks (i.e., the area a′

∪
b′
∪
c′ in

Figure 2). Cµ (|V(s, t)|) represents the mean of all points
in the total number of trust feedbacks and up to the
last element because the mean is dynamic and changes
from time to time. The denominator represents the
whole area under the curve. As a result, the occasional
collusion attacks detection is based on measuring the
occasional change in the total number of trust feedbacks
in a period of time. The higher the occasional change
in the total number of trust feedbacks, the more likely
that the cloud service has been affected by an occasional
collusion attack.

4.2 Sybil Attacks Detection

4.2.1 Multi-Identity Recognition
Since users have to register their credentials at the
Trust Identity Registry, we believe that Multi-Identity
Recognition is applicable by comparing the values of
users’ credential attributes from the identity records I.
The main goal of this factor is to protect cloud services
from malicious users who use multiple identities (i.e.,
Sybil attacks) to manipulate the trust results. In a typical
Trust Identity Registry, the entire identity records I are
represented as a list of m users’ primary identities
Cp = {p1, p2, ..., pm} (e.g., user name) and a list of n cre-
dentials’ attributes Ca = {a1, a2, ..., an} (e.g., passwords,
postal address, IP address, computer name). In other
words, the entire Cp×Ca (Consumer’s Primary Identity-
Credentials’ Attributes) Matrix, denoted as IM , covers
all users who registered their credentials in TMS. The
credential attribute value for a particular consumer vc,t
is stored in TMS without including credentials with
sensitive information using the ZKC2P (see Section 3).

We argue that TMS can identify patterns in users’
anonymous credentials. Malicious users can use similar
credentials in different identity records I. Thus, we
translate IM to the Multi-Identity Recognition Matrix,
denoted as MIRM , which similarly covers the entire
identity records I represented as the entire Cp × Ca
matrix. However, the value for a particular consumer
qc,t in the new matrix represents the frequency of the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 6

credential attribute value for the same particular con-
sumer vc,t in the same credential attribute (i.e., attribute
at). The frequency of a particular credential attribute
value vc,t, denoted as qc,t, is calculated as the number of
times of appearance (denoted as Ap) that the credential
value appears in the tth credential attribute normalized
by the total number of identity records (i.e., the length
of at) as follows:

qc,t =

∑c=m
c=1 (Ap(vc,t))

|at|
(5)

Then, the Multi-Identity Recognition factor Mid is cal-
culated as the sum of frequencies of each credential
attribute value for a particular consumer normalized
by the total number of identity record as follows:

Mid(c) = 1−

(
t=n∑
t=1

qc,t

)
(6)

where the sum of qc,t represents the similar credentials
distributed over different identity records I and Mid(c)
represents the opposite (i.e., at least that the consumer
has fairly unique credentials).

4.2.2 Occasional Sybil Attacks
Malicious users may manipulate trust results to disad-
vantage particular cloud services by creating multiple
accounts and giving misleading feedbacks in a short
period of time (i.e., Sybil attacks). To overcome the
occasional Sybil attacks, we consider the total number
of established identities |I(s)| for users who give feed-
backs to cloud service s during a period of time [t0, t].
The sudden changes in the total number of established
identities indicates a possible occasional Sybil attack.
To detect such behavior, we measure the percentage of
occasional change in the total number of established
identities among the whole identity behavior (i.e., all
established identities for users who gave feedback to a
particular cloud service). Similarly, the occasional Sybil
attacks factor Oi(s, t0, t) of cloud service s in a period
of time [t0, t], is calculated as follows:

Oi(s,t0, t) = 1−

(∫ t

t0
|I(s, t)|dt

)
−
(∫ t

t0
∆i(s, t)dt

)
∫ t

t0
|I(s, t)| dt

where∆i(s, t) =

Cµ (|I(s, t)|) if |I(s, t)| ≥

Cµ (|I(s, t)|)
|I(s, t)| otherwise

(7)

4.3 Feedback Credibility
Based on the proposed credibility metrics, TMS dilutes
the influence of those misleading feedbacks by assign-
ing the credibility aggregated weights Cr(c, s, t0, t) to
each trust feedback as shown in Equation 1. Cr(c, s, t0, t)
is calculated as follows:

Cr(c, s, t0, t) =
1

λ
∗ (ρ ∗ D(s) + ϕ ∗ Of (s, t0, t)+

Ω ∗Mid(c) + ι ∗ Oi(s, t0, t))
(8)

where ρ and D(s) denote the Feedback Density factor’s
normalized weight and the factor’s value respectively.
ϕ and Of (s, t0, t) denote the parameter of the occasional
feedback collusion factor and the factor’s value respec-
tively. Ω denotes the Multi-identity Recognition normal-
ized weight and Mid(c) denotes the factor’s value. ι
denotes the occasional Sybil attacks’ normalized weight
and Oi(s, t0, t) denotes the factor’s value. λ represents
the number of factors used to calculate Cr(c, s, t0, t). If
only feedback density is considered, λ will be 1. If all
credibility factors are considered, λ will be 4. All the
metrics of the credibility model complement each other
in detecting malicious behaviors and their influence can
be adjusted using the above mentioned parameters.

4.4 Change Rate of Trust Results
To allow TMS to adjust trust results for cloud services
that have been affected by malicious behaviors, we
introduce an additional factor called the change rate of
trust results. The idea behind this factor is to compensate
the affected cloud services by the same percentage of
damage in the trust results. Given Con(s, t0) the conven-
tional model (i.e., calculating the trust results without
considering the proposed approach) for cloud service s
in a previous time instance, Con(s, t) the conventional
model for the same cloud service calculated in a more
recent time instance, the credibility aggregated weights
Cr(c, s, t0, t), and et(s) the attacks percentage threshold.
The change rate of trust results factor Ct(s, t0, t) is
calculated as follows:

Ct(s, t0, t) =

Con(s,t0)
Con(s,t) + 1 if Con(s, t) < Con(s, t0)

and

1− Cr(c, s, t0, t) ≥ et(s)

0 otherwise
(9)

where Con(s,t0)
Con(s,t) represents the change rate of trust re-

sults for cloud service s during a period of time [t0, t].
The idea behind adding 1 to this ratio is to increase
the trust result for the affected cloud services. The
change rate of trust results will only be used if the
conventional model in the more recent time instance
is less than the conventional model in the previous
time instance and the attacks percentage during the
same period of time [t0, t] (i.e., 1 − Cr(c, s, t0, t)) is
larger or equal to the attacks percentage threshold. For
instance, if the conventional model in the current time
for cloud service a is less than the conventional model
10 days ago, a will not be rewarded because the attacks
percentage is less than the attacks percentage threshold
(e.g., 1− Cr(c, a, t0, t) = 20% and et(a) = 30%).

The change rate of trust results is designed to limit
the rewards to cloud services that are affected by slan-
dering attacks (i.e., cloud services that have decreased
trust results) because TMS can dilute the increased trust
results from self-promoting attacks using the credibility

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 7

factors (i.e., Cr(c, a, t0, t)). The adaptive change rate
of trust results factor can be used to assign different
weights using χ the normalized weight factor as shown
in Equation 1.

5 THE AVAILABILITY MODEL

Guaranteeing the availability of the Trust Management
Service (TMS) is a significant challenge due to the
unpredictable number of invocation requests that TMS
has to handle at a time, as well as the dynamic nature
of the cloud environments. In CloudArmor, we propose
an availability model, which considers several factors
including the operational power to allow TMS nodes
to share the workload and replication determination to
minimize the failure of a node hosting TMS instance.
These factors are used to spread several distributed
TMS nodes to manage trust feedbacks given by users
in a decentralized way.

5.1 Operational Power

In our approach, we propose to spread TMS nodes
over various clouds and dynamically direct requests to
the appropriate TMS node (e.g., with lower workload),
so that its desired availability level can be always
maintained. It is crucial to develop a mechanism that
helps determine the optimal number of TMS nodes
because more nodes residing at various clouds means
higher overhead (e.g., cost and resource consumption
such as bandwidth and storage space) while lower
number of nodes means less availability. To exploit the
load balancing technique, we propose that each node
hosting a TMS instance reports its operational power.
The operational power factor compares the workload
for a particular TMS node with the average workload
of all TMS nodes. The operational power for a particular
TMS node, Op(stms), is calculated as the mean of the
Euclidean distance (i.e., to measure the distance between
a particular TMS node workload and the mean of the
workload of all TMS nodes) and the TMS node work-
load (i.e., the percentage of trust feedbacks handled by
this node) as follows:

Op(stms) =
1

2
∗

√(V(stms)

V(alltms)
− V(meantms)

V(alltms)

)2

+

V(stms)

V(alltms)

)
(10)

where the first part of the equation represents the Eu-
clidean distance between the workload of node stms and
the average workload of all nodes where V(meantms)
denotes the mean of feedbacks handled by all nodes.
The second part of the equation represents the ratio of
feedbacks handled by a particular node V(stms) over
the total number of feedbacks handled by all nodes
V(alltms).

Based on the operational power factor, TMS uses the
workload threshold ew(stms) to automatically adjust
the number of nodes Ntms that host TMS instances by
creating extra instances to maintain a desired workload
for each TMS node. The number of nodes Ntms is
adjusted as follows:

Ntms =

Ntms + 1 if Op(stms) ≥ ew(stms)

or Ntms < 1

Ntms otherwise

(11)

5.2 Replication Determination
In CloudArmor, we propose to exploit replication tech-
niques to minimize the possibility of the crashing of a
node hosting a TMS instance (e.g., overload) to ensure
that users can give trust feedbacks or request a trust
assessment for cloud services. Replication allows TMS
instance to recover any lost data during the down time
from its replica. In particular, we propose a particle
filtering approach to precisely predict the availability
of each node hosting a TMS instance which then will
be used to determine the optimal number of the TMS
instance’s replicas. To predict the availability of each
node, we model the TMS instance as an instantaneous
(or point) availability.

To predict the availability of each node, TMS in-
stance’s availability is modeled using the point avail-
ability model [26], then the particle filtering technique
is used to estimate the availability. The point availability
probability is denoted as:

A(stms, t) = 1− F (t) +

∫ t

0

m(x)(1− F (t− x))dx (12)

where 1 − F (t) denotes the probability of no failure
in (0, t], m(x)dx denotes the probability that any re-
newal points in interval (x, x + dx], and 1 − F (t − x)
represents the probability that no further failure occurs
in (x, t]. This availability function is a function of the
time parameter and can be estimated for different time
points. In our work, the failure free density follows
the exponential distribution and the renewal density
function follows the exponential distribution in time
domain, f(t) = λe−λt, and m(t) = µe−µt. It is not
easy to observe the pattern of A(stms, t). We therefore
conduct the Laplace transform of Equation 12 as below:

A(stms, s) =
1− f(s)

s(1− f(s)m(s))
=

s+ µ

s(s+ µ+ λ)
(13)

where f(s) and m(s) are the Laplace transforms of the
failure-free and renewal density functions. Equation 13
in time domain can be obtained using:

A(stms, t) = 1− λ

µ
(1− e−µt) (14)

For more technicial details, interested readers can refer
to [26].

To this point, we can model the TMS instance’s
availability prediction problem via defining the state

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 8

function and measurement function respectively by
using:

z(t+ 1) = A(stms, t) + ϵz

y(t+ 1) = z(t+ 1) + ϵy

where ϵz ∼N (0, σ2
z), ϵy ∼ N (0, σ2

y)

(15)

We use the particle filtering technique to estimate and
track the availability. A particle filter is a probabilistic
approximation algorithm implementing a Bayes filter
and a sequential Monte Carlo method. It maintains a
probability distribution for the estimated availability at
time t, representing the belief of the TMS instance’s
availability at that time.

We initialize a uniformly distributed sample set rep-
resenting TMS instance’s availability state. We assign
each sample a same weight w. When the availability
changes, the particle filter will calculate next availability
by adjusting and normalizing each sample’s weight.
These samples’ weights are proportional to the obser-
vation likelihood p(y|z). The particle filters randomly
draw samples from the current sample set whose prob-
ability can be given by the weights. Then we can
apply the particle filters to estimate the possible next
availability state for each new particle. The prediction
and update steps will keep going until convergence.

We calculate the weight distribution by considering
the bias resulted from the routing information between
users and TMS instances (e.g., routing-hops between
the user and the instances or whether user and TMS
instances are in the same IP address segment). The Se-
quential Importance Sampling (SIS) algorithm consists
of recursive propagation of the weights and support
points as each measurement is received sequentially.
To tackle the degeneracy problem, we adopt a more
advanced algorithm with resampling [27]. It has less
time complexity and minimizes the Monte-Carlo vari-
ation. The overall particle filtering based estimation
methodology is summarized in Algorithm 1.

Based on the predicted availability of the TMS in-
stance A(stms, t), the availability threshold denoted as
ea that ranges from 0 to 1 and the total number of stms

replicas denoted r are calculated. The desired goal of
the replication is to ensure that at least one replica is
available, represented in the following formula:

ea(stms) < A(stms, t)
r(stms) (16)

where A(stms, t)
r(stms) represents the probability of at

least one TMS instance’s replica is available. As a result,
the optimal number of TMS instance’s replicas can be
calculated as follows:

r(stms) > logA(stms,t)(ea(stms)) (17)

5.3 Trust Result Caching
Due to the fact that several credibility factors are consid-
ered in CloudArmor when computing the trust result
for a particular cloud service, it would be odd if the

Algorithm 1 Particle Filtering based Algorithm
1. Initialization: compute the weight distribution Dw(A(stms)) ac-
cording to prior knowledge on replicas, e.g., the IP address of server
hosting replicas etc.
2. Generation: generate the particle set and assign the particle set
containing N particles

• generate initial particle set P0 which has N particles, P0 =
(p0,0, p0,1, ...p0,N−1) and distribute them in a uniform distribu-
tion in the initial stage. Particle p0,k = (A(stms)0,k, weight0,k)

• assign weight to the particles according to our weight distribu-
tion Dw(A(stms)).

3. Resampling:
• Resample N particles from the particle set from a particle set

Pt using weights of each particles.
• generate new particle set Pt+1 and assign weight according to

Dw(A(stms))

4. Estimation: predict new availability of the particle set Pt based on
availability function A(stms, t).
5. Update:

• recalculate the weight of Pt based on measurement m, wt,k=∏
(Dw(A(stms)t,k))(

1
√
2πσy

)exp(−
δA(stms)2t,k

2σ2
y

), where

δA(stms)k = mA(stms)−A(stms)t,k
• calculate current availability by mean value of pt(A(stms)t)

6. Go to step 3 and iteration until convergence

TMS instance retrieves all trust feedbacks given to a
particular cloud service and computes the trust result
every time it receives a trust assessment request from
a user. Instead we propose to cache the trust results
and the credibility weights based on the number of
new trust feedbacks to avoid unnecessary trust result
computations. The caching process is controlled by
two thresholds: one for users eCache(c) and one for
cloud services eCache(s). If the TMS instance receives a
trust assessment request from a user, it should use the
trust result in the cache as much as possible, instead
of computing the trust result from scratch. The TMS
instance updates the cache based on the number of new
trust feedbacks (i.e., since the last update) given by a
particular consumer |Vc(c, s)|Cache and the number of
new trust feedbacks given to a particular cloud service
|V(s)|Cache. The caching process is briefly shown in
Algorithm 2.

5.4 Instances Management

In CloudArmor, we propose that one TMS instance
acts as the main instance while the rest instances act as
normal instances. The main instance is responsible for the
optimal number of nodes estimation, feedbacks reallo-
cation, trust result caching (consumer side), availability
of each node prediction, and TMS instance replication.
Normal instances are responsible for trust assessment
and feedback storage, the trust result caching (cloud
service side), and frequency table update. Algorithm 3
shows the brief process on how TMS instances are
managed.

Unlike previous work such as [8] where all invocation
history records for a certain client is mapped to a
particular TMS instance (e.g., all feedback given to a

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 9

Algorithm 2 Trust Results & Credibility Weights
Caching Algorithm
Input: s, Output: T r(s)

Count |Vc(c, s)|Cache /*TMS instance counts the total number of new
trust feedbacks given by a particular consumer*/
if |Vc(c, s)|Cache ≥ eCache(c) then /*TMS determines whether a re-
calculation is required for credibility factors related to the consumer*/

Compute J (c); Compute B(c)
Compute Mid(c); Compute Cr(c, s)

end if
Count |V(s)|Cache /*TMS instance counts the total number of new
trust feedbacks given to a particular cloud service*/
if |V(s)|Cache ≥ eCache(s) then /*TMS determines whether a
recalculation is required for credibility factors related to the cloud
service including the trust result*/

Compute D(s); Compute Cr(c, s)
Compute T r(s)

end if

Algorithm 3 Instances Management Algorithm
1. Initialization: tmsid(0) computes Op(stms) for all trust manage-
ment service nodes if any
2. Generation: tmsid(0) estimates Ntms and generates additional
trust management service nodes if required
3. Prediction: tmsid(0) predicts new availability of all trust manage-
ment service nodes A(stms, t) using Algorithm 1
4. Replication: tmsid(0) determines r(stms), and generate replicas
for each trust management service node
5. Caching: tmsid(0) starts caching trust results (consumer side)
and tmsid(s) start caching trust results (cloud service side) using
Algorithm 2
6. Update: All tmsid(s) update the frequency table
7. Check Workload 1: tmsid(0) checks whether ew(stms) is triggered
by any tmsid(s) before reallocation
if Op(stms) ≥ ew(stms) and V(stms) ≥ V(meantms) then

go to next step
else

go to step 3
end if
8. Reallocation:

• tmsid(0) asks tmsid(s) which triggered ew(stms) to reallocate
all trust feedbacks of the cloud service that has the lowest |V(s)|
to another tmsid(s) that has the lowest V(stms)

• perform step 6

9. Check Workload 2: tmsid(0) computes Op(stms) for all trust
management service nodes and checks whether ew(stms) is triggered
for any tmsid(s) after reallocation
if Op(stms) ≥ ew(stms) and V(stms) ≥ V(meantms) then

go to step 2
else

go to step 3
end if

certain cloud service in our case), in our approach,
each TMS instance is responsible for feedbacks given
to a set of cloud services and updates the frequency
table. The frequency table shows which TMS instance
is responsible for which cloud service and how many
feedbacks it has handled. Example 1 illustrates how
feedbacks can be reallocated from one TMS instance to a
different instance. In this example, there are three TMS
instances and the workload threshold ew(stms) is set

Example 1: Reallocation (ew(stms) = 50%)

Frequency Table Before Reallocation (Step 1)
(tmsid(1), |V(1)|: 200, |V(2)|: 150, |V(3)|: 195)
(tmsid(2), |V(4)|: 30, |V(5)|: 20, |V(6)|: 45)
(tmsid(3), |V(7)|: 90, |V(8)|: 35, |V(9)|: 95)

Check Workload (Step 2)
(tmsid(1), Op(1tms): 0.617)
(tmsid(2), Op(2tms): 0.278)
(tmsid(3), Op(3tms): 0.205)

Frequency Table After Reallocation (Step 3)
(tmsid(1), |V(1)|: 200, |V(3)|: 195)
(tmsid(2), |V(2)|: 150, |V(4)|: 30, |V(5)|: 20, |V(6)|: 45)
(tmsid(3), |V(7)|: 90, |V(8)|: 35, |V(9)|: 95)

to 50%. TMS instance tmsid(1) triggers the threshold,
therefore according to Algorithm 3, the trust feedbacks
for the cloud service (2) are reallocated to tmsid(2),
which has the lowest feedbacks.

6 IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

In this section, we report the implementation and ex-
perimental results in validating the proposed approach.
Our implementation and experiments were developed
to validate and study the performance of both the
credibility model and the availability model.

6.1 System Implementation
The trust management service’s implementation is part
of our large research project, named CloudArmor2,
which offers a platform for reputation-based trust man-
agement of cloud services [28], [29], [30], [9]. The plat-
form provides an environment where users can give
feedback and request trust assessment for a particular
cloud service. Specifically, the trust management service
(TMS) consists of two main components: the Trust Data
Provisioning and the Trust Assessment Function.

The Trust Data Provisioning. This component is responsi-
ble for collecting cloud services and trust information.
We developed the Cloud Services Crawler module based
on the Open Source Web Crawler for Java (crawler4j3)
and extended it to allow the platform to automatically
discover cloud services on the Internet. We imple-
mented a set of functionalities to simplify the crawling
process and made the crawled data more comprehen-
sive (e.g., addSeeds(), selectCrawlingDomain(),
addCrawlingTime()). In addition, we developed the
Trust Feedbacks Collector module to collect feedbacks
directly from users in the form of history records and
stored them in the Trust Feedbacks Database. Indeed,
users typically have to establish their identities for the
first time they attempt to use the platform through
registering their credentials at the Identity Management
Service (IdM) which stores the credentials in the Trust

2. http://cs.adelaide.edu.au/∼cloudarmor
3. http://code.google.com/p/crawler4j/

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 10

Identity Registry. Moreover, we developed the Identity
Info Collector module to collect the total number of
established identities among the whole identity behav-
ior (i.e., all established identities for users who gave
feedbacks to a particular cloud service).

The Trust Assessment Function. This function is respon-
sible for handling trust assessment requests from users
where the trustworthiness of cloud services are com-
pared and the factors of trust feedbacks are calculated
(i.e., the credibility factors). We developed the Factors
Calculator for attacks detection based on a set of fac-
tors (more details on how the credibility factors are
calculated can be found in Section 4). Moreover, we
developed the Trust Assessor to compare the trust-
worthiness of cloud services through requesting the
aggregated factors weights from the Factors Calculator
to weigh feedbacks and then calculate the mean of all
feedbacks given to each cloud service. The trust results
for each cloud service and the factors’ weights for trust
feedbacks are stored in the Trust Results and Factors
Weights Storage.

6.2 Experimental Evaluation
We particularly focused on validating and studying the
robustness of the proposed credibility model against
different malicious behaviors, namely collusion and
Sybil attacks under several behaviors, as well as the
performance of our availability model.

6.3 Credibility Model Experiments
We tested our credibility model using real-
world trust feedbacks on cloud services. In
particular, we crawled several review websites
such as cloud-computing.findthebest.com,
cloudstorageprovidersreviews.com, and
CloudHostingReviewer.com, and where users
give their feedbacks on cloud services that they have
used. The collected data is represented in a tuple H
where the feedback represents several QoS parameters
as mentioned earlier in Section 3.2 and augmented with
a set of credentials for each corresponding consumer.
We managed to collect 10,076 feedbacks given by 6,982
users to 113 real-world cloud services. The collected
dataset has been released to the research community
via the project website.

For experimental purposes, the collected data was
divided into six groups of cloud services, three of which
were used to validate the credibility model against
collusion attacks, and the other three groups were used
to validate the model against Sybil attacks where each
group consists of 100 users. Each cloud service group
was used to represent a different attacking behavior
model, namely: Waves, Uniform and Peaks as shown
in Figure 3. The behavior models represent the total
number of malicious feedbacks introduced in a partic-
ular time instance (e.g., |V(s)| = 60 malicious feedbacks

������
�������

� �� �� �� �� ���
(a) Waves

������
�������

� �� �� �� �� ���
(b) Uniform

������
�������

� �� �� �� �� ���
(c) Peaks

Fig. 3. Attacking Behavior Models

when Tf = 40, Figure 3(a)) when experimenting against
collusion attacks. The behavior models also represent
the total number of identities established by attackers
in a period of time (e.g., |I(s)| = 78 malicious identities
when Ti = 20, Figure 3(c)) where one malicious feed-
back is introduced per identity when experimenting
against Sybil attacks. In collusion attacks, we simu-
lated malicious feedback to increase trust results of
cloud services (i.e., self-promoting attack) while in Sybil
attacks we simulated malicious feedback to decrease
trust results (i.e., slandering attack). To evaluate the
robustness of our credibility model with respect to
malicious behaviors (i.e., collusion and Sybil attacks),
we used two experimental settings: I) measuring the
robustness of the credibility model with a conventional
model Con(s, t0, t) (i.e., turning Cr(c, s, t0, t) to 1 for all
trust feedbacks), and II) measuring the performance of
our model using two measures namely precision (i.e.,
how well TMS did in detecting attacks) and recall (i.e.,
how many detected attacks are actual attacks). In our
experiments, TMS started rewarding cloud services that
had been affected by malicious behaviors when the
attacks percentage reached 25% (i.e., et(s) = 25%), so
the rewarding process would occur only when there
was a significant damage in the trust result.

We conducted 12 experiments where six of which
were conducted to evaluate the robustness of our cred-
ibility model against collusion attacks and the rest for
Sybil attacks. Each experiment is denoted by a letter
from A to F, as shown in Table 1.

TABLE 1
Behavior Experimental Design

Malicious
Behaviors

Experimental
Setting

Waves Uniform Peaks

Collusion I A B C

Attacks II A′ B′ C′

Sybil I D E F

Attacks II D′ E′ F ′

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 11

A A′

B B′

C C ′

Conventional Credibility Model

Legend
Precision Recall

Fig. 4. Robustness Against Collusion Attacks

6.3.1 Robustness Against Collusion Attacks

For the collusion attacks, we simulated malicious users
to increase trust results of cloud services (i.e., self-
promoting attack) by giving feedback with the range
of [0.8, 1.0]. Figure 4 depicts the analysis of six experi-
ments which were conducted to evaluate the robustness
of our model with respect to collusion attacks. In Fig-
ure 4, A, B, and C show the trust result for experimental
setting I , while A′, B′, and C ′ depict the results for
experimental setting II .

We note that the closer to 100 the time instance is,
the higher the trust results are when when the trust is
calculated using the conventional model. This happens
because malicious users are giving misleading feedback
to increase the trust result for the cloud service. On
the other hand, the trust results show nearly no change
when calculated using the proposed credibility model
(Figure 4 A, B and C). This demonstrates that our
credibility model is sensitive to collusion attacks and is
able to detect such malicious behaviors. In addition, we
can make an interesting observation that our credibility
model gives the best results in precision when the
Uniform behavior model is used (i.e., 0.51, see Figure 4
B′), while the highest recall score is recorded when
the Waves behavior model is used (i.e., merely 0.9, see
Figure 4 A′). Overall, recall scores are fairly high when
all behavior models are used which indicate that most
of the detected attacks are actual attacks. This means
that our model can successfully detect collusion attacks
(i.e., whether the attack is strategic such as in Waves

D D′

E E′

F F ′

Conventional Credibility Model

Legend
Precision Recall

Fig. 5. Robustness Against Sybil Attacks

and Uniform behavior models or occasional such as in
the Peaks behavior model) and TMS is able to dilute
the increased trust results from self-promoting attacks
using the proposed credibility factors.

6.3.2 Robustness Against Sybil Attacks
For the Sybil attacks experiments, we simulated mali-
cious users to decrease trust results of cloud services
(i.e., slandering attack) by establishing multiple identi-
ties and giving one malicious feedback with the range
of [0, 0.2] per identity. Figure 5 depicts the analysis of
six experiments which were conducted to evaluate the
robustness of our model with respect to Sybil attacks.
In Figure 5, D, E, and F show the trust results for
experimental setting I , while D′, E′, and F ′ depict the
results for experimental setting II .

From Figure 5, we can observe that trust results
obtained by using the conventional model decrease
when the time instance becomes closer to 100. This is
because of malicious users who are giving misleading
feedback to decrease the trust result for the cloud
service. On the other hand, trust results obtained by
using our proposed credibility model are higher than
the ones obtained by using the conventional model
(Figure 5 D, E and F). This is because the cloud
service was rewarded when the attacks occurred. We
also can see some sharp drops in trust results obtained
by considering our credibility model where the highest
number of drops is recorded when the Peaks behavior
model is used (i.e., we can see 5 drops in Figure 5 F

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 12

(a) Actual Availability VS. Esti-
mated Availability

(b) Trust Results Caching Error
Rate

Fig. 6. Availability Prediction and Caching Accuracy

which actually matches the drops in the Peaks behavior
model in Figure 3(c)). This happens because TMS will
only reward the affected cloud services if the percentage
of attacks during the same period of time has reached
the threshold (i.e., which is set to 25% in this case).
This means that TMS has rewarded the affected cloud
service using the change rate of trust results factor.
Moreover, from Figure 5 D′, E′ and F ′, we can see that
our credibility model gives the best results in precision
when the Waves behavior model is used (i.e., 0.47, see
Figure 4 D′), while the highest recall score is recorded
when the Uniform behavior model is used (i.e., 0.75,
see Figure 4 A′). This indicates that our model can
successfully detect Sybil attacks (i.e., either strategic
attacks such as in Waves and Uniform behavior models
or occasional attacks such as in the Peaks behavior
model) and TMS is able to reward the affected cloud
service using the change rate of trust results factor.

6.4 Availability Model Experiments
We tested our availability model using the same dataset
we collected to validate the credibility model. How-
ever, for the availability experiments, we focused on
validating the availability prediction accuracy, trust
results caching accuracy, and reallocation performance
of the availability model (i.e., to validate the three
proposed algorithms including Particle Filtering based
Algorithm, Trust Results & Credibility Weights Caching
Algorithm, and Instances Management Algorithm).

6.4.1 Availability Prediction Accuracy
To measure the prediction accuracy of the availability
model, we simulated 500 nodes hosting TMS instances
and set the failure probability for the nodes as 3.5
percent, which complies with the findings in [31]. The
motivation of this experiment is to study the estimation
accuracy of our approach. We simulated TMS nodes’
availability fluctuation and tracked their fluctuation of
availability for 100 time steps (each time step counted as
an epoch). The actual availability of TMS nodes and cor-
responding estimated availability using our particle fil-
ter approach were collected and compared. Figure 6(a)
shows the result of one particular TMS node. From the
figure, we can see that the estimated availability is very
close to the actual availability of the TMS node. This
means that our approach works well in tracing and
predicting the availability of TMS nodes.

(a) Number of TMS Nodes VS.
Feedbacks

(b) Number of TMS Nodes VS.
Workload Threshold

Fig. 7. Reallocation Performance

6.4.2 Trust Results Caching Accuracy
To measure thecaching accuracy of the availability
model, we varied the caching threshold to identify
the optimal number of new trust feedbacks that TMS
received to recalculate the trust result for a particular
cloud service without having a significant error in the
trust results. The trust result caching accuracy is mea-
sured by estimating the root-mean-square error (RMSE)
(denoted caching error) of the estimated trust result and
the actual trust result of a particular cloud service. The
lower the RMSE value means the higher accuracy in the
trust result caching. Figure 6(b) shows the trust result
caching accuracy of one particular cloud service. From
the figure, we can see that the caching error increases
almost linearly when the caching threshold increases.
The results allow us to choose the optimal caching
threshold based on an acceptable caching error rate.
For example, if 10% is an acceptable error margin, the
caching threshold can be set to 50 feedbacks. It is worth
mentioning that the caching error was measured on real
users’ feedbacks on real-world cloud services.

6.4.3 Reallocation Performance
To validate the reallocation performance of the avail-
ability model, we used two experimental settings: I)
comparing the number of TMS nodes when using the
reallocation of trust feedbacks and without reallocation
while increasing the number of feedbacks (i.e., when the
workload threshold ew(stms) = 25%); II) comparing the
number of TMS nodes when using the reallocation of
trust feedbacks and without reallocation while varying
ew(stms). The lower the number of TMS nodes, the more
cost efficient TMS is. Figure 7(a) shows the results of
experimental settings I. We can observe that the total
number of TMS nodes when using the reallocation of
trust feedbacks technique is fairly low and more stable
than the total number of TMS nodes when realloca-
tion is not used (i.e., even when the total number of
feedbacks is high). Figure 7(b) shows the results of
experimental settings II. From the figure, we can see
that the higher the workload threshold the lower the
number of TMS nodes. However, the number of TMS
nodes when using the reallocation of trust feedbacks
technique is lower than the number of TMS nodes when
reallocation is not considered. This means that our
approach has advantages in minimizing the bandwidth
cost by reducing the total number of TMS nodes.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 13

7 RELATED WORK

Over the past few years, trust management has been
one of the hot topics especially in the area of cloud com-
puting [32], [14], [10]. Some of the research efforts use
policy-based trust management techniques. For exam-
ple, Ko et al. [33] propose TrustCloud framework for ac-
countability and trust in cloud computing. In particular,
TrustCloud consists of five layers including workflow,
data, system, policies and laws, and regulations layers
to address accountability in the cloud environment
from all aspects. All of these layers maintain the cloud
accountability life cycle which consists of seven phases
including policy planning, sense and trace, logging,
safe-keeping of logs, reporting and replaying, auditing,
and optimizing and rectifying. Brandic et al. [7] pro-
pose a novel approach for compliance management in
cloud environments to establish trust between different
parties. The approach is developed using a centralized
architecture and uses compliant management technique
to establish trust between cloud service users and
cloud service providers. Unlike previous works that use
policy-based trust management techniques, we assess
the trustworthiness of a cloud service using reputation-
based trust management techniques. Reputation rep-
resents a high influence that cloud service users have
over the trust management system [34], especially that
the opinions of the various cloud service users can
dramatically influence the reputation of a cloud service
either positively or negatively.

Some research efforts also consider the reputation-
based trust management techniques. For instance,
Habib et al. [6] propose a multi-faceted Trust Man-
agement (TM) system architecture for cloud computing
to help the cloud service users to identify trustworthy
cloud service providers. In particular, the architecture
models uncertainty of trust information collected from
multiple sources using a set of Quality of Service (QoS)
attributes such as security, latency, availability, and cus-
tomer support. The architecture combines two differ-
ent trust management techniques including reputation
and recommendation where operators (e.g., AND, OR,
NOT, FUSION, CONSENSUS, and DISCOUNTING) are
used. Hwang et al. [4] propose a security aware cloud
architecture that assesses the trust for both cloud ser-
vice providers and cloud service users. To assess the
trustworthiness of cloud service providers, the authors
propose the trust negotiation approach and the data
coloring (integration) using fuzzy logic techniques. To
assess the trustworthiness of cloud service users, they
develop the Distributed-Hash-Table (DHT)-based trust-
overlay networks among several data centers to deploy
a reputation-based trust management technique. Unlike
previous works which do not consider the problem of
unpredictable reputation attacks against cloud services,
we present a credibility model that not only detects
the misleading trust feedbacks from collusion and Sybil
attacks, but also has the ability to adaptively adjust the

trust results for cloud services that have been affected
by malicious behaviors.

8 CONCLUSION

Given the highly dynamic, distributed, and non-
transparent nature of cloud services, managing and es-
tablishing trust between cloud service users and cloud
services remains a significant challenge. Cloud service
users’ feedback is a good source to assess the overall
trustworthiness of cloud services. However, malicious
users may collaborate together to i) disadvantage a
cloud service by giving multiple misleading trust feed-
backs (i.e., collusion attacks) or ii) trick users into trust-
ing cloud services that are not trustworthy by creating
several accounts and giving misleading trust feedbacks
(i.e., Sybil attacks). In this paper, we have presented
novel techniques that help in detecting reputation-
based attacks and allowing users to effectively identify
trustworthy cloud services. In particular, we introduce
a credibility model that not only identifies misleading
trust feedbacks from collusion attacks but also detects
Sybil attacks no matter these attacks take place in a
long or short period of time (i.e., strategic or occasional
attacks respectively). We also develop an availability
model that maintains the trust management service at a
desired level. We have collected a large number of con-
sumer’s trust feedbacks given on real-world cloud ser-
vices (i.e., over 10,000 records) to evaluate our proposed
techniques. The experimental results demonstrate the
applicability of our approach and show the capability
of detecting such malicious behaviors.

There are a few directions for our future work. We
plan to combine different trust management techniques
such as reputation and recommendation to increase the
trust results accuracy. Performance optimization of the
trust management service is another focus of our future
research work.

REFERENCES
[1] S. M. Khan and K. W. Hamlen, “Hatman: Intra-Cloud Trust

Management for Hadoop,” in Proc. CLOUD’12, 2012.
[2] S. Pearson, “Privacy, Security and Trust in Cloud Computing,”

in Privacy and Security for Cloud Computing, ser. Computer Com-
munications and Networks, 2013, pp. 3–42.

[3] J. Huang and D. M. Nicol, “Trust Mechanisms for Cloud Com-
puting,” Journal of Cloud Computing, vol. 2, no. 1, pp. 1–14, 2013.

[4] K. Hwang and D. Li, “Trusted Cloud Computing with Secure
Resources and Data Coloring,” IEEE Internet Computing, vol. 14,
no. 5, pp. 14–22, 2010.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
View of Cloud Computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[6] S. Habib, S. Ries, and M. Muhlhauser, “Towards a Trust Man-
agement System for Cloud Computing,” in Proc. of TrustCom’11,
2011.

[7] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Leymann, and
R. Konrad, “Compliant Cloud Computing (C3): Architecture and
Language Support for User-Driven Compliance Management in
Clouds,” in Proc. of CLOUD’10, 2010.

[8] W. Conner, A. Iyengar, T. Mikalsen, I. Rouvellou, and K. Nahrst-
edt, “A Trust Management Framework for Service-Oriented
Environments,” in Proc. of WWW’09, 2009.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2408613, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, 2014 14

[9] T. H. Noor, Q. Z. Sheng, and A. Alfazi, “Reputation Attacks
Detection for Effective Trust Assessment of Cloud Services,” in
Proc. of TrustCom’13, 2013.

[10] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust Man-
agement of Services in Cloud Environments: Obstacles and
Solutions,” ACM Computing Surveys, vol. 46, no. 1, pp. 12:1–
12:30, 2013.

[11] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues
Arising From Cloud Computing,” in Proc. CloudCom’10, 2010.

[12] E. Bertino, F. Paci, R. Ferrini, and N. Shang, “Privacy-preserving
Digital Identity Management for Cloud Computing,” IEEE Data
Eng. Bull, vol. 32, no. 1, pp. 21–27, 2009.

[13] E. Friedman, P. Resnick, and R. Sami, Algorithmic Game The-
ory. New York, USA: Cambridge University Press, 2007, ch.
Manipulation-Resistant Reputation Systems, pp. 677–697.

[14] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the
Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69–
73, 2012.

[15] F. Skopik, D. Schall, and S. Dustdar, “Start Trusting Strangers?
Bootstrapping and Prediction of Trust,” in Proc. of WISE’09, 2009.

[16] H. Guo, J. Huai, Y. Li, and T. Deng, “KAF: Kalman Filter
Based Adaptive Maintenance for Dependability of Composite
Services,” in Proc. of CAiSE’08, 2008.

[17] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and
Challenges,” in Proc. of AINA’10, 2010.

[18] Y. Wei and M. B. Blake, “Service-oriented Computing and Cloud
Computing: Challenges and Opportunities,” Internet Computing,
IEEE, vol. 14, no. 6, pp. 72–75, 2010.

[19] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” Sep 2011, accessed: 05/06/2012, Available at:
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-
145 cloud-definition. pdf.

[20] O. David and C. Jaquet, “Trust and Identification in the Light of
Virtual Persons,” pp. 1–103, Jun 2009, accessed 10/3/2011, Avail-
able at: http://www.fidis.net/resources/deliverables/identity-
of-identity/.

[21] B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving Data
Publishing: A Survey of Recent Developments,” ACM Computing
Surveys, vol. 42, no. 4, pp. 1–53, 2010.

[22] J. R. Douceur, “The Sybil Attack,” in Proc. of IPTPS’02, 2002.
[23] S. Ba and P. Pavlou, “Evidence of the Effect of Trust Building

Technology in Electronic Markets: Price Premiums and Buyer
Behavior,” MIS Quarterly, vol. 26, no. 3, pp. 243–268, 2002.

[24] K. Lai, M. Feldman, I. Stoica, and J. Chuang, “Incentives for Co-
operation in Peer-to-Peer Networks,” in Proc. of the 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[25] L. Xiong and L. Liu, “Peertrust: Supporting Reputation-based
Trust for Peer-to-Peer Electronic Communities,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 16, no. 7, pp. 843–
857, 2004.

[26] A. Birolini, Reliability Engineering: Theory and Practice. Springer,
2010.

[27] S. Maskell and N. Gordon, “A Tutorial on Particle Filters for
On-line Nonlinear/Non-Gaussian Bayesian Tracking,” in Target
Tracking: Algorithms and Applications (Ref. No. 2001/174), IEEE.
IET, 2001, pp. 2–1.

[28] T. H. Noor and Q. Z. Sheng, “Trust as a Service: A Framework for
Trust Management in Cloud Environments,” in Proc. of WISE’11,
2011.

[29] T. H. Noor, Q. Z. Sheng, A. H. Ngu, A. Alfazi, and J. Law,
“CloudArmor: A Platform for Credibility-based Trust Manage-
ment of Cloud Services,” in Proc. of CIKM’13, 2013.

[30] T. Noor and Q. Z. Sheng, “Credibility-Based Trust Management
for Services in Cloud Environments,” in Proc. of ICSOC’11, 2011.

[31] S. M. Kim and M.-C. Rosu, “A Survey of Public Web Services,”
in Proc. of WWW04, 2004.

[32] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A Survey of Attack
and Defense Techniques for Reputation Systems,” ACM Comput-
ing Surveys, vol. 42, no. 1, pp. 1–31, 2009.

[33] R. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. Lee, “TrustCloud: A Framework for Account-
ability and Trust in Cloud Computing,” in Proc. SERVICES’11,
2011.

[34] C. Dellarocas, “The Digitization of Word of Mouth: Promise
and Challenges of Online Feedback Mechanisms,” Management
Science, vol. 49, no. 10, pp. 1407–1424, 2003.

Talal H. Noor is an assistant professor in the
College of Computer Science and Engineering
at Taibah University in Yanbu, Saudi Arabia.
He received his Ph.D. degree in Computer Sci-
ence from the University of Adelaide in 2013.
His research interests include cloud comput-
ing, service-oriented computing, security and
privacy, and trust management.

Quan Z. Sheng is an associate professor at
School of Computer Science, the University
of Adelaide. He received the PhD degree in
computer science from the University of New
South Wales and B.E from Beihang University.
His research interests include service-oriented
computing, Web science, distributed comput-
ing, pervasive computing, and Web of Things.
He is the recipient of ARC Future Fellowship
in 2014, Chris Wallace Award in 2012, and
Microsoft Research Fellowship in 2003. He is

the author of more than 180 publications.

Lina Yao is currently a PostDoc and an asso-
cate lecturer at School of Computer Science,
the University of Adelaide. She received PhD
and M.Sc, both in Computer Science, from the
University of Adelaide and B.E from Shandong
University. Her research interests include Web
mining, Internet of Things, Ubiquitous comput-
ing and Service Oriented Computing.

Schahram Dustdar is Full Professor of Com-
puter Science (Informatics) with a focus on
Internet Technologies heading the Distributed
Systems Group at the Vienna University of
Technology. He is a member of the Academia
Europaea: The Academy of Europe, Informat-
ics Section (since 2013), recipient of the ACM
Distinguished Scientist award (2009), and the
IBM Faculty Award (2012). He is an Associate
Editor of IEEE Transactions on Services Com-
puting, ACM Transactions on the Web, and

ACM Transactions on Internet Technology and on the editorial board
of IEEE Internet Computing. He is the Editor-in-Chief of Computing
(an SCI-ranked journal of Springer).

Anne H.H. Ngu is currently a full Professor with
the Department of Computer Science at Texas
State University-San Marcos. From 1992-2000,
she worked as a Senior Lecturer in the School
of Computer Science and Engineering, Univer-
sity of New South Wales (UNSW), Australia.
She has held research scientist positions with
Telecordia Technologies and Microelectonics
and Computer Technology (MCC). She was a
summer faculty scholar at Lawrence Livermore
National Laboratory from 2003-2006. Her main

research interests are in large-scale discovery and integration of in-
formation services, scientific and business process automation, agent
systems and Internet of Things.

