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Abstract—The k-nearest neighbors (k-NN) query is a fundamental primitive in spatial and multimedia databases. It has extensive
applications in location-based services, classification & clustering and so on. With the promise of confidentiality and privacy, massive
data are increasingly outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing (e.g., reduce storage
and query processing costs). Recently, many schemes have been proposed to support k-NN query on encrypted cloud data. However,
prior works have all assumed that the query users (QUs) are fully-trusted and know the key of the data owner (DO), which is used to
encrypt and decrypt outsourced data. The assumptions are unrealistic in many situations, since many users are neither trusted nor
knowing the key. In this paper, we propose a novel scheme for secure k-NN query on encrypted cloud data with multiple keys, in which
the DO and each QU all hold their own different keys, and do not share them with each other; meanwhile, the DO encrypts and
decrypts outsourced data using the key of his own. Our scheme is constructed by a distributed two trapdoors public-key cryptosystem
(DT-PKC) and a set of protocols of secure two-party computation, which not only preserves the data confidentiality and query privacy
but also supports the offline data owner. Our extensive theoretical and experimental evaluations demonstrate the effectiveness of our
scheme in terms of security and performance.

Index Terms—Data security, k-NN query, multiple keys, cloud computing.

F

1 INTRODUCTION

R ECENTLY, cloud computing has become an increasingly
popular service for its flexibility and scalability, which

motivates many organizations, institutions and companies
to prefer to outsource data services to cloud platform [1]. At
the same time, much attention has been paid to cope with
the special security and privacy problems in outsourced
cloud [2], [3]. On one hand, to protect the data confidential-
ity, the data owner (DO) encrypt the sensitive information
of his outsourced data, such as income level, health records,
personal photos before the dataset is uploaded to the cloud
[4], [5]. On the other hand, data owner may plan to rely
on cloud platform for querying of the datasets stored in
cloud, not just for storage and management. Therefore, a
large amount of secure schemes have been proposed [6], [7]
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to support the query over encrypted cloud data.
As a fundamental query operation in spatial and mul-

timedia databases, k-nearest neighbors (k-NN) query aims
at identifying k nearest points for a given query point in
a dataset. In the past few years, researchers have proposed
various methods to address the security and privacy prob-
lems of k-NN query on encrypted cloud data. The general
approach is to encrypt data by the data owner (DO) before
outsourcing; the authorized query users (QUs) perform a
complex series of encryption and decryption operations
during query execution. For example, the work in [8] pro-
poses an asymmetric scalar-product-preserving encryption
(ASPE) to preserve scalar product between the query vector
and any vector for distance comparison, which is sufficient
to find k-NN. Instead of finding exact nearest neighbor, Yao
et al. [9] allow a cloud party to approximate it based on
secure Voronoi diagram algorithm. Elmehdwi et al. [10] pro-
pose a novel protocol over encrypted data based on a Twin-
Cloud [11] model and Paillier cryptosystem [12], which can
calculate k-NN between data records and query records
in a secure manner. However, all the above schemes have
assumed that the query users are fully-trusted and have the
access to the key for encrypting and decrypting outsourced
data. It will bring about several problems in the real world.
Firstly, cloud platform can totally break the outsourced
database once the key is obtained from any compromised
query user. It is obvious that each query user could be one
of the lucrative targets for attackers. Secondly, data owner
may have no enough trust on each query user in many
applications which will limit the scope of these schemes. For
instance, hospitals or institutes of medicine might contribute
medical data for a disease classification study or a service
available to doctors [13], [14]. Thus, doctors can search the
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k-NN cases with some similar physiological data to help
treat patients. If using the above schemes, the doctors will
encrypt the indices with the same key as the one that the
data owner encrypts and decrypts the outsourced database.
Obviously, it is not realistic, since the data owner do not
want to release the medical data in the clear to each other or
a cloud platform. Thirdly, once query users receive the key,
their query processing will not be controlled by data owner
any more, and it is difficult to revoke the access even they
are deemed to be untrustworthy. In general, these schemes
with key-sharing are still far from being practical in most
instances.

To solve the above mentioned problem, the work in
[15] improves the ASPE scheme in [8] to solve the problem
without sharing key with query users. Instead, query users
interact with the data owner to derive a query encryption.
That is, these schemes require data owner to be constantly
online. Zhu et al. [16] lately propose an improvement of the
scheme in [15] ,which can support the offline data owner.
However, these schemes disclose more or less information
about data owner’s key. More importantly, the kernel of the
works [15], [16] is the ASPE method, but the ASPE method
cannot be proved to resist the chosen-plaintext attack (CPA)
[9]. The work in [17] also gives a secure NN (k = 1) query
scheme which can resist the collusion between cloud server
and query users. Nevertheless, the work is not practical
because of the strong assumption.

In this paper, considering the above problems, we fo-
cus on the secure k-NN query over encrypted cloud data
without key-sharing. Firstly, based on the distributed two
trapdoors public-key cryptosystem (DT-PKC) [18], we con-
struct a set of protocols of secure two-party computation
that will be used as sub-routines of our proposed scheme.
Furthermore, we propose a novel secure k-NN scheme with
multiple keys to address the above problems. Specifically, in
our scheme, each query user holds his own unrelated key
and the data owner can encrypt and decrypt outsourced
data using the key of his own, without sharing the key
with the query users. Note that, our scheme is not a simple
application of the secure two-party computation techniques.
In fact, these original protocols that we proposed are one of
the notable contributions. Our contributions in this paper
can be summarized as follows:

1) To our best knowledge, this is the first work that
studies secure k-NN query on encrypted data with
multiple keys. Our scheme not only preserves the
data confidentiality and query privacy but also sup-
ports the offline data owner. Based on the property
of multiple keys, we can thoroughly solve the prob-
lems induced by key-sharing with query users.

2) We present a set of novel protocols of secure two-
party computation based on distributed two trap-
doors public-key cryptosystem, which become a
cornerstone of our secure k-NN scheme.

3) Based on the original protocols that we proposed,
we construct a secure kNN scheme with multiple
keys. And we show that the proposed scheme is
secure under the standard semi-honest model [19].
Also, we demonstrate the practical applicability of
our solution through extensive experiments using a

real-world dataset.

The remainder of this paper proceeds as follows. Re-
lated works are surveyed in Section 2. Section 3 presents
distributed two trapdoors public-key cryptosystem and k-
dimensional tree as a background. We define our system
architecture and design goals in Section 4. Section 5 presents
the details of our scheme. The security analysis are carried
out in Section 6. We evaluate experimentally the perfor-
mance of the proposed scheme in Section 7. Finally, Section
8 concludes the paper and discusses future directions.

2 RELATED WORK

Our work is a special type of query processing on encrypted
data, which has gained much more focus recently, especially
in the situation of cloud computing where the data owner
outsources his data to the cloud. Existing works primarily
concern the following aspects: traditional SQL query [20],
[21], textual query [22], [23], range search [24], [25], top-k
query [26], [27], [28] and k-NN query [8], [9], [10], [15], [16],
[17], [29], [30]. In this section, we mainly review some recent
achievements on secure k-NN query.

In previous works, some schemes have been proposed
to solve secure k-NN computation on encrypted cloud data
which can be mainly classified into two categories based on
whether the key of data owner is sharing with others or not:
key-sharing scheme and key-confidentiality scheme.

2.1 Secure k-NN Schemes with Key-sharing
In the key-sharing schemes, we assume that the query users
are fully-trusted and know the key of the data owner. The
data owner outsources his data and query functionality to
the cloud where only trusted users are allowed to query the
host data. Along this direction, researchers have proposed
various methods to address secure k-NN problem.

Wong et al. [8] proposed a new encryption scheme
(ASPE) that preserves the relative distances of all the
database point to any query point that is sufficient to find
k-NN. The ASPE transforms data points and queries with
secret matrices, which are symmetric keys for the encryption
scheme. Thus, it must be shared between the data owner
and all query users. However, the method in [8] is not secure
because it is prone to chosen-plaintext attacks [9].

To further improve the query performance, Yao et al. [9]
designed a novel method based on secure Voronoi diagram
algorithm. Instead of returning exact nearest neighbor, they
allow a cloud server to return a relevant data partition.
Furthermore, the work in [29] used Delaunay triangulation
and order-preserving encryption [31] to solve the secure
k-NN problem accurately. Although it can provide exact
result, the solution incurs expensive overhead of compu-
tation and communication on the users. More importantly,
the encryption schemes used in [9], [29] are symmetric, and
the data owner and query users also have to share the key.

Unlike the model of the above schemes, Elmehdwi et al.
[10] proposed a number of novel protocols over encrypted
data based on a Twin-Cloud model [11] and Paillier cryp-
tosystem [12], which can further increase security during
query execution. They assume the existence of two semi-
honest cloud servers P1 and P2 such that the encrypted data
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TABLE 1
The Comparison of the Proposed Secure kNN Query Schemes

Schemes Category Resist CPA Client Overhead
[8] Key-sharing No low
[9] Key-sharing Yes high
[29] Key-sharing Yes low
[10] Key-sharing Yes low
[30] Key-sharing Yes high
[15] key-confidentiality No low
[16] key-confidentiality No low
[17] key-confidentiality Yes low

is known only to P1, whereas the secret key is just revealed
to P2. Using the secure protocols, P1 collaborate with P2 for
the final result after receiving an encrypted query from the
user. However this method also requires the users to access
the private key of data owner and cannot be put into use for
inefficiency.

Recently, Wang et al. [30] proposed a practical and
secure nearest neighbor search on encrypted large-scale
data. Specifically, the authors use order-preserving encryp-
tion [31], [32] to modify the search algorithm of nearest
neighbors with tree structures for efficiency. Unfortunately,
this scheme is designed to only achieve indistinguishability
under ordered chosen-plaintext attacks (IND-OCPA) [32].

2.2 Secure k-NN schemes with key-confidentiality

In order to overcome the defects of key-sharing scheme,
Zhu et al. [15] presented a new secure scheme with key-
confidentiality. This work used a symmetric scheme with
a secret matrix transformation as a key, and query users
do not share this key. Instead, they interact with the data
owner to derive a query encryption without revealing the
query. This means that the data owner need to remain
online for all the users. Recently, the work in [16] improves
the scheme in [15] for supporting the offline data owner.
However, the kernel of the above works [15], [16] is the
ASPE mothod [8] while the ASPE method cannot be proved
to resist the chosen-plaintext attack (CPA) [9]. The system
in [17] is designed to solve the key-sharing problems by
using a proxy server. Query users in this system encrypt
the query point and send a request to proxy server instead
of the cloud, then the proxy performs query operations. So
this scheme can protect the confidentiality of the owners key
to each user. However, it works based on the assumption
that there is a fully-trusted proxy server between users and
cloud server. Thus it cannot be practice in the real-world.
The comparison of existing secure kNN query schemes are
presented in Table 1.

3 PRELIMINARY

In this Section, we introduce essential preliminary concepts,
such the Distributed Two Trapdoors Public-Key Cryptosys-
tem (DT-PKC) [18] and k-d tree (k-dimensional tree) [33] in
the literature, which will serve as the basic of our scheme.
For ease of reference, Table 2 summarizes the key notations
used throughout this paper.

3.1 Distributed Two Trapdoors Public-Key Cryptosys-
tem (DT-PKC)

The Distributed Two Trapdoors Public-Key Cryptosystem
(DT-PKC) [18] was adapted from a double trapdoor decryp-
tion cryptosystem [34]. The most prominent characteristic of
DT-PKC is that each encrypted data in this can be decrypted
by the strong trapdoor, and the strong private key is further
protected by the secret sharing. The DT-PKC scheme works
as follows:

KeyGen: On input a security parameter k and two
large prime numbers p, q, where L(p) = L(q) = k, com-
pute N = pq and λ = lcm(p − 1, q − 1)/2. Define a
function L(x) = (x − 1)/N , choose a generator g of or-
der (p − 1)(q − 1)/2, then randomly select θi ∈ [1, N/4]
and compute hi = gθi mod N2 for party i. The public
key pki = (N, g, hi), the corresponding weak private key
ski = θi, and strong private key SK = λ.

Encryption (Enc): The algorithm takes as input a public
key pki and a message m ∈ ZN . It chooses a random r ∈
[1, N/4] and outputs the ciphertext as [m]pki

= {Ti,1, Ti,2},
where Ti,1 = grθi(1+mN) mod N2 and Ti,2 = gr mod N2.

Decryption with weak private key (WDec): The al-
gorithm Dski(·) takes as input a ciphertext [m]pki and a
weak private key ski = θi then outputs m = L((Ti,1 ·
(T θi

i,2)
−1) mod N2).

Decryption with strong private key (SDec): Any cipher-
text [m]pki can be decrypted using decryption algorithm
DSK(·) with strong private key SK = λ by first calculating
Tλ
i,1 mod N2 = gλθir ·(1+mNλ) mod N2 = 1+mNλ. Then,

m can be recovered as m = L(Tλ
i,1 mod N2) · λ−1 mod N .

Strong private key splitting (SkeyS): The strong private
key SK = λ can be randomly split into two parts. The
partial strong private keys SK(i) = λj(j = 1, 2), s.t., λ1 +
λ2 ≡ 0 mod λ and λ1 + λ2 ≡ 1 mod N2 hold at the same
time.

Partial decryption with partial strong private key step
one (PSDec1): The algorithm PDOSK(1)(·) takes as input
[m]pki and a partial strong private key SK(1) = λ1 then
outputs the partial decrypted ciphertext CT

(1)
i = Tλ1

i,1 =

grθiλ1 · (1 +mNλ1) mod N2.
Partial decryption with partial strong private key step

two (PSDec2): The algorithm PDTSK(2)(·, ·) takes as input
CT

(1)
i and [m]pki then executes CT

(2)
i = Tλ2

i,1 = grθiλ2 ·
(1 +mNλ2) mod N2. At last, the algorithm computes m =

L(CT
(1)
i · CT

(2)
i ).

Note that for given m1,m2 ∈ ZN under the same pk, we
have [m1]pk · [m2]pk = {(1 + (m1 +m2) · N) · hr1+r2 mod
N2, gr1+r2 mod N2} = [m1 + m2]pk, and [m]N−1

pk = {(1 +

(N − 1)m · N) · h(N−1)r1 mod N2, g(N−1)r1 mod N2} =
[−m]pk. In this paper, the numbers involved in our scheme
are integer (i.e. m can be positive, negative or zero); there-
fore, we restrict m with the limit L(m) < L(N)/8.

3.2 k-d Tree

The k-d tree (k-dimensional tree) [33] is a space-partitioning
data structure for organizing points in a k-dimensional
space. The k-d tree is a useful data structure which can
improve the search efficiency of range searches and kNN
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TABLE 2
Notations and Definitions Used

Notations Definitions
pko Public key of data owner
pkui ,skui Public key of user i, Weak private key of user i
pk Temporary public key for each query
SK Strong private key
SK(1),SK(2) Partial strong private key
[x]pk Encrypted data x under pk
Dsk(·) Decryption algorithm using sk

PDOSK(1) (·) Partial decryption with SK(1)

PDTSK(2) (·) Partial decryption with SK(2)

L(x) Bit-length of x

searches [35], [36]. The k-d tree is a binary tree in which ev-
ery node is a k-dimensional point. Every non-leaf node can
be thought of as implicitly generating a splitting hyperplane
that divides the space into two parts. Indeed, k-d trees use
the “divide-and-conque” strategy to divide the space into
several parts.

A simple example of the k-d tree is illustrated in Fig. 1.
First, a vertical line (e.g. x = 7) splits the point set into two
subsets of equal cardinality. Each of the resulting subsets is
further split along a horizontal line (e.g. y = 4 and y = 6).
The process will repeat until the cardinality of a node drops
below a certain threshold. The two dimensional space in Fig.
1 was divided into seven parts in the end.

Fig. 1. A example of the k-d tree.

4 SYSTEM ARCHITECTURE AND DESIGN GOAL

In this section, we briefly present the architecture of the
secure kNN system and outline the threat model and design
goal.

4.1 System Architecture

Our system architecture mainly consists of five kinds of en-
tities: Key Generation Center (KGC), Cloud Platform (CP),
Computation Service Provider (CSP), Data Owner (DO) and
Query Users (QUs), shown in Fig. 2.

1) KGC: The trusted KGC is responsible for generating
and managing both public and private keys in the
system.

2) CP: A CP has abundant storage resources to store
and manage data outsourced from all valid QUs.
A CP also records all intermediate and final results

Data Owner

(DO)

Query Users 

(QUs)

Cloud Platform 

(CP)

Computation 

Service Provider 

(CSP)

Key Generation 

Center (KGC)

Fig. 2. System architecture.

in encrypted form in the process of protocol’s im-
plementation. In addition, a CP is able to perform
certain computation over encrypted data.

3) CSP: A CSP provides online computation services
in the system. So the CSP can offload the calculation
task to CP and collaborates with it to find the k-NN
for QUs in a privacy-preserving manner.

4) DO: Data are generated by the DO, encrypted us-
ing his public key and then outsourced to CP for
storage.

5) QUs: The goal of a QU is to request the CP to
perform secure k-NN query and get the encrypted
result that can be decrypted by QU.

Note that we assume that the authorization and the
access control are well performed in our system. Actually,
we can use an authentication scheme to verify the authen-
ticity of the QUs, the details of the implementation can be
referred to [37], [38], [39], [40], [41]. However, fully-trusted
query users cannot be guaranteed through authorization
mechanism. In other words, the users who have passed a
verification step have the permissions to access the system.
Yet, they are also very likely to attack the system. This is also
the basic motivation of the paper. Our system introduces a
CSP to produce a Twins-Clouds architecture compared with
traditional single-cloud platform. The CSP is necessary in
our system, on one hand a CP is not able to perform various
compute operations efficiently (existing fully homomorphic
cryptosystem [42] is rather inefficient, in term of compu-
tation and storage [43], [44]). On the other hand, Twins-
Clouds architecture can minimize interactions between the
users and cloud server while the only one cannot (due
to the impossibility of program obfuscation [45]). In our
scheme, users only need to send encrypted query initially
and remain offline until retrieving encrypted outputs.

4.2 Threat Model
In the threat model, we assume the KGC to be a trusted
entity, which generates the public and private keys for the
system. On the other hand, CP, CSP, DO and QUs are semi-
honest, (i.e., honest-but-curious). It means that these parties
intend to follow the protocols strictly and return correct
computation results, but try to infer the private information
of other parties based on the data he receives and holds.
Meanwhile, we also assume CP and CSP are non-colluding.
To provide a specific security and privacy requirements, we
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define the concrete data confidentiality and query privacy
to against active adversary A as follows.

Definition 1 (Data Confidentiality Definition).A cannot
learn any plaintext of the encrypted database stored in the CP.

Definition 2 (Query Privacy Definition). Neither the
query point nor the result (k-NN) for users should be reveal to
the A.

To satisfy these requirements, the active adversary A in
the threat model has the following attacking abilities:

1) Amay eavesdrop all the communication links to get
the encrypted data.

2) A may compromise the CP and try to crack the
encrypted database outsourced by the DO.

3) A may compromise the CSP to guess the plaintext
of the all encrypted data sent from CP by executing
interactive protocols.

4) Amay compromise one or more QUs to obtain their
decryption abilities.

The adversary A is, however, restricted from compromising
the CP and the CSP at the same time. We remark that such
restriction is typical in adversary models used in crypto-
graphic protocols [10], [11], [18]. In addition, the access
pattern, which is the sequence of results, is not considered
to be protected in our scheme due to the extremely high
complexity, i.e. to protect it, the algorithm has to touch the
whole dataset [46].

Existing works [8], [9], [10], [29], [30] cannot resist the
above adversary A, since the data owner in these schemes
will share the decryption key with query users; once A
compromises any query user, the outsourced data can be
leaked entirely. However, in our scheme, if a query user was
captured by A, only the compromised user’s query privacy
would be disclosed, while the privacy of other users and the
confidentiality of the cloud data would be preserved.

4.3 Design Goal
In this paper, our method will fulfill privacy and perfor-
mance guarantees as follows:

1) Data confidentiality and query privacy: the data
confidentiality and query privacy as described in
the Definition 1 and 2 should be guaranteed.

2) Low computation overhand on the QUs: the QUs
in our system generally have limited computation
and communication resources, our method should
be designed for reducing the users’ overhand.

3) Support offline data owner: a large number of QUs
are involved in the system, therefore supporting
offline data owner is quite necessary in terms of the
system’s scalability.

5 SECURE k-NN QUERY WITH MULTIPLE KEYS

5.1 Overview
In this paper, we introduce a secure k-NN query scheme
with multiple keys. Let D denote data owner’s original
database. We assume DO’s database consists of n records,
denoted by D = {p1, p2, . . . , pn}, and each point is a m-
dimensional vector, i.e. pi = (pi,1, pi,2, . . . , pi,m), for all i =
1, 2, . . . , n. Initially, DO encrypts his database locally, that is,

he computes [pi,j ]pko , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let the
encrypted database be denoted by D′. We assume that DO
outsources D′ as well as the future query processing service
to the CP. Each QU holds some private m-dimensional
query points. For the query point q = (q1, q2, . . . , qm), QU
would like to retrieve the top k records that are closest to
the query point in D according to the Euclidean distance,
that is, ∥pi, q∥ =

√∑m
j=1 (pi,j − qj)2. QU initially sends his

query q (in encrypted form) to CP. After this, CP and CSP
involve in a set of sub-protocols to securely compute the
Euclidean distance then retrieve the k-NN in D′ and return
encrypted result to the QU. At the end of our scheme, only
the corresponding query user can decrypt the result points.

5.2 Scheme Details

In this section, we will describe the construction of our
scheme step-by-step.

5.2.1 Setup
Recall that Section 2 describes a novel cryptosystem DT-
PKC. In our system, we have one DO and η QU. The KGC
generates a public key pko = (N, g, ho = gθo) and a public-
private key pair pkui = (N, g, hi = gθi) and skui = θi(i =
1, . . . , η) under the same N and g for the DT-PKC; the KGC
sends pko to DO and CP, then distributes the individual
public-private key pair pkui/skui to each QU. In addition,
the KGC generates a temporary public key pk = (N, g, h =
gθ) for each query then send pk and pkui(i = 1, . . . , η) to CP
and CSP. Moreover, the strong private key SK is randomly
spit into SK(1) and SK(2) using SkeyS algorithm, sending
to CP and CSP for storage respectively. For readability, if
the public/private key are associated with the QU i, we will
omit the secondary subscript i from the symbols (i.e., use
pku/sku instead of pkui/skui ).

After receiving pko from KGC, DO uses it to en-
crypt each record pi in database D, i.e. [pi]pko =
([pi,1]pko , [pi,2]pko , . . . , [pi,m]pko), for all i = 1, 2, . . . , n, and
outsources the encrypted database D′ to CP. Next, the query
user encrypts the query point q with his own public key,
this is, computes [q]pku = ([q1]pku , [q2]pku , . . . , [qm]pku) and
send it to CP. So far, the work of DO is completed and DO
can remain offline.

5.2.2 Secure Euclidean Distance Computation (SecDist)
Since the basic of our scheme is a function of distance,
we must be able to compute distance using encrypted data
without revealing it. Algorithm 1 describes secure Euclidean
distance computation — SecDist([pi]pko , [q]pku), which al-
lows the CP to get [∥pi − q∥2]pk, where ∥pi − q∥ denotes the
Euclidean distance between pi and q. The protocol does not
leak any information about pi and q to the CP and CSP.

The basic idea of SecDist is based on the following
equation:

(pi,j − qj)
2 = (pi,j − qj +R)2 − 2R · (pi,j − qj)−R2 (1)

The overall steps in SecDist are shown in Algorithm 1. In
Step 1, CP initially randomizes pi,1 and q1 by computing
ciphertexts X = [pi,1+r1]pko and Y = [q1+r2]pku , and uses
partial strong private key SK(1) to partially decrypt them,
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then send X,Y and the partially ciphertexts X1 and Y1 to
CSP. Upon receiving, CSP decrypts them with SK(2) to get
X2 = pi,1 + r1, Y2 = q1 + r2. Then, CSP encrypts (X2 − Y2)
and (X2−Y2)

2 with the temporary public key pk and sends
them to CP. After this, CP removes extra random factors
from (pi,j − qj + R)2 based on Equation (1) to get Z1 =
[(pi,1 − q1)

2]pk. To compute Zj(j = 2, . . . ,m), repeat Step 1
to Step 3 that we followed to compute Z1. Finally, the CP can
compute [∥pi − q∥2]pk as in Step 5. Note that the ciphertexts
of the distances are transformed into ones encrypted under
the same key pk after the process of SecDist.

5.2.3 Secure k-NN Retrieve
Now that we can compute Euclidean distances, we must
compute the top-k (in encrypted form) records that are
closest to q in a secure manner. For that, we firstly present
two secure protocols — Secure Minimum (SecMin) and
Secure Minimum Index of n numbers (SecMIn), based here
to build the secure k-NN retrieve (SeckNN) scheme.

Secure Minimum (SecMin). The goal of
SecMin(([ai]pk, [i]pk), ([aj ]pk, [j]pk)) is for CP and CSP
jointly compute the encryption and the encrypted index
of the minimum number between ai and aj , which will
be known only to CP. For example, when a1 = 7, a2 = 3,
SecMin(([a1]pk, [1]pk), ([a2]pk, [2]pk)) will only return [3]pk
and [2]pk to CP. The SecMin protocol can be departed
into two part. The first (refer to Step 1 to Step 3(a) in
Algorithm 2) is to obtain the encrypted data [u∗]pk to show
the relationship between the plaintext of the two encrypted
data (i.e. ai ≥ aj or ai ≤ aj). More specifically, CP flips a
coin s randomly, if s = 1, CP calculates [l]pk = [ai − aj ]pk
otherwise [l]pk = [aj − ai]pk, then masks the value [l]pk
with a positive random r. In Step 2, CSP decides the
value of u (0 or 1) according to the r · l (larger or smaller
than zero) and return the [u]pk to CP. Here, the condition
L(X2) > L(N)/2 is satisfied only when r · l < 0, because of
the limitation on value ranges in DT-PKC (see [18] for more

Algorithm 1 SecDist([pi]pko , [q]pku)→ [∥pi − q∥2]pk
Require: CP has ([pi]pko , [q]pku), SK

(1), pk, pku, pko;
CSP has SK(2), pk.

1. CP:
(a) Choose random r1, r2 ∈ ZN (r1 ̸= r2), compute R =

r1 − r2.
(b) X ← [pi,1]pko · [r1]pko , Y ← [q1]pku · [r2]pku ,

X1 ← PDOSK(1)(X), Y1 ← PDOSK(1)(Y ).
(c) Send X,X1, Y, Y1 to CSP.

2. CSP:
(a) X2 ← PDTSK(2)(X1, X), Y2 ← PDTSK(2)(Y1, Y ).
(b) S1 ← [X2 − Y2]pk, S2 ← [(X2 − Y2)

2]pk.
(c) Send S1, S2 to CP.

3. CP:
(a) S3 ← S1 · [R]N−1

pk .
(b) Z1 ← S2 · SN−2R

3 · [R2]N−1
pk = [(pi,1 − q1)

2]pk.
4. CP and CSP:

(a) Repeat Step 1 – Step 3 to calculate Z2 = [(pi,2−
q2)

2]pk, . . . , Zm.
5. CP:

(a) [∥pi − q∥2]pk ←
∏m

j=1 Zj .

detailed explanation). Once [u]pk is received, CP computes
as follows: if s = 1, CP denotes [u∗]pk = [u]pk. Otherwise,
CP computes [u∗]pk = [1]pk · ([u]pk)N−1 = [1− u]pk. By this
stage if u∗ = 0, it shows [ai]pk ≥ [aj ]pk; and if u∗ = 1, it
shows [ai]pk < [aj ]pk.

The second part of the SecMin protocol (refer to Step
3(b) to Step 6 in Algorithm 2) is to compute the encryption of
the minimum value between ai and aj , i.e., [min(ai, aj)]pk,
using the following formulation equation:

min(ai, aj) = aj + u∗ · (ai − aj) (2)

CP and CSP jointly compute the encryption of (u∗ ·(ai−aj)),
the basic idea is as following:

u∗·(ai−aj) = (u∗+r1)·(ai−aj+r2)−r1·(ai−aj)−r2·u∗−r1·r2
(3)

The detailed computation process is analogous to one of the
Equation (1) (and not explained here). After that, CP can
locally calculates [min(ai, aj)]pk = [aj +u∗(ai−aj)]pk. In a
similar manner, apart from the encrypted minimum value,
CP and CSP can compute [lmin(ai,aj)]pk (i.e. the encrypted
index associated with the minimum value) in Step 6.

Secure Minimum Index of n numbers (SecMIn). Sup-
pose [a1]pk, . . . , [an]pk denote the list of n encrypted in-
tegers and i denotes the index of integer ai in the list,
for 1 ≤ i ≤ n. The SecMIn protocol computes the index
of minimum value [lmin(ai,...,an)]pk without revealing the
plaintext of ai to CP and CSP. Here we construct the
SecMIn protocol using the SecMin protocol as a build-
ing block. Step 1(a) computes T = [min(a1, a2)]pk and
I = [lmin(a1,a2)]pk (known only to CP) using the SecMin
protocol. After this, CP with input (T, I) and ([a3]pk, [3]pk)
can calculate [min(a1, a2, a3)]pk and [lmin(a1,a2,a3)]pk in the
same way. The above process is repeated until CP gets
(T, I) = ([min(a1, . . . , an)]pk, [lmin(a1,...,an)]pk). Then, in
Step 2 - Step 4, CP and CSP jointly decrypt the encrypted
index I to get the plaintext index Γ. A complete process is
shown in Algorithm 3.

Based on the above algorithms, we describe the details
of our secure k-NN retrieve (SeckNN) scheme in Algorithm
4. This algorithm takes as input a original database D and
a query point q then outputs the result points T . In Step
1, the CP and CSP jointly involve in SecDist protocol to
compute [di]pk(1 ≤ i ≤ n), then CP uses

−→
d to denote

{([d1]pk, 1), . . . , ([dn]pk, n)} in Step 2. As was previously
mentioned,

−→
d is revealed only to CP. After this, CP and

CSP obtain the index Γ1 corresponding to the minimum by
using SecMIn protocol, then remove ([dΓ1 ]pk,Γ1) from

−→
d .

The above process described in Step 3 is repeated until k
iterations, and in each iteration Γj corresponds to the index
of the minimum value in the current

−→
d . As indicated in Step

4(a), CP will get a index list Γ = (Γ1,Γ2, . . . ,Γk) at the end
of the iteration.

Next, CP proceeds as follows: select
[pΓ1 ]pko , [pΓ2 ]pko , . . . , [pΓk

]pko as the k-NN result based
on Γ, and mask each with a random number, such that
tj,h = [pΓj ,h]pko · [rj,h]pko , for 1 ≤ j ≤ k and 1 ≤ h ≤ m,
where pΓj ,h denotes the hth dimensional value of record
pΓj , m and k represent the dimension and the number of
result points, respectively. This prevents to leak pΓj ,h to
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Algorithm 2 SecMin(([ai]pk, [i]pk), ([aj ]pk, [j]pk)) →
([min(ai, aj)]pk, [lmin(ai,aj)]pk)

Require: CP has ([ai]pk, [i]pk), ([aj ]pk, [j]pk), SK(1), pk;
CSP has SK(2), pk.

1. CP:
(a) Flip a coin s randomly(i.e. s = 1 or s = 0).
(b) if s = 1 then

[l]pk = [ai]pk · [aj ]N−1
pk

else
[l]pk = [aj ]pk · [ai]N−1

pk
end if

(c) Chooses a random number r, s.t. L(r) < L(N)/4,
X = [l]rpk = [r · l]pk, X1 = PDOSK(1)(X).

(d) Send X,X1 to CSP.
2. CSP:

(a) X2 ← PDTSK(2)(X1, X).
(b) if L(X2) > L(N)/2 then

u = 1
else
u = 0

end if
(c) Encrypt u with pk and send [u]pk to CP.

3. CP:
(a) if s = 1 then

[u∗]pk = [u]pk
else
[u∗]pk = [1]pk · [u]N−1

pk = [1− u]pk
end if

(b) Choose random r1, r2 ∈ ZN .
(c) Y = [u∗]pk · [r1]pk, T = [ai]pk · [aj ]pkN−1 · [r2]pk,

Y1 ← PDOSK(1)(Y ), T1 ← PDOSK(1)(T ).
(d) Send Y, Y1, T, T1 to CSP.

4. CSP:
(a) Y2 ← PDTSK(2)(Y1, Y ), T2 ← PDTSK(2)(T1, T ).
(b) S ← Y2 · T2.
(c) Send [S]pk to CP.

5. CP:
(a) S1 ← [S]pk · ([ai]pk · [aj ]N−1

pk )N−r1 · [u∗]N−r2
pk · [r1−

r2]
N−1
pk = [u∗ · (ai − aj)]pk.

(b) [min(ai, aj)]pk ← [aj ]pk ·S1 = [aj+u∗ ·(ai−aj)]pk.
6. CP and CSP:

(a) Calculate [lmin(ai,aj)]pk = [j + u∗ · (i− j)]pk refer to
Step 3(b) – Step 5.

the CSP. Use SK(1) to partially decrypt tj,h, then send tj,h
and the partially ciphertext t′j,h to CSP in Step 4(b). Upon
receiving tj,h and t′j,h, for 1 ≤ j ≤ k and 1 ≤ h ≤ m, CSP
decrypts them to get t′′j,h = pΓj ,h + rj,h. Then CSP encrypts
t′′j,h with QU’s public key pku to get [t′′j,h]pku and sends
them to CP, as in Step 5. Step 6 shows that CP removes
the random factors from [t′′j,h]pku(1 ≤ j ≤ k, 1 ≤ h ≤ m)

by computing Tj,h = [t′′j,h]pku · [rj,h]N−1
pku

= [pΓj ,h]pku , and
Send Tj,h to QU. Finally, QU decrypts them with sku by
WDec algorithm (described in Section 3.1) to get pΓj,h

, for
1 ≤ j ≤ k and 1 ≤ h ≤ m. At this point, pΓj ,h(1 ≤ j ≤ k)
are the jth nearest neighbor to the query q.

We remark that, to facilitate the understanding, our
SeckNN scheme actually adopted a relatively direct way
of comparing one by one (refer to Step 3) when retrieving

Algorithm 3 SecMIn(([a1]pk, [1]pk), . . . , ([an]pk, [n]pk))→ Γ

Require: CP has ([a1]pk, [1]pk), . . . , ([an]pk, [n]pk), SK(1), pk;
CSP has SK(2), pk.

1. CP and CSP:
(a) (T, I)← SecMin(([a1]pk, [1]pk), ([a2]pk, [2]pk)).
(b) for i = 2 to n− 1 do

(T, I)← SecMin((T, I), ([ai+1]pk, [i+ 1]pk)).
end for

2. CP:
(a) I1 = PDOSK(1)(I).
(b) Send I, I1 to CSP.

3. CSP:
(a) I2 ← PDTSK(2)(I1, I).
(b) Send I2 to CP.

4. CP:
(a) Γ← I2.

k-NN. The computational complexity of retrieval algorithm
is O(n · k). However, all ranking-based methods such as
merging sort, quicksort and heapsort can be used in our
scheme to enhance the efficiency, e.g. based quicksort re-
trieving complexity can reach O(k · log n).

5.3 Optimization

Our scheme runs on the top of encrypted data for the secure
kNN query, whereas it does introduce inefficiency. Now we
discuss two strategies to boost the efficiency. One is the k-
d tree [33] and the other is offline and pipeline computing
[47].

5.3.1 k-d Tree

Since k-d trees divide the range of a domain in half at
each level of the tree, they are useful for performing an
optimization of the spatial query. For ease of description,
we assume each data record (a point) has two dimensions
(i.e. m = 2). Next we will explain the optimization in the
context of the point set partition shown in Fig. 3.

LL2(4,4)

UR2(7,10)

Fig. 3. Partitioning data points using a k-d tree.

The DO preprocesses the source data according to
a k-d tree decomposition, each rectangular partition in
Fig. 3 has roughly n/7 data points, and can be unique-
ly identified by its lower-left (LL) and upper-right (UR)
corners. For instance, the 2nd partition is enclosed by
LL2(4, 4), UR2(7, 10). DO encrypts each LL/UR corners
and sent to CP. When receiving a encrypted query [q]pku
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Algorithm 4 SeckNN(D, [q]pk)→ T

Require: CP holds D, [q]pk, SK
(1), pk, pku, pko;

CSP has SK(2), pk, pku; QU has sku.
1. CP and CSP:

(a) for i = 1 to n do
[di]pk ← SecDist([pi]pko , [q]pku) = [∥pi − q∥2]pk.

end for
2. CP:

(a) Use
−→
d to denote {([d1]pk, 1), . . . , ([dn]pk, n)}.

3. for j = 1 to k do
(a) CP and CSP:

Γj ← SecMIn−j+1(
−→
d ).

(b) CP:
Remove ([dΓj ],Γj) from

−→
d .

end for
4. CP:

(a) Get Γ = (Γ1,Γ2, . . . ,Γk).
(b) for 1 ≤ j ≤ k and 1 ≤ h ≤ m do

i) tj,h ← [pΓj ,h]pko · [rj,h]pko , where rj,h ∈ ZN .
ii) t′j,h ← PDOSK(1)(tj,h).
iii) Send tj,h, t

′
j,h to CSP.

end for
5. CSP:

(a) for 1 ≤ j ≤ k and 1 ≤ h ≤ m do
i) t′′j,h ← PDTSK(2)(t′j,h, tj,h) = pΓj ,h + rj,h.
ii) Send [t′′j,h]pku to CP.

end for
6. CP:

(a) for 1 ≤ j ≤ k and 1 ≤ h ≤ m do
i) Tj,h ← [t′′j,h]pku · [rj,h]N−1

pku
= [pΓj ,h]pku .

ii) Send Tj,h to QU.
end for

6. QU:
(a) for 1 ≤ j ≤ k and 1 ≤ h ≤ m do

pΓj ,h ← Dsku(Tj,h).
end for

(b) T = {pΓj ,h/1 ≤ j ≤ k, 1 ≤ h ≤ m}.

from the QU, the CP finds a subspace which contains the
query point by following test:

xLL < xq < xUR,

yLL < yq < yUR.
(4)

Only satisfied with these two conditions at the same time,
the partition contains the query point. Since LL/UR corners
and query point are encrypted by pko and pku respectively,
we provide the SecComp protocol to compare the cipher-
texts in a multiple keys manner. A detailed description is p-
resented in Algorithm 5. The goal of SecComp([a]pko , [b]pku)
is for CP and CSP jointly compute the flag u∗ to indicate the
smaller of a and b (i.e. a < biffu∗ = 1), which will be known
only to CP. The idea of this protocol is similar to SecMin
algorithm, hence, it won’t be covered again here.

Now that we can find out the eligible partition, then
the CP just needs to execute the secure k-NN query in it.
We remark that, in general, more than one partition might
be accessed for the absolutely accurate results. Even so,
this greatly reduces overhead and helps improve overall
performance.

Algorithm 5 SecComp([a]pko , [b]pku)→ u∗(a < b iffu∗ = 1)

Require: CP has [a]pko , [b]pku , SK
(1), pk, pku, pko;

CSP has SK(2), pk.
1. CP:

(a) Choose random r1, r2 ∈ ZN (r1 ̸= r2), compute R =
r1 − r2.

(b) X ← [a]pko · [r1]pko , Y ← [b]pku · [r2]pku ,
X1 ← PDOSK(1)(X), Y1 ← PDOSK(1)(Y ).

(c) Send X,X1, Y, Y1 to CSP.
2. CSP:

(a) X2 ← PDTSK(2)(X1, X).Y2 ← PDTSK(2)(Y1, X).
(b) S1 ← [X2 − Y2]pk, S2 ← [Y2 −X2]pk.
(c) Send S1, S2 to CP.

3. CP:
(a) Flip a coin s randomly(i.e. s = 1 or s = 0).
(b) if s = 1 then

[l]pk = S1 · [R]N−1
pk

else
[l]pk = S2 · [R]pk.

end if
(c) Chooses a random number r, s.t. L(r) < L(N)/4,

Z = [l]rpk, Z1 = PDOSK(1)(Z).
(d) Send Z,Z1 to CSP.

4. CSP:
(a) Z2 ← PDTSK(2)(Z1, Z).
(b) if L(Z2) > L(N)/2 then

u = 1
else
u = 0.

end if
(c) Send u to CP.

5. CP:
(a) if s = 1 then

u∗ = u
else
u∗ = 1− u.

end if

5.3.2 Offline and Pipeline Computing

It can be seen from the above that the k-d tree can trim
the database size. Next we discuss how to use offline and
pipeline computing to improve the processing power in our
scheme.

In the DT-PKC cryptosystem [18], encryption of a integer
x ∈ ZN is given by [x]pk = {grθi(1 + xN) mod N2; gr mod
N2}, where r is a random number. Since the computation of
grθi mod N2 and gr mod N2 is independent of x, it could
be put into an offline phase. Furthermore, the actual online
computation costs (with an offline phase) of our proto-
cols can be much less than their costs without an offline
phase. For example, Step 2 in SecDist protocol computes
X = [pi,1]pko · [r1]pko and Y = [q1]pku · [r2]pku , where r1
and r2 are randomly chosen by CP. It is obvious that the
computation of [r1]pko and [r2]pku is independent of any
specific factor of SecDist. That is, CP can precompute these
values during the offline phase, thus reducing its online
computation time. In a similar manner, CP and CSP can
precompute certain intermediate values in each protocols.

We are able to further reduce the online execution time
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by adopting the technique of pipeline computing. Take the
execution of SecDist for instance, by which CP would like to
compute [(pi,1−q1)2]pk and [(pi,2−q2)2]pk. Here CP does not
have to wait the response of CSP after sending [pi,1 + r1]pko

and [q1 + r2]pku . Instead, after sending [pi,1 + r1]pko and
[q1 + r2]pku to CSP, CP can immediately start computing
[pi,2+r1]pko and [q2+r2]pku . We expect that we could further
save at least one-third of the online execution time in the
long run when the computation of [(pi,j − qj)

2]pk(1 ≤ j ≤
m) are executed in the pipeline. Likewise, we could pipeline
the SecMIn protocol to save much time.

6 SECURITY ANALYSIS

In this section, we analyze the security of the sub-protocols
including in SecDict, SecMin, SecMIn, SecComp and then
demonstrate our SeckNN scheme can preserve the data
confidentiality and query privacy against A described in
Section 4.2.

6.1 Security of Sub-protocols
In order to prove the security of the sub-protocols, we first
list the security theorem of the DT-PKC and the security def-
inition of the protocol under semi-honest model as follows.

Theorem 1 [18]. The DT-PKC scheme introduced in Section
3.1 is semantically secure, based on the assumed intractability of
the DDH assumption over ZN2 . (The details of the proof can
be referred to [18])

Definition 3 (security in the semi-honest model) [19].
Let ai be the input of party Pi, Πi(π) be Pi’s execution image of
the protocol π and bi be the output for party Pi computed from
π. Then, π is secure if Πi(π) can be simulated from ai and bi
such that distribution of the simulated image is computationally
indistinguishable from Πi(π). (Detailed security definition can
be found in [19])

As mentioned above, we need to show that the simulated
execution image of these sub-protocols are computationally
indistinguishable from their actual execution image. Note
that, the execution image generally includes the messages
exchanged and the information computed from these mes-
sages.

Theorem 2. The SecDist protocol described in Algorithm 1
is secure under semi-honest model.

Proof. Here, let the execution image of CSP be denoted
by ΠCSP (SecDist) which is given by ΠCSP (SecDist) =
{(X,X1, X2), (Y, Y1, Y2)} where X2 = pi,j + r1 and Y2 =
qj + r2 are derived by decrypting (X,X1) and (Y, Y1),
respectively. Note that r1 and r2 are random numbers in ZN .
We assume ΠS

CSP (SecDist) means the simulated image of
CSP, and ΠS

CSP (SecDist) = {(X ′, X ′
1, X

′
2), (Y

′, Y ′
1 , Y

′
2)}

where all the elements are randomly generated from ZN .
Since DT-PKC is a semantically secure encryption scheme,
(X,X1) and (Y, Y1) are computationally indistinguishable
from (X ′, X ′

1) and (Y ′, Y ′
1), respectively. Meanwhile, as X ′

2

and Y ′
2 are randomly chosen from ZN , X2 and Y2 are

computationally indistinguishable from X ′
2 and Y ′

2 , respec-
tively. Based on the above, we can draw a conclusion that
ΠCSP (SecDist) is computationally indistinguishable from
ΠS

CSP (SecDist).
Similarly, the execution image of CP in SecDist protocol

is given by ΠCP (SecDist) = {S1, S2} where S1 and S2 are

encrypted values. Let the simulated image of CP be given by
ΠS

CP (SecDist) = {S′
1, S

′
2}, where S′

1 and S′
2 are randomly

chosen from ZN . Due to the semantically secure of DT-PKC,
S1 and S2 are computationally indistinguishable from S′

1

and S′
2, respectively. As a result, ΠCP (SecDist) is computa-

tionally indistinguishable from ΠS
CP (SecDist). Combining

the above analyses and associating with the Definition 3, we
can confirm that SecDist protocol is sure under the semi-
honest model.

Theorem 3. The SecMin protocol described in Algorithm 2
is secure under semi-honest model.

Proof. According to Algorithm 2, let the exe-
cution image of SecMin for CSP be denoted by
ΠCSP (SecMin) which is given by ΠCSP (SecMin) =
{(X,X1, X2), (Y, Y1, Y2), (T, T1, T2), u} where X2 = r · l,
Y2 = u∗ + r1 and T2 = ai − aj + r2 are separately derived
by decrypting (X,X1), (Y, Y1) and (T, T1). Note that r is
random numbers in ZN+ while r1 and r2 are randomly
chosen from ZN . In addition, u denotes the comparison
result compute from X2. We assume ΠS

CSP (SecMin)
means the simulated image of CSP, and ΠS

CSP (SecMin) =
{(X ′, X ′

1, X
′
2), (Y

′, Y ′
1 , Y

′
2), (T

′, T ′
1, T

′
2), u

′}, where
(X ′, X ′

1, X
′
2), (Y ′, Y ′

1 , Y
′
2) and (T ′, T ′

1, T
′
2) are randomly

generated from ZN whereas u′ is set to 0 or 1 according to
the randomly tossed coin. Since DT-PKC is a semantically
secure encryption scheme, (X,X1, X2), (Y, Y1, Y2) and
(T, T1, T2) are computationally indistinguishable from
(X ′, X ′

1, X
′
2), (Y ′, Y ′

1 , Y
′
2) and (T ′, T ′

1, T
′
2), respectively.

Furthermore, because the element s is a coin flipped
randomly by CP (at Step 1(a) in Algorithm 2), u is either
0 or 1 with equal probability. Thus, u is computationally
indistinguishable from u′. Combining the above results,
we can claim that ΠCSP (SecMin) is computationally
indistinguishable from ΠS

CSP (SecMin).
On the other hand, the execution image of CP, de-

noted by ΠCP (SecMin), is given by ΠCP (SecMin) =
{[u]pk, [S]pk}. Let the simulated image of CP be given by
ΠS

CP (SecMin) = {α, β}, where α and β are randomly
chosen from ZN . Since DT-PKC is a semantically secure
encryption scheme, [u]pk and [S]pk are computationally in-
distinguishable from α and β, respectively. Thus, we can say
that ΠCP (SecMin) is computationally indistinguishable
from ΠS

CP (SecMin). Based on the above analysis, we can
claim that SecMin protocol is sure under the semi-honest
model.

The security proof of SecMIn and SecComp protocols
are similar to that of SecDist and SecMin protocols under
the semi-honest model.

6.2 Security of SeckNN Scheme
In a similar manner, we can prove that our SeckNN scheme
is secure under the semi-honest model firstly. Briefly, during
Step 1 to Step 3 in Algorithm 4, the sub-protocols SecDict
and SecMIn are used as the fundamental building block, the
rest of data process is non-interactive. Therefore, this phase
is secure. Furthermore, the data operations in Step 4 - Step
7 are similar to the process of SecDist, all the exchanged
messages are in encrypted format and each value deduced
by CP and CSP is blinded by random numbers. As a result,
it is easy to prove that SeckNN scheme is secure under the
semi-honest model.
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Next we discuss our SeckNN scheme can preserve the
data confidentiality and query privacy against an active
adversary A. If A eavesdrop the transmission link between
DO and CP, the encrypted database are got by A. Moreover,
all the intermediate values transmitted between CP and
CSP may also be eavesdroped by A. Because all these
data are transmitted in encrypted form or randomized by
the random numbers involved in the protocols, A cannot
decrypt the ciphertext and intermediate values unless A
obtains the strong private key. However, it is impossible
to recover the strong private key for A, as the private key
is randomly split by executing SkeyS algorithm of DT-
PKC and A cannot capture both shares. Furthermore, even
A compromises some of other QUs (i.e. not the QU who
launched the query) to get their weak private, A is still
unable to decrypt the above ciphertext or the encrypted final
result due to the unrelated property of different QUs’ weak
private keys in DT-PKC. In all, the data confidentiality and
query privacy which defined in Section 4.2 was satisfied.

7 PERFORMANCE EVALUATION

In this section, we developed a Java prototype that imple-
ments our scheme with the performance improvement s-
trategies, and the evaluations were performed on a machine
with 3.30GHz four-cores processor and 8GB RAM. Specif-
ically, we implement DT-PKC cryptosystem by BigInteger
Class in java development kit, and using this implement our
computation protocols. For our experiments on real dataset,
we used the gas sensor array under dynamic gas mixtures
dataset [48] that consists of 4,178,504 data records and
19 attributes (i.e. dimensions). To make a comprehensive
performance evaluation, we compare our query processing
scheme with the SkNNb [10] which adopts the Twins-Cloud
structure and Paillier cryptosystem. In addition, it has lower
security than ours. Moreover, we do the performance anal-
ysis of both schemes by varying parameters.

We test our scheme over above real-world dataset with
different scales (i.e. n from 200, 000 to 1 million). Regardless
of n, the default cardinality of each rectangular partition
(b) is set to 200 in the k-d tree space-partitioning. For the
DT-PKC algorithm, we denote N as 1024 bits to achieve 80-
bit security levels [49]. At least 20 random k-NN queries
are selected and evaluated with each scale. Table 3 presents
the specific parameter settings in our experiment. In all
experiments, unless otherwise stated, when we consider just
one parameter, we keep all other parameters at their default
values. And the completion of our scheme is accompanied
by the optimization of performance mentioned in Section
5.3. First of all, we evaluate the proposed scheme with
the main performance metrics, including data processing
time at the data owner, k-NN query response time and
computational cost at the query users, and secondly, we
evaluate the scalability of our system, including two factors:
the number of the query users and whether the scheme uses
optimized methods.

7.1 Data Processing Time at the Data Owner

In the phase of data pretreatment, there are two major steps
for the data owner: 1) creating k-d tree space index and 2)

TABLE 3
Parameter Settings

Parameter Values Default Value
Dataset size (n/× 105) 0.2, 0.4, 0.6, 0.8, 1.0 0.6

Cardinality of partition (b) 100, 200, 300, 400 200

Required k (k) 2, 4, 6, 8 6

Number of attributes (m) 2, 4, 6, 8 6

Length of N (l / bit) 1024 1024

encrypting data. The data processing time of our scheme
mainly depends on three parameters: 1) the size of dataset
(n), 2) the cardinality of each rectangular partition (b), and
3) the number of attributes (m). Therefore, we evaluate the
performance by varying these three parameters.

For n = 0.6 and m = 6, Fig. 4a shows the data
processing time of our scheme for varying values of b. The
experimental results show that the time in Step 2) takes
the majority of total time and does not change at all with
varying b. This is because that most of the cost comes from
the data encryption which is independent of b. For example,
when b = 200, the time of Step 2) is 18.67 minutes whereas
Step 1) only requires 0.69 minutes. As is shown in Fig. 4b,
it is natural to see a linear increase with respective to n and
m in the total data processing time. This is explained by the
fact that the time of both steps is mainly depends on the size
of dataset (n) and the number of attributes (m).
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Fig. 4. Data processing time by varying parameters in our scheme.

Next, we plot the data processing time of SkNNb and
SeckNN by varying n and m in Fig. 5. As the n and m
increases, the time of two schemes linearly increases because
they both need to encrypt all the data. It is also obvious that,
the time of SkNNb is less than ours. For example, in Fig. 5a,
when the dataset has 60, 000 records, the time of SkNNb

is 9.98 minutes while ours needs 19.36 minutes. The main
reason is that the single encrypting time of DT-PKC is more
than that of Paillier cryptosystem. However, our scheme still
enjoys practical performance on massive datasets for data
processing at the data owner shown in Fig. 5. Even more
important, this is only a one-time cost.

7.2 k-NN Query Response Time
The main performance metric used to evaluate the proposed
technique is k-NN query processing time. Similar to [29], We
define the indicator as the duration from the time the query
is issued until the k results are received at the query users.
For our scheme, this time consists of two parts: 1) figure out
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Fig. 6. Query response time by varying parameters in our scheme.
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Fig. 7. Query response time of SkNNb and SeckNN.
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Fig. 5. Data processing time of SkNNb and SeckNN.

the partition that contains a query point q, which is mainly
affected by the total number of rectangular partitions; 2)
find k nearest neighbor of q among points in this partition
element through a secure way.

Firstly we analyze the performance of our scheme by
varying parameters. Fig. 6a shows the query response time
by varying b and m. When m = 2 and m = 4 (m = 6 and
m = 8), the query response time is decreased as b changes
from 100 to 150 (from 100 to 200) while the query response
time increase as b changes from 150 to 300 (from 200 to 300).
This result comes from the following reasons. The total num-
ber of rectangular partitions decreases as b becomes larger.
So, with b increases, the less computation time is required
for SecComp algorithm to find a partition corresponding
to the query. However, the more larger cardinality of the
rectangular cell lead more overhand to perform the SeckNN
algorithm in a partition. The k-NN query response time for
b = 200 and k = 6 varying values of n and m are shown
in Fig. 6b. The observation is that the time grows linearly
with n and m. When n = 0.6 and b = 200, a similar trend is

observed for varying values of k and m, which is observed
in Fig. 6c. Combining the two conditions, it is clear that the
response time of our scheme is linear with with k, m and n.

Next, Fig. 7 shows the query response time of SkNNb

and SeckNN by varying parameters. Note that we also use
offline and pipeline computation to improve efficiency for
SkNNb. The performance of both schemes by varying n is
shown in Fig. 7a. As the n increases, the query processing
time of SkNNb linearly grows because it needs to perform
secure protocols over all the data. For example, the time
of SkNNb varies from 198 to 380 seconds when n (×105)
is changed from 0.2 to 1.0 respectively. Also, for SeckNN,
the time varies from 140 to 271 seconds when n is changed
from 0.2 to 1.0 respectively. That is, the time cost of SeckNN
is more than 40% less than SkNNb, which benefit from
the k-d tree space-partitioning. As shown in Fig. 7b, a
similar trend is observed for varying values of m, because
the dimension m also affects each step of solutions. We
evaluated the response time of both scheme for varying k,
the results are shown in Fig. 7c. For SeckNN, the time grows
linearly with k, but for SkNNb, the time does not change
much with varying k. This is because the computation for
top-k minimum values is in plaintext form, which is done
at the expense of security. Above all, our scheme assures
data security and user privacy while decreasing as much
computing time as possible.

7.3 Computational Cost at the Query User
Fig. 8 shows the computational cost at the query users of
SkNNb and SeckNN for varying the k and m. As the k be-
comes larger, the cost time of both schemes linearly increase.
Meanwhile, when the m increases, the cost time of both
schemes also increases accordingly, because the schemes
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Fig. 8. Computational cost at the query users of SkNNb and SeckNN.

should perform k ·m times decryption. As we can observe,
the computational cost of SkNNb is always much than ours
for all cases. For instance, when k = 6 and m = 6, the time
of SkNNb is 648 ms while ours is 180 ms. This is due to
the difference of decryption cost between Paillier and DT-
PKC cryptosystem (i.e. The cost of WDec algorithm is less
than decryption in Paillier under similar secure conditions).
In short, our scheme has low computation cost at the query
users, which is suitable for the lightweight client.

7.4 Scalability
In this part, we further explore the effects of the number of
the query users and optimization techniques. In our scheme,
the number of the query users can be understood as the
query concurrency. Fig. 9 shows the impact of changing the
number of query users on query performance. For all the
values of m, query response time is nearly invariable as
the number of query users (concurrency) changes from 1
to 4 while the query response time increases linearly as the
number is greater than 4. Since multithread programming
technique was used to improve query efficiency in our Java
prototype and the resource that every thread competes for
is only computing power of CPU, the boost in concurrency
only increases the CPU utilization without query response
time degradation, when the concurrency goes below a cer-
tain threshold value. Once above this threshold, an increase
in the number of concurrent visitors causes the waiting for
CPU with it came an approximately liner increase in query
response time. As shown in Fig. 9, the best value to pick
for the concurrency value (i.e. the threshold value) in our
implementation is the number of CPUs on the machine.
Note that Hadoop/Spark provides a framework to improve
concurrency by distributing the workload into a cluster of
computers, such technologies are beyond the scope of this
work, We will leave this to future work.

As mentioned earlier, high performance can be achieved
with the optimization techniques (k-d tree and the offline
and pipeline computing). To further justify this claim, we
implement a comparison of query response time between
basic and optimized scheme, the result is as shown in Fig.
10. With optimization techniques, the time for query is
reduced by orders of magnitude and faster-than-line. It is
because that k-d tree can dramatically trim the database size
and offline and pipeline computing can reduce the number
of waiting threads in the execution of the program. There-
fore, it is necessary and effective to optimize our scheme
through these techniques.
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7.5 Further Discussions
In above-mentioned experiments, we focus on the evalua-
tion of computational cost, not on the communication costs.
This is because the amount of computations can be con-
trolled but the communication rate is uncontrollable in the
practical Twin-Cloud environment. We also acknowledge
that it will take a longer time to execute query in practical
cloud environment than that in our simulation experiment.
The communication latency will be the focus in the further
work.

8 CONCLUSION

In this paper, we focused on the problem of supporting
k-NN query over encrypted cloud data while the data
owner cannot share his key with query users. For this we
proposed a new solution with mutiple keys to solve the key-
sharing problems thoroughly. At the core of our scheme,
we presented a series of novel secure protocols based
on Twin-Cloud structure and DT-PKC cryptosystem. We
showed a theoretical analysis that our scheme can protect
the data confidentiality and query privacy. Finally, extensive
experimental evaluations demonstrate the efficiency and the
scalability of the our scheme. As a future work, we will
extend our work to support other data mining tasks, such
as classification and similarity computation.
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