
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID 1

An Algorithm for Finding the Minimum Cost of
Storing and Regenerating Datasets in

Multiple Clouds
Dong Yuan, Member, IEEE, Lizhen Cui, Wenhao Li, Xiao Liu, Member, IEEE and Yun Yang,

Senior Member, IEEE

Abstract—The proliferation of cloud computing allows users to flexibly store, re-compute or transfer large generated datasets
with multiple cloud service providers. However, due to the pay-as-you-go model, the total cost of using cloud services depends
on the consumption of storage, computation and bandwidth resources which are three key factors for the cost of IaaS-based
cloud resources. In order to reduce the total cost for data, given cloud service providers with different pricing models on their
resources, users can flexibly choose a cloud service to store a generated dataset, or delete it and choose a cloud service to
regenerate it whenever reused. However, finding the minimum cost is a complicated yet unsolved problem. In this paper, we
propose a novel algorithm that can calculate the minimum cost for storing and regenerating datasets in clouds, i.e. whether
datasets should be stored or deleted, and furthermore where to store or to regenerate whenever they are reused. This minimum
cost also achieves the best trade-off among computation, storage and bandwidth costs in multiple clouds. Comprehensive
analysis and rigid theorems guarantee the theoretical soundness of the paper, and general (random) simulations conducted with
popular cloud service providers’ pricing models demonstrate the excellent performance of our approach.

Index Terms—Cloud Computing; Data Storage and Regeneration; Minimum Cost

——————————  ——————————

1 INTRODUCTION

N recent years, cloud computing is emerging as the latest

computing paradigm which provides redundant, inexpen-

sive and scalable resources on demand to users [1] [2]. IaaS

(Infrastructure as a Service) is a very popular way to deliver

services in the cloud [3], where users can deploy their applica-

tions in unified cloud resources such as computing, storage

and network services without any infrastructure investments.

However, along with the convenience brought by using on-

demand cloud services, users have to pay for the resources

used according to the pay-as-you-go model, which can be

substantial. Especially, nowadays applications are getting

more and more data intensive [4], where the generated data

are often gigabytes, terabytes, or even petabytes in size. These

generated data contain important intermediate or final results

of computation, which may need to be stored for reuse [5].

Hence, cutting the cost of cloud-based data management in a

pay-as-you-go fashion becomes a big concern for deploying

applications in cloud computing environment.

Cloud computing has such a fast growing market, more

and more cloud service providers appear with different prices

of computation, storage and bandwidth resources [6] [7]. As

unlimited storage and processing power can be easily ob-

tained on-demand from different commercial service provid-

ers like utilities, users have multiple options to cope with the

large generated application data, e.g., datasets d1, d2 … d8 in

Figure 1. Specifically, users can store all data in the cloud and

simply pay for the storage cost, and alternatively, they can

delete some data to save the storage cost and pay for the com-

putation cost to regenerate them whenever they are reused,

e.g, datasets d2, d6 and d8 are deleted in Figure 1. Further-

more, users can also change to cheaper service providers to

store or to regenerate data with paying for the bandwidth cost

for data transfer1. Hence, there is a trade-off among computa-

tion, storage and bandwidth in clouds, where different storage

and regeneration strategies lead to different total costs for stor-

ing the generated application data. In light of this, users need

comprehensive understanding of cost in clouds in order to

take advantage of the cost-effectiveness of cloud computing,

especially for storing and regenerating data with multiple

cloud service providers2.

Finding the trade-off among computation, storage and

bandwidth costs in clouds is a complicated problem. Different

cloud service providers have different prices on their re-

1 The “vendor lock-in” issue may bring extra cost in regenerating applica-
tion data with different cloud service providers. In this paper, we do not
consider this extra cost in clouds, and we have listed this issue as our
future work.
2 In this paper, term “cloud service provider(s)” refers to IaaS provider,
and term “user(s)” refers to users of IaaS providers who are often Soft-
ware as a Service (SaaS) and Platform as a Service (PaaS) providers.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 D. Yuan is with the University of Sydney, Sydney, NSW 2006, Australia.
E-mail: dong.yuan@sydney.edu.au.

 L. Cui and W. Li are with the Shandong University, Jinan, Shandong
250101, China. E-mail: clz@sdu.edu.cn ayumi_5420467@hotmail.com

 X. Liu is with the Software Engineering Institute, East China Normal
University, Shanghai 200062, China. E-mail: xliu@sei.ecnu.edu.cn.

 Y. Yang is with the Anhui University, Hefei, Anhui 230039, China and
Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122,
Australia. E-mail: yyang@swin.edu.au.

Please note that all acknowledgments should be placed at the end of the paper,
before the bibliography (note that corresponding authorship is not noted in
affiliation box, but in acknowledgment section).

I

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

sources and datasets also have different sizes, generation

times and usage frequencies. Intuitively, some heuristics can

be applied. For example, we can store the frequently used

data which have high generation costs in cloud services with

cheaper storage resources. Also, we can delete the less fre-

quently used data which have large sizes but small regenera-

tion costs, and regenerate them in cloud services with cheaper

computation resources. Not only those, but data also have

dependencies in clouds, i.e. the complex generation relation-

ships. The data regeneration cost depends on their stored

provenance data; hence the change of storage status of any

data will impact regeneration cost of the data derived from

them.

Generated application datasets

d1 d2

d3

d8d7

d6

d4

d5

d1 d7

d3 d6d4 d5

d8

d2

Cloud service 1

Cloud service 3

Cloud service 2

Storage cost for
stored data Computation

cost for re-
generation

Bandwidth cost
for data transfer

Total Cost:
Computation + Storage + Bandwidth

User

IaaS Cloud
Providers

Figure 1. Storage and regeneration of application datasets

in clouds

In this paper, we propose a novel GT-CSB algorithm that

can find the best trade-off among computation, storage and

bandwidth costs in clouds. This trade-off is represented by the

theoretical minimum cost strategy for storing and regenerat-

ing application data among multiple cloud service providers.

This minimum cost is a very important reference for cloud

users in the following three aspects: 1) it can be used to design

minimum cost benchmarking approaches for evaluating the

cost effectiveness in clouds; 2) it can guide cloud users to de-

velop cost effective storage strategies for their applications;

and 3) it can demonstrate the constitution of different costs in

clouds and help users to understand the impact of different

workloads on the total cost.

The remainder of this paper is organised as follows. Section

2 discusses the related work. Section 3 introduces a motivating

example of our research and presents the preliminaries in-

cluding some important concepts and the trade-off based cost

model in clouds. Section 4 presents our GT-CSB algorithm to

find the best trade-off among computation, storage and

bandwidth in clouds. Section 5 discusses the utilisation of the

GT-CSB algorithm in designing cost effective storage strategy

and minimum cost benchmarking approaches. Section 6 de-

scribes our experimental results for evaluation. Section 7

summarises our conclusions and points out future work.

2 RELATED WORK

In the research area of resource management, much work has

been done about resource negotiation [8], replica placement

[9] and multi-tenancy in clouds [10], by taking advantage of

different types of resources. Our work also investigates differ-

ent types of resources, but we mainly focus on the trade-offs

among them. Another important foundation for our work is

the research on data provenance [11]. More specifically, Os-

terweil et al. [12] present how to generate a provenance based

data derivation graph for execution of a workflow. Foster et al.

[13] propose the concept of virtual data in the Chimera sys-

tem, which enables the automatic regeneration of data when

needed. Recently, research on data provenance in cloud com-

puting systems has also appeared [14]. Based on the above

research, in this paper, we utilise a Data Dependency Graph

(DDG) which is based on data provenance. DDG depicts the

generation relationships of all the generated data in clouds,

with which we can manage where the data are stored or how

to regenerate them. Since graph theory is a useful tool in com-

puter science [15] [16], we create a transitive graph based on

DDG and propose an algorithm that can find the best trade-

off among computation, storage and bandwidth in clouds.

Plenty of research has been done with regard to the trade-

off between computation and storage. The Nectar system [17]

is designed for automatic management of data and computa-

tion in data centres, where obsolete data are deleted and re-

generated whenever reused in order to improve resource uti-

lisation. In [18], Deelman et al. present that storing some pop-

ular intermediate data can save the cost in comparison to al-

ways regenerating them from the input data. In [19], Adams et

al. propose a model to represent the trade-off of computation

cost and storage cost. In [20], the authors propose the CTT-SP

algorithm that can find the best trade-off between computa-

tion and storage in the cloud, based on which a highly cost-

effective and practical strategy is developed for storing da-

tasets with one cloud service provider [21]. However, the

above work did not consider the bandwidth cost into the

trade-off model.

As the trade-off among different costs is an important issue

in the cloud, some research has already embarked on this is-

sue to a certain extent. In [22], Joe-Wong et al. investigate

computation, storage and bandwidth resources allocation in

order to achieve a trade-off between fairness and efficiency. In

[23], Baliga et al. investigate the trade-off among computation,

storage and bandwidth at the infrastructure level of cloud

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 3

systems, where reducing energy consumption is the main

research goal. In [24], Chen et al. further analyse the impacts of

computation, storage and bandwidth on the total energy con-

sumption by investigating different types of applications in

the cloud. In [6], Agarwala et al. transform application data to

certain formats and store them with different cloud services in

order to reduce storage cost in the cloud, but data dependency

and the option of data regeneration are not considered in their

work. In [25], Wu et al. propose SPANStore which can cost-

effectively place data replicas among geo-distributed data

centres to reduce the access delay. It only finds the trade-off

between storage and bandwidth. In our prior work [26], we

propose the T-CSB algorithm which can find a trade-off

among Computation, Storage and Bandwidth costs (T-CSB).

However, it is not generic because there is a strong assump-

tion that all the computation (i.e. data regeneration) must be

conducted in one cloud service, which poses certain limita-

tion.

In this paper, we propose the GT-CSB algorithm, which

can find a Generic best Trade-off among Computation, Stor-

age and Bandwidth (GT-CSB) in clouds. This generic best

trade-off represents the minimum cost storage and regenera-

tion strategy, in which data can be stored or regenerated with

any cloud service providers.

3 MOTIVATING EXAMPLE AND PRELIMINARIES

In this section, we first present a motivating example, in

which our GT-CSB algorithm can be used. Then we intro-

duce some preliminaries, including a classification of ap-

plication data in clouds, the concept of Data Dependency

Graph (DDG) and the trade-off based cost model among

computation, storage and bandwidth costs for datasets

storage and regeneration in cloud computing.

3.1 Motivating Example

In order to explore the usage scenarios of our approach, we

have investigated some data intensive applications, which are

1) a Finite Element Modelling (FEM) application in Structural

Mechanics, 2) a Climatological Analyses Application in Mete-

orology and 3) a Pulsar Searching Application in Astrophys-

ics. Due to the page limit, we only present the FEM applica-

tion in this section as a motivating example and provide the

other two applications in Supplementary Materials.

Finite Element Modelling (FEM) is an important and wide-

ly used method for impact test of objects, where classic appli-

cations are Hopkinson pressure bar test, gas gun impact test,

drop hammer test, etc. At Swinburne University of Technolo-

gy, researchers of the Structural Mechanics Research Group

conduct FEM simulations of Aluminium Honeycombs under

dynamic out-of-plane compression to analyse the impact be-

haviour of the material and structure [27]. In their research,

numerical simulations of the dynamic out-of-plane compres-

sion are conducted with ANSYS/LS-DYNA software, which is

a powerful FEM tool for modelling non-linear mechanics of

solids, fluids, gases and their interaction. The FEM application

has four major steps as shown in Figure 2.

From Figure 2, at beginning, based on the researchers’ de-

sign, the object with special structure (i.e. the honeycombs

structure in this example) for FEM analysis is generated in the

Object Modelling step. Then, researchers specify more de-

tailed parameters of the object model in the FEM Initiation

step, e.g. material of the object and elements for modelling.

Based on the well-defined model, researchers can run differ-

ent FEM simulations according to requirements of the exper-

iment, e.g. speed of the compression and time interval for re-

cording data. This is the most time consuming and important

step in the FEM application, which also generates the largest

volume of data as simulation results. Depending on the speed

of the compression, the computation time of this step varies

from several hours to around one hundred hours, while de-

pending on the time interval for recording data, the size of

generated data varies from gigabytes to hundreds of giga-

bytes. These data are very important for researchers, based on

which the simulation results can be demonstrated in various

ways for analysis.

Model file
(with FEM

parameters)

Model file
(with object
structure)

2D, 3D
diagram

Video file
(.avi)

Model file
(with FEM

parameters)

FEM
simulation

results

FEM
simulation

results

…
...

…
... …

...

Step 1:
 Object

Modelling

Step 2:
FEM

Initiation

Step 3:
FEM

Simulation

Step 4:
Result

Demonstration

Computation Tasks

Generated
Application Data

Size:
Generation Time:

5~10 MB
3~5 mins

10~50 MB
15~30 mins

10~200 GB
5~100 hrs

10~100 KB
5~10 seconds

0.5~3 GB
5~20 mins

Figure 2. Overview of FEM application

With cloud computing, researchers can easily obtain com-

putting resources to run the application, e.g., Amazon EC23.

As time goes on, large volumes of simulation results are ac-

cumulated (e.g., Step 3 in Figure 2). As these data have high

generation cost, they should be stored for reuse. The often-

used datasets can be stored in Amazon S34, and for the rarely

used datasets, it is more cost effective to transfer them to Am-

azon Glacier5 for storage. Futhermore, for some rarely used

datasets that do not have high generation cost (e.g., the vedio

file in Step 4 in Figure 2), it is more cost effective to delete

them and regenerate whenever reused. In this paper, the pro-

posed GT-CSB algorithm can automatically calculate the min-

imum cost storage and regeneration strategy for the applica-

tion data in multiple clouds.

3 http://aws.amazon.com/ec2/
4 http://aws.amazon.com/s3/
5 http://aws.amazon.com/glacier/

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

3.2 Preliminaries

3.2.1 Classification of Application Data in Clouds

In general, there are two types of data stored in clouds,

original data and generated data.

1) Original data are the data uploaded by users, for ex-

ample, in scientific applications they are usually the raw

data collected from the devices in the experiments. For

these data, users need to decide whether they should be

stored or deleted since they cannot be regenerated by the

system once deleted. As cost of storing original data is

fixed, they are not considered in the scope of this paper.

2) Generated data are the data newly produced in the

cloud while the applications are running. They are the

intermediate or final computation results of the applica-

tions, which can be reused in the future. For these data,

their storage can be decided by the system since they can

be regenerated if their provenance is known. Hence, our

storage and regeneration strategy is only applied to the

generated data in the cloud that can automatically decide

the storage status of generated datasets in applications. In

this paper, we refer generated data as dataset(s).

3.2.2 Data Dependency Graph (DDG)

In this paper, we use DDG to represent generated datasets

and their relationships. DDG [20] is a directed acyclic

graph (DAG) which is based on data provenance in appli-

cations. All the datasets once generated in the cloud,

whether stored or deleted, their references are recorded in

DDG. In other words, it depicts the generation relation-

ships of datasets, with which the deleted datasets can be

regenerated from their nearest existing preceding datasets.

Figure 3 depicts a simple DDG, where every node in the

graph denotes a dataset, and the whole DDG will be the

input of the GT-CSB algorithm. We denote dataset di in

DDG as DDGdi  . Furthermore, d1 pointing to d2 means

that d1 is used to generate d2; d2 pointing to d3 and d5 means

that d2 is used to generate d3 and d5 based on different op-

erations; d4 and d6 pointing to d7 means that d4 and d6 are

used together to generate d7.

d1 d2

d3

d8d7

d6

d4

d5

Figure 3. A simple Data Dependency Graph (DDG)

To better describe the relationships of datasets in DDG,

we define a symbol:  , which denotes that two datasets

have a generation relationship, where didj means that di

is a predecessor dataset of dj in DDG. For example, in Fig-

ure 3’s DDG, we have d1d2, d1d4, d5d7, d1d7, etc.

Furthermore,  is transitive, i.e.

 kikjjikji ddddddddd  .

3.2.3 Datasets Storage and Regeneration Cost Model

In a commercial cloud computing environment, service

providers have their pricing models to charge users. In

general, there are three basic types of resources in the

cloud: computation, storage and bandwidth. In this paper,

we facilitate our cost model in the cloud as follows:

Cost = Computation + Storage + Bandwidth

where the total cost of the datasets storage, Cost, is the

sum of Computation, which is the total cost of computation

resources used to regenerate datasets, Storage, which is the

total cost of storage resources used to store the datasets,

and Bandwidth, which is the total cost of bandwidth re-

sources used for transferring datasets via the network.

In order to utilise the datasets storage and regeneration

cost model, we present the following assumptions, deno-

tations and definitions.

Assumptions: We assume that the application be de-

ployed with m Cloud Service Providers, denoted as

CSP={c1, c2, … cm}, and each ci has computation, storage

and network services with different prices6. Furthermore,

we assume there be n datasets in the DDG, denoted as

DDG={d1, d2, … dn}. For every dataset DDGdi  , it can be

either stored with one of the cloud service providers or be

deleted. If it is deleted, it can be regenerated with any one

of the cloud service providers jc CSP whenever it needs

to be reused.

Denotations: We use X, Y, Z to denote the computa-

tion cost, storage cost and bandwidth cost of datasets re-

spectively. Specifically, for a dataset DDGdi  :
j

i

c

d
X denotes the computation cost of regenerating da-

taset di from its direct predecessors in the DDG with cloud

service provider cj, which is calculated as the multiplica-

tion of the generation time of di and the price of computa-

tion resources of cj;
j

i

c

d
Y denotes the storage cost per time unit of storing

dataset di with cloud service provider cj, which is calculat-

ed as the multiplication of the size of di and the price of

storage resources of cj;
,k j

i

c c

d
Z denotes the bandwidth cost of transferring da-

taset di from cloud service provider ck to cj, which is calcu-

lated as the sum of outbound cost of di from ck and in-

bound cost of di to cj. Especially, if ck = cj which means the

6 Popular cloud services providers’ cost models are based on these types
of resources. For example, Amazon cloud services’ prices are as follows:
$0.10 per CPU instance hour for the computation resources;
$0.15 per Gigabyte per month for the storage resources;
$0.12 per Gigabyte bandwidth resources for data downloaded from Am-
azon via the Internet.
The prices may fluctuate from time to time according to market factors.
As this paper’s focus is cost-effectiveness, to simplify the problem, we
assume that in one cloud service provider, the same types of computation
resources are used for regenerating datasets, and the same types of stor-
age resources are used for storing datasets.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 5

data transfer is inside the same cloud service provider,

then
, 0k j

i

c c

d
Z  .

Furthermore, we use
id

v to denote the usage frequency

of di, which means how often di is reused. In cloud, da-

tasets are often shared by many users on the Internet.

Hence
id

v cannot not be defined by a single user. In prac-

tice, it should be an estimated value from the dataset’s

usage history recorded in the system logs.

In a cloud computing environment, in order to regen-

erate a deleted dataset in the DDG, e.g. DDGdi  , first we

need to find its stored provenance dataset(s), then we need

to choose the cloud service providers to regenerate it.

Definition 1: Regeneration strategy of a deleted da-

taset is the selection of cloud service providers where the

dataset is regenerated from its stored provenance da-

taset(s).

Hence, the regeneration cost of a dataset is twofold: 1)

the bandwidth cost of transferring its stored provenance

dataset(s) and intermediate dataset(s) to the correspond-

ing cloud services, and 2) the computation cost of regener-

ating the dataset in these cloud services. However, differ-

ent selections of cloud service providers for regeneration

lead to different regeneration costs of the dataset.

We denote the minimum regeneration cost of dataset

DDGdi  as ()
i

minGenCost d . In the next section, we

will present the method of finding the minimum cost re-

generation strategy in detail.

As this paper investigates the cost-effectiveness of

long-term usage of cloud services, we introduce the con-

cept of Cost Rate for datasets in clouds.

Definition 2: Cost rate of a dataset is the average cost

spent on this dataset per time unit in clouds. For DDGdi  ,

we denote its cost rate as ()
i

CostR d , which depends on

the storage status of di. If di is stored, its cost rate is the

storage cost per time unit in the corresponding cloud ser-

vice. If di is deleted, its cost rate is the minimum regenera-

tion cost multiplied by its usage frequency. Formally,

() , / /
()

, / /

i

j

i

i d i

i c

i jd

minGenCost d v d is deleted
CostR d

Y d is stored in c


 
 .

Based on the above definition, the Total Cost Rate of a

DDG is the sum of cost rate of all the datasets in it, which

is denoted as ()
id DDG i

TCR CostR d  .

Definition 3: Storage strategy of a DDG is the storage

status of all datasets in the DDG, i.e. whether the datasets

are deleted or stored, and furthermore, which cloud ser-

vices the datasets are stored in.

Furthermore, we can calculate the minimum total cost

rate as a benchmark.

Definition 4: Minimum cost benchmark of a DDG is

the minimum total cost rate for storing and regenerating

datasets in the DDG with the minimum cost strategy,

which is denoted as

  min
min ()

id DDG i
TCR CostR d  .

Based on the definitions above, the minimum cost

benchmark facilitates the minimum cost storage and re-

generation strategy of datasets in a DDG, which is also the

best trade-off among computation, storage and bandwidth

costs in clouds. In the next section, we will present the

design of our algorithm to derive this benchmark.

4 GT-CSB ALGORITHM

In the section, we present our novel GT-CSB algorithm. It

can find the minimum cost storage and regeneration strat-

egy for datasets, which represents the minimum cost

benchmark in clouds. First, we briefly introduce the phi-

losophy of the GT-CSB algorithm. Then, we present the

detailed steps of the algorithm, as well as the proofs of the

minimum cost benchmark in clouds. For the ease of illus-

tration, we present the GT-CSB algorithm on linear DDG

in this section. Linear DDG means a DDG with no branch-

es, where each dataset in the DDG only has one direct

predecessor and successor except the first and last da-

tasets. The GT-CSB algorithm for general DDG is dis-

cussed in Section 5. At last, we analyse the computation

complexity of the GT-CSB algorithm.

4.1 Overview of GT-CSB Algorithm

The GT-CSB algorithm is a graph based algorithm, which

has the following main steps.

Step 1: Construct a Cost Transitive Graph (CTG) based

on the DDG. First, for every dataset in the DDG, we create

a set of vertices in the CTG representing services from dif-

ferent cloud service providers where datasets can be

stored or regenerated. Then, we add edges to the CTG and

guarantee that the paths in the CTG (from a start vertex to

an end vertex) have one-to-one mapping to the storage

strategies of datasets in the DDG.

Step 2: Set weights to the edges in the CTG. We present

how to calculate the weights of edges that guarantee that

the length of every path in the CTG (from a start vertex to

an end vertex) equals to the total cost rate of the corre-

sponding storage strategy with the minimum cost regen-

eration strategy of the deleted datasets.

Step 3: Find the shortest path in the CTG. We can use

the well-known Dijkstra shortest path algorithm (or Dijks-

tra algorithm for short) to find the shortest path in the

CTG, which in fact represents both the minimum cost

strategy for storing and regenerating datasets in the DDG

with multiple cloud service providers, and the best trade-

off among computation, storage and bandwidth costs in

clouds.

Next, we will describe these steps in more detail on a

linear DDG.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

d1 dnd2 ...

...
...

1

1

c

d
ver

1

sc

d
ver

1

mc

d
ver

start
ver

...
...

1

2

c

d
ver

2

sc

d
ver

2

mc

d
ver

...
...

1

n

c

d
ver

s

n

c

d
ver

m

n

c

d
ver

end
ver... ...

1d
V

2d
V

nd
V

DDG CTG

...
...

1

1

c

d
ver

1

sc

d
ver

1

mc

d
ver

start
ver

...
...

1

2

c

d
ver

2

sc

d
ver

2

mc

d
ver

...
...

1

n

c

d
ver

s

n

c

d
ver

m

n

c

d
ver

end
ver... ...

(a) Step 1.1: Create vertices for CTG

(b) Step 1.2: Create edges for CTG

Figure 4. Construct CTG from DDG

4.2 Detailed Steps in GT-CSB Algorithm on Linear
DDG

Given a linear DDG with datasets {d1, d2 … dn} and m cloud

services {c1, c2 … cm} for storage. The GT-CSB algorithm has

the following steps:

Step 1: Construct CTG based on DDG.

Step 1.1: Create vertices for the CTG. As shown in Fig-

ure 4.(a), first, we create the start and end vertices, denot-

ed as verstart and verend. Then, for every DDGdi  , we create

a vertex set  1 2, ... m

i i i i

cc c

d d d d
V ver ver ver , where m is the

number of cloud service providers with which di can be

stored or regenerated. Hence s

i

c

d
ver represents that dataset

di is with cloud service provider cs.

Step 1.2: Create directed edges for the CTG. As shown

in Figure 4.(b), for every s

i

c

d
ver CTG , we add out-edges

from it to all vertices which are created for the datasets

succeeding to di in the DDG. Formally,

 '(,)s s

i i

c c
i i i id dver ver CTG d d DDG d d 

       .

 In other words, for any two vertices

,s s

i i

c c

d d
ver ver CTG


 belonging to different datasets’ vertex

sets (i.e.
i id d

V V


), we create an edge between them. For-

mally,

, (,)

,

s s

i i

s s

i i

c c
i i i id d

c c

d d

ver ver CTG d d DDG d d

e ver ver









     

  
.

Especially, we add out-edges from startver to all other

vertices in the CTG, and we add in-edges from all other

vertices in the CTG to endver .

Lemma 1: The storage strategies for a DDG have one-to-one

mapping to the paths from startver to endver in the CTG.

Proof: For any path from startver to endver , we can find the

vertices that it traverses. The storage strategy of the

DDG for this path is to store the datasets with the

cloud service providers that the traversed vertices rep-

resent, and delete the datasets that the path crosses

over. On the contrary, given any storage strategy of the

DDG, we can find the vertices in the CTG that repre-

sent the stored datasets and the corresponding cloud

services providers. Then we can find the path from

startver that traverses all the vertices found to endver .

Lemma 1 holds.

Step 2: Set weights to the edges in the CTG.

Definition 5: For an edge ,s s

i i

c c

d de ver ver 


  in the CTG,

we define its weight as the sum of Cost Rates of di' and the

datasets between di and di', supposing that only di and d i'

are stored with cs and cs' and the datasets between di and d

i' are all deleted. Formally,

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 7

{ }

,

() ()

s s

i i

k k i k i

c c

d d

i kd d DDG d d d

e ver ver

CostR d CostR d





    

 

 
.

According to the definition of cost rate (Definition 2),

we can get

 { }

,

()

s s

i i

s

ki k k i k i

c c

d d

c
k dd d d DDG d d d

e ver ver

Y minGenCost d v







    

 

  
.

Based on the definition above, in order to calculate the

weight of ,s s

i i

c c

d de ver ver 


  , we have to calculate the min-

imum regeneration cost of datasets between di and di', i.e.

 k k i k id d DDG d d d     .

In order to regenerate a dataset

 j k k i k id d d DDG d d d      , we need to start from

the stored provenance dataset di, and regenerate all the

datasets between di and dj, i.e.

 k k i k jd d DDG d d d    . All these can be regenerated

with any cloud service providers in {c1, c2 … cm}.

We design an iterative method to find all the minimum

cost regeneration strategies for datasets in

 k k i k id d DDG d d d     , which utilises the vertices

in the CTG.

Definition 6: We define the value of a vertex
s

i

c

d
ver CTG as the minimum regeneration cost of di un-

der the condition that regeneration of di from its direct

predecessor is with cloud service provider cs.

Based on this definition, for edge ,s s

i i

c c

d de ver ver 


  , the

values of vertices are

 
1 1

1 1

,

,
1min

k s k k

i i i

k h h k k

j j j j

c c c c

d d d

c c c c cm
hd d d d

ver Z X

ver ver Z X

 

 

  



  


where 1 1 2, { , ,... }j i j i k md DDG d d d c c c c     .

By using the above iterative function, we can calculate

the values of vertices that are needed for calculating the

weight of ,s s

i i

c c

d de ver ver 


  , as shown in Figure 5. Based on

Definition 6, the minimum regeneration cost of dj with the

stored provenance di is the minimum value of vertices in

jd
V , formally7

 1
() min h

j

cm

j h d
minGenCost d ver




.

Figure 5 demonstrates the iteration process of calculat-

ing the minimum regeneration costs of datasets in

 k k i k jd d DDG d d d    , which are needed for cal-

culating the weight of ,s s

i i

c c

d de ver ver 


  .

Based on this iterative method, we can further derive

the weight of the edge

7 The formula of minimum regeneration cost naturally holds based on
Definition 6 and the iteration process, hence we need not give a formal
proof for this formula.

 

  
{ }

1{ }

,

()

min

s s

i i

s

ki k k i k i

s h

ki kk k i k i

c c

d d

c
k dd d d DDG d d d

c cm
h dd dd d DDG d d d

e ver ver

Y minGenCost d v

Y ver v







 



 

   

   

 

  

  




.

This iterative method is a general method for calculat-

ing the weights of edges in the CTG. However, in today’s

market, most cloud service providers do not charge data

inbound cost (e.g. Amazon, Microsoft, etc.). This means

that the costs of transferring a dataset from one place to all

other cloud service providers are the same. Hence, in or-

der to regenerate di+1, the only two options are either 1)

keeping di in cs where di is resided or 2) transferring di to

the cloud service provider which has the lowest computa-

tion price, denoted as cl, to regenerate di+1.

By introducing this condition, we can simplify the iter-

ation process. To calculate the weight of ,s s

i i

c c

d de ver ver 


  ,

we only need the values of vertices in the set of

 , DDG ()s l

j j

c c

d d j i j i
ver ver d d d d     , which can be cal-

culated as follows

 
1 1

1 1 1

,

,
min ,()

k s k k

i i i

k k s s k k

j j j j j

c c c c

d d d

c c c c c c

d d d d d

ver Z X

ver ver ver + Z X

 

  

  



 


where 1 , { , }j i j i k s ld DDG d d d c c c     .

By using the above new iterative function, we can cal-

culate the values of vertices that are needed for calculating

the weight of ,s s

i i

c c

d de ver ver 


  , and the minimum regen-

eration cost of dj with the stored provenance di is the

smaller value of the two vertices
s

j

c

d
ver and

l

j

c

d
ver , formally

 () min ,s l

j j

c c

j d d
minGenCost d ver ver

.

Based on this iterative method, we can further derive

the weight of the edge

 

  
{ }

{ }

,

()

min ,

s s

i i

s

ki k k i k i

s s l

ki k kk k i k i

c c

d d

c
k dd d d DDG d d d

c c c
dd d dd d DDG d d d

e ver ver

Y minGenCost d v

Y ver ver v







 



 

   

   

 

  

  




.

Lemma 2: The length of every path from startver to endver in

the CTG equals to the total cost rate of the DDG with the

corresponding storage strategy and the minimum cost re-

generation strategy for the deleted datasets.

Proof: A path from startver to endver in the CTG is com-

posed of connected edges, and its length equals the

sum of weights of these edges. According to Definition

5, the start and end vertices of every edge are deemed

as stored datasets where their storage cost rates are

added to the weights of edges. Also the datasets that

the edges cross over are deemed as deleted datasets

where their minimum regeneration cost rates are add-

ed to the weights of edges. Hence, the length of a path

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

...
...

1

1i

c

d
ver



1

s

i

c

d
ver



1

m

i

c

d
ver



...

...

 
1

1

1

()

min h

i

i

cm

h d

minGenCost d

ver







s

i

c

d
ver s

i

c

d
ver 



s

i

c

d
ver

1 1

1

,s

i i

c c c

d dZ X


 

1

s

i

c

dX



1

,s m m

i i

c c c

d dZ X


 

 1 1

1 1 2

,
1min h h

i i i

c c c cm
h d d dver Z X

     

 
1 1 2

,
1min h h s s

i i i

c c c cm
h d d dver Z X

     

 
1 1 2

,
1min h h m m

i i i

c c c cm
h d d dver Z X

     
...

...

1

2i

c

d
ver



2

s

i

c

d
ver



2

m

i

c

d
ver



 1 1

2 2 1

,
1min h h

i i i

c c c cm
h d d dver Z X

       

 
2 2 1

,
1min h h s s

i i i

c c c cm
h d d dver Z X

       

 
2 2 1

,
1min h h m m

i i i

c c c cm
h d d dver Z X

       

...
...

1

1i

c

d
ver



1

s

i

c

d
ver



1

m

i

c

d
ver

...

s

i

c

d
ver 



 
2

2

1

()

min h

i

i

cm

h d

minGenCost d

ver





  

1

1

1

()

min h

i

i

cm

h d

minGenCost d

ver







... ...

 { }, ()s s s

ki i i k k i k i

c c c
k dd d d d d DDG d d de ver ver Y minGenCost d v 

         ...

s

i

c

dY 



...

...

...

 ,s s

i i

c c

d de ver ver 


 

Iteration

Figure 5. Iteration process for calculating the weight of an edge in CTG

from to contains 1) the sum of storage cost

rates of datasets that the path traverses and 2) the sum

of minimum regeneration cost rates of datasets that the

path crosses over, which is the total cost rate of the

storage strategy that the path represents. Lemma 2

holds.

Step 3: Find the shortest path of the CTG.

From the above construction steps, we can clearly see

that the CTG is a weighted directed acyclic graph. Hence

we can use the Dijkstra algorithm to find the shortest path

from startver to endver . The Dijkstra algorithm is a classic

greedy algorithm to find the shortest path in graph theory.

We denote the shortest path from startver to endver as

 endstart ververP ,min .

Based on the above steps of the GT-CSB algorithm, we

can draw the following theorem.

Theorem: Given a linear DDG with datasets {d1, d2 … dn} and

m cloud services {c1, c2 … cm} for storage, the length of
 endstart ververP ,min of its CTG is the minimum cost rate

for storing and regenerating datasets of the DDG in clouds,

which is the minimum cost benchmark.

Proof: If the length of  endstart ververP ,min is not the

minimum cost benchmark, then there exists another

storage and regeneration strategy of the DDG, which

has a smaller total cost rate. According to Lemma 1, we

can find a path in the CTG that represents this strate-

gy. According to Lemma 2, the length of the new path

equals the total cost rate of the new strategy, which is

smaller than the length of  endstart ververP ,min . This is

contradicting to the condition that

 endstart ververP ,min is the shortest path from startver

to endver in the CTG. Hence, the length of

 endstart ververP ,min is the minimum cost benchmark

of storing and regenerating dataset of the DDG in

clouds. Theorem holds.

4.3 Computation Complexity Analysis

Based on the discussion in Section 4.2, we demonstrate the

pseudo code of our GT-CSB algorithm in Figure 6.

From Figure 6 we can see that the algorithm Step 1 is

demonstrated in lines 1-7. For a linear DDG with n da-

tasets and m cloud service providers, we need to create mn

vertices in the CTG in Step 1.1 (lines 1-4), and the number

of edges added to the CTG in Step 1.2 (lines 5-7) is in the

magnitude of m2n2.

Step 2 is demonstrated in lines 8-16, which includes the

iteration process. To calculate the weight of an edge in the

CTG, we need to calculate at most mn vertices’ values

(lines 11-12). Because of the iteration process, the calculat-

ed vertices’ values can be reused in the next iteration

round. Hence the time complexity for calculating the val-

ue of one vertex is O(m) (line 13). Hence, the time com-

plexity of calculating the weight of an edge is O(m2n).

Hence, the time complexity of calculating weights of all

edges in the CTG is O(m4n3).

In Step 3 (line 17), the time complexity of Dijkstra algo-

rithm is O(m2n2).

Based on the above analysis, the total time complexity

of the GT-CSB algorithm is O(m4n3). The space complexity

of the GT-CSB algorithm is O(m2n2), which is the space to

save the created CTG.

startver endver

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 9

Algorithm: GT-CSB

Input: A linear DDG {d1, d2 … dn};

Cloud service providers {c1, c2 … cm};

Output: The minimum cost benchmark

Create

for (every dataset di in DDG) //Create vertices for CTG

 Create

Add vertices to CTG;

for (every) //Create edges for CTG

 for (every)

Create //Create an edge

for (every) //Calculate the edge weight

 for (every)

 for (every)

Set //Set edge weight

 //Find the shortest path

Return P; //The benchmark is the length of P

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

, ;
start end

ver ver

1 2{ , ,..., };m

i i i i

cc c

d d d d
V ver ver ver

CTGs

i

c

d
ver 

1 2
... { , }

nd d d start end
V V V ver ver

'
CTG (, DDG)s

i

c

d i i i i
ver d d d d

     

, ;s s

i i

c c

d d
e ver ver 


 

1 1

k

i i

c

d d
ver V

 


1 1

,
;k s k k

i i i

c c c c

d d d
ver Z X

 
 

11
min { };h

i

cm

h d
weight ver




1
DDG ()

j i j i
d d d d 
   

k

j j

c

d d
ver V

 1 1

,

1
min ;k h h k k

j j j j

c c c c cm

d h d d d
ver ver Z X

 
  

1
min { };h

j

cm

h d
weight weight ver


 

;s

i

c

d
weight weight Y 


 

, ;s s

i i

c c

d d
e ver ver weight


  

= Dijkstra (CTG);
start end

P ver , ver ,

Figure 6. Pseudo code of GT-CSB algorithm

5 UTILISATION OF GT-CSB ALGORITHM

The major contribution of the GT-CSB algorithm is to cal-

culate the minimum cost for storing and regenerating

datasets in multiple clouds. It can be widely utilised in

cloud computing. As stated in Section 1, by using this

algorithm, users can 1) design minimum cost benchmark-

ing approaches to evaluate the cost effectiveness in

clouds; 2) design cost-effective strategies to store and re-

generate application datasets and 3) understand the cost

constitution of their application. In our prior work [20]

[28] [21], we proposed the CTT-SP algorithm that can find

the best trade-off between compuatation and storage in

one cloud, and used it in designing cost-effective storage

strategies and benchmarking approaches. As the same

philosophy can be applied in this paper, we briefly intro-

duce how to design minimum cost benchmarking ap-

proaches and cost-effective strategies based on the GT-

CSB algorithm for storing and regenerating datasets in

clouds. In Section 6, we will demonstrate the constitution

of different costs for the application under different types

of workload.

5.1 Minimum Cost Benchmarking Approaches

In this section, we describe how to facilitate benchmark-

ing approaches by using the GT-CSB algorithm. Accord-

ing to different usage scenarios, we have two different

benchmarking approaches.

5.1.1 Static On-Demand Minimum Cost
Benchmarking

In clouds, whenever users want to know the minimum

cost benchmark, they can launch this approach on the

DDG of all application datasets and wait for the

benchmark to be calculated. This approach is more suita-

ble for the situation that less frequent benchmarking is

requested, primarily before runtime. In order to build the

approach, we need to apply the GT-CSB algorithm to the

general DDG. In our prior work [20], we proposed a re-

cursive algorithm for general DDG to find the best trade-

off between computation and storage costs in one cloud,

which is based on the CTT-SP algorithm. The same pro-

cedure can be adapted to the GT-CSB algorithm, based on

which we can build a static on-demand minimum cost

benchmarking approach. Specifically, given a general

DDG, we randomly choose one linear data dependency

path as “main branch” to construct the CTG, and the rest

of datasets in the DDG are deemed as “sub-branch”.

Then, we can call the GT-CSB algorithm on the CTG of

the “main branch”, and recursively call the algorithm for

the “sub-branch” based on smart rules for setting the

weights to different types of edges. Finally, we can find

the minimum cost storage and regeneration strategy of

the whole DDG.

5.1.2 Dynamic On-the-fly Minimum Cost
Benchmarking

Although the general GT-CSB algorithm can calculate the

minimum cost benchmark, its computation complexity is

high. If there are frequent benchmarking requests, the on-

demand approach will be inefficient, because we have to

run the genreal GT-CSB on the whole DDG for every re-

quest. Hence, we need another approach which is more

suitable for the situation that more frequent benchmark-

ing is requested at runtime. In our prior work [28], we

also proposed a dynamic on-the-fly benchmarking ap-

proach for one cloud by taking advantage of saved pre-

calculated results. In this approach, we utilise the classic

Master-Worker architecture in the implementation which

guarantees the efficiency of pre-calculation. The same

philosophy can also be applied in the GT-CSB algorithm

to achieve a dynamic on-the-fly minimum cost bench-

marking approach. Specifically, for every linear segment

of a general DDG, we pre-calculate all its possible mini-

mum cost storage and regeneration strategies and save

them in a solution space. By merging and utilising the

saved solution spaces, we can derive the minimum cost

benchmark of the whole DDG and dynamically keep it

updated whenever new datasets are generated or existing

datasets’ usage frequencies are changed.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

5.2 Cost-Effective Storage and Regeneration
Strategy

The GT-CSB algorithm can also be used for designing
cost-effective storage and regeneration strategies. Differ-
ent from the benchmarking approach, the minimum cost
strategy may not be the best strategy for storing and re-
generating datasets. Besides cost effectiveness, a good
strategy should take users’ preferences into consideration
(e.g., users’ tolerance of data accessing delay). In our prior
work [21], we developed a local-optimisation based strat-
egy for storing and regeneration datasets in one cloud,
which is highly cost-effective and practical. The same phi-
losophy can be applied in this work to derive our cost-
effective storage and regeneration strategy with multiple
cloud services.

Specifically, in order to reflect users’ preferences, we
can enhance the GT-CSB algorithm by introducing two
parameters denoted as T and λ, which are same as our
prior work [21]. T is the parameter used to represent us-
ers’ tolerance on data accessing delay. Users need to in-
form the cloud service provider about the datasets that
they have requirements on their availabilities. λ is the
parameter used to adjust the storage strategy when users
have extra budget on top of the minimum cost benchmark
to store more datasets for reducing the average datasets
accessing time. Based on the enhanced GT-CSB algorithm,
we can adapt the philosophy of local-optimisation to
achieve the high efficiency of the storage strategy, which
is as follows:

 (1) Given a general DDG, we first partition it into line-
ar segments and apply the GT-CSB algorithm to calculate
the storage strategy.

We search for the datasets that have multiple direct
predecessors or successors (i.e. the join and split datasets
in the DDG), and use these datasets as the partitioning
points to divide it into linear DDG segments, as shown in
Figure 7. Based on the linear DDG segments, we use the
GT-CSB algorithm to find their storage strategies. This is
the essence for achieving the cost-effectiveness.

(2) When new datasets are generated in the system,
they are treated as a new DDG segment and added to the
old DDG. Correspondingly, its storage status is calculated
in the same way as the old DDG.

(3) When a dataset’s usage frequency is changed, the
storage status of the linear DDG segment that contains
this dataset is re-calculated.

...

...

...

...

Linear DDG1

Linear DDG3

Linear DDG2

Linear DDG4

Partitioning

point dataset

Partitioning

point dataset

Figure 7. Dividing a DDG into linear DDG segments

By utilising the GT-CSB algorithm, our strategy
achieves the local-optimisation of storing datasets in the
DDG. The theoretical analysis of cost-effectiveness for the

local-optimisation based strategy is given in our prior
work [21]. In Section 6, we will demonstrate experimental
results to further evaluate the cost-effectiveness of our
strategy.

6 EVALUATION

As Amazon is a well-known and widely recognised cloud

service provider, we conduct experiments on Amazon

cloud using on-demand services for simulation. We im-

plement the GT-CSB in the Java programming language

and run it on the virtualised EC2 instance with the Ama-

zon Linux Image to evaluate its cost effectiveness and effi-

ciency. We choose the standard small instance (m1.small)

to conduct the experiments, because it is the basic type of

EC2 CPU instances, which has a stable performance of one

ECU8. In the simulation, we use randomly generated DDG

with datasets of random sizes, generation times and usage

frequencies. We also use popular cloud service providers’

pricing model. The experiment code is available at

http://www.ict.swin.edu.au/personal/yyang/doc/TCC14.zip.

In this section, we summarise the evaluation results.

In Section 6.1, we evaluate the cost effectiveness of the

minimum cost benchmark. We compare it with different

representative storage strategies and demonstrate their

cost differences to the minimum cost benchmark. In Sec-

tion 6.2, we investigate the cost constitution in the mini-

mum cost benchmark. We demonstrate the proportions of

computation, storage and bandwidth costs in the mini-

mum cost benchmark and the change of the proportion

with different DDG inputs. In Section 6.3, we evaluate the

efficiency of the GT-CSB algorithm. We demonstrate that

the algorithm has a polynomial time complexity as both

the number of datasets in the DDG and the number of

cloud service providers grow.

6.1 Cost Effectiveness Evaluation

We evaluate the cost effectiveness of our minimum cost

benchmark by comparing it with some representative

storage strategies as follows.

 Store all datasets strategy, in which all generated da-

tasets of the application are stored in the cloud. This

strategy represents the common approach used in most

applications in the cloud.

 Store none datasets strategy, in which all generated

datasets of the application are deleted after being used.

This strategy is often used in scientific applications that

generate large and rarely used intermediate datasets.

 Cost rate based strategy reported in [29] [30], in which

we store datasets in the cloud by comparing their own

generation cost rate and storage cost rate.

8 ECU (EC2 Computing Unit) is the basic unit defined by Amazon to
measure the compute resources. Please refer to the following address for
details: http://aws.amazon.com/ec2/instance-types/

http://www.ict.swin.edu.au/personal/yyang/doc/TCC14.zip
http://aws.amazon.com/ec2/instance-types/

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 11

 Local-optimisation based strategy reported in [31] [21],

in which we only achieve the localised optimum of the

trade-off between computation and storage in the

cloud.

 T-CSB algorithm based strategy reported in [26], in

which datasets can be transferred to different cloud

service providers for storage.

These strategies are designed for deploying applica-

tions with one cloud service provider, which is assumed to

be Amazon cloud, i.e. using EC2 service ($0.10 per CPU

instance hour) for computation and S3 service ($0.15 per

gigabyte per month) for storage. In the T-CSB algorithm

based strategy, we assume that datasets can be transferred

to Haylix cloud for storage.

Haylix is a leading Australian IaaS cloud service pro-

vider, who provides reliable cloud storage with fast access

for local Australian users. As data transfer over the Inter-

net is often expensive and relatively slow in general, some

cloud service providers (e.g. Amazon) cooperate with

network infrastructure providers (e.g. Equinix) to provider

dedicate connection service (e.g. AWS Direct Connect) for

boosting the data transfer speed in and out of the cloud.

Hence, we use the pricing models of Haylix and AWS Di-

rect Connect in our simulation, i.e. $ 0.11 per CPU instance

hour for computation, $0.12 per gigabyte per month for

storage, $0.046 per gigabyte for outbound data transfer

from Haylix.

In real world applications (e.g., case studies in Section

3 and supplementary materials), generated datasets vary

dramatically in terms of size, generation time, usage fre-

quency and the sturcutre of DDG. Hence, we set random

parameters in our experiments to evaluate the general

performance of our GT-CSB algorithm without the loss of

generality. Specifically, we randomly generate DDGs with

different number of datasets, each with a random size

from 1GB to 100GB. The generation time is also random,

from 10 hours to 100 hours. The usage frequency is again

random, from once per month to once per year.

The simulation results are demonstrated in Figure 8.

As we can see that the “store all datasets” and “store none

dataset” strategies are very cost ineffective. By investigat-

ing the trade-off between computation and storage, the

“cost rate based strategy” and “local-optimisation based

strategy” can smartly choose to store or delete the datasets,

thereby largely reducing the cost rate for storing datasets

with one cloud service provider. If more cloud storage

services are available, the simulation of “T-CSB algorithm

based strategy with Haylix storage” demonstrates further

reduction of the cost rate by taking bandwidth cost into

account. However, it cannot achieve the minimum cost

due to the limitation of the T-CSB algorithm, i.e., computa-

tion can only happen in one cloud. In contrast, our GT-

CSB algorithm based minimum cost benchmark has the

lowest cost rate among different storage strategies.

6.2 Constitution of Differnet Costs in Clouds

One of the important utilisations of the minimum cost

benchmark is to help users to understand the constitution

of different costs of their applications in the clouds. In this

sub-section, we demonstrate the constitution of computa-

tion, storage and bandwidth costs in the minimum cost

benchmark of different input DDGs.

We use a randomly generated DDG with 50 datasets

and 3 cloud service providers with the pricing models as

follows.

 Cloud 1: $0.11 per hour CPU, $0.1 per gigabyte per

month for storage, and $0.01 per gigabyte for out-

bound data transfer.

 Cloud 2: $0.15 per hour CPU, $0.05 per gigabyte per

month for storage, and $0.15 per gigabyte for out-

bound data transfer.

 Cloud 3: $0.12 per hour CPU, $0.07 per gigabyte per

month for storage, and $0.03 per gigabyte for out-

bound data transfer.

Figure 8. Cost-effectiveness comparison

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

We only use the above prices as representatives, as

many cloud service providers (e.g. GoGrid9, Rackspace10,

Haylix11, etc.) have similar pricing models.

Based on the above setting, we calculate the minimum

cost benchmark for a 50 datasets DDG with 3 cloud service

providers. Figure 9 demonstrates the constitution of costs

in this benchmark and how datasets are stored and regen-

erated in the three cloud service providers.

Given different DDGs, the constitution of costs in the

benchmark will be different. Next, we change the parame-

ters for generating the DDGs (i.e. size, regeneration time

and usage frequency), and demonstrate the corresponding

change of the costs constitution in the minimum cost

benchmark, as well as the change of storage and regenera-

tion strategies in the three cloud service providers.

Figures 10, 11 and 12 show the impact of datasets’ sizes,

regeneration times and usage frequencies on the mini-

mum cost benchmark respectively. We can see from the

figures that when datasets’ sizes, regeneration times or

usage frequencies are doubled or halved in the DDG, the

constitution of costs in the benchmark does not change

proportionally. Understanding the relationship between

DDG and the constitution of costs in the minimum cost

benchmark can help users to optimise the cost of their ap-

plications in clouds.

6.3 Efficiency Evaluation of the GT-CSB Algorithm

As presented in Section 4.3, the GT-CSB algorithm has a

polynomial time complexity of O(m4n3). In this sub-section

we demonstrate the algorithm efficient of our implementa-

tion. Figure 13 (a) shows the results of running the GT-

CSB algorithm on three cloud service providers with dif-

ferent number of datasets in the DDG. Figure 13 (b) shows

the results of running the GT-CSB algorithm on a 50 da-

tasets DDG with different number of cloud service pro-

viders. As we can see from Figure 13, the CPU time of exe-

cuting the GT-CSB algorithm has a polynomial growth as

the increase of datasets in the DDG or number of cloud

service providers.

Figure 9. Constitution of costs in the minimum cost

benchmark

9 GoGrid: http://www.gogrid.com/
10 Rackspace: http://www.rackspace.com/
11 Haylix: http://www.haylix.com/

(a) Datasets’ sizes are doubled in the DDG

(b) Datasets’ sizes are halved in the DDG

Figure 10. Impact of datasets’ sizes on the minimum

cost benchmark

(a) Datasets’ regeneration times are doubled in the DDG

(b) Datasets’ regeneration times are halved in the DDG

Figure 11. Impact of datasets’ regeneration times on

the minimum cost benchmark

(a) Datasets’ usage frequencies are doubled in the DDG

(b) Datasets’ usage frequencies are halved in the DDG

Figure 12. Impact of datasets’ usage frequencies on

the minimum cost benchmark

http://www.gogrid.com/
http://www.rackspace.com/
http://www.haylix.com/

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

YUAN ET AL.: AN ALGORITHM FOR FINDING THE MINIMUM COST OF STORING AND REGENERATING DATASETS IN MULTIPLE CLOUDS 13

(a) 3 cloud service providers (b) 50 datasets DDG

Figure 13. Efficiency evaluation of GT-CSB algorithm

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the minimum cost

strategy for storing and regenerating datasets based on the

pay-as-you-go model with multiple cloud service provid-

ers. Towards achieving a generic best trade-off among

computation, storage and bandwidth, we have designed

the GT-CSB algorithm, which calculates the minimum cost

benchmark for storing and regenerating datasets in clouds.

We have presented the design of the algorithm in detail

and rigid proof to guarantee the validity of minimum cost

benchmark. Experimental results also demonstrated the

excellent performance of the proposed approach.

In our current work, we assume that cloud service

providers have unified prices for computation, storage

and bandwidth resources. However, in the real world, the

prices of cloud services can well be different according to

different requirements and usages. Furthermore, extra cost

might be caused by the “vender lock-in” issue among dif-

ferent cloud service providers, large number of requests

from input/output (I/O) internsive applications, etc. In the

future, we will incorporate more complex pricing models

in our datasets storage and regeneration cost model.

In this paper, our focus is to solve the crucial problem

of calculating the minimum cost for data storage and re-

generation in multiple clouds. Hence the efficiency of the

GT-CSB algorithm design has not been comprehensively

investigated. In the future, we will re-design the algorithm

by using Dynamic Programming techniques, which can

further significantly reduce the algorithm complexity.

ACKNOWLEDGMENT

The research work reported here is partly supported by

Australian Research Council under DP110101340 and

LP130100324.

REFERENCES

[1] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and

Grid Computing 360-Degree Compared," in Grid Computing

Environments Workshop (GCE'08), Austin, Texas, USA, 2008, pp.

1-10.

[2] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,

"Dynamic Heterogeneity-Aware Resource Provisioning in the

Cloud," IEEE Transactions on Cloud Computing, vol. 2, pp. 14-28,

01/01 2014.

[3] Amazon Cloud Services. Available: http://aws.amazon.com/

[4] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.

Jones, et al., "Scientific Workflow Management and the Kepler

System," Concurrency and Computation: Practice and Experience,

pp. 1039–1065, 2005.

[5] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data

Processing: A Survey," ACM Computing Surveys, vol. 37, pp. 1-

28, 2005.

[6] S. Agarwala, D. Jadav, and L. A. Bathen, "iCostale: Adaptive

Cost Optimization for Storage Clouds," in IEEE International

Conference on Cloud Computing (CLOUD2011), 2011, pp. 436-443.

[7] H. Xu and B. Li, "Dynamic Cloud Pricing for Revenue

Maximization," IEEE Transactions on Cloud Computing, vol. 1, pp.

158-171, 07/01 2013.

[8] K. Deng, J. Song, K. Ren, D. Yuan, and J. Chen, "Graph-Cut

Based Coscheduling Strategy Towards Efficient Execution of

Scientific Workflows in Collaborative Cloud Environments," in

Proceedings of the 2011 IEEE/ACM 12th International Conference on

Grid Computing, 2011, pp. 34-41.

[9] W. Li, Y. Yang, J. Chen, and D. Yuan, "A Cost-Effective

Mechanism for Cloud Data Reliability Management based on

Proactive Replica Checking," in Proceedings of the 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid 2012), 2012, pp. 564-571.

[10] K. Deng, L. Kong, J. Song, K. Ren, and D. Yuan, "A Weighted K-

Means Clustering Based Co-scheduling Strategy towards

Efficient Execution of Scientific Workflows in Collaborative

Cloud Environments," in 2011 IEEE Ninth International

Conference on Dependable, Autonomic and Secure Computing

(DASC) 2011, pp. 547-554.

[11] P. Chen, B. Plale, and M. S. Aktas, "Temporal representation for

scientific data provenance," in 8th International Conference on E-

Science (e-Science2012), 2012, pp. 1-8.

[12] L. J. Osterweil, L. A. Clarke, A. M. Ellison, R. Podorozhny, A.

Wise, E. Boose, et al., "Experience in Using A Process Language

to Define Scientific Workflow and Generate Dataset

Provenance," in 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Atlanta, Georgia, 2008, pp.

319-329.

[13] I. Foster, J. Vockler, M. Wilde, and Z. Yong, "Chimera: A Virtual

Data System for Representing, Querying, and Automating Data

Derivation," in 14th International Conference on Scientific and

Statistical Database Management, (SSDBM'02), Edinburgh,

Scotland, UK, 2002, pp. 37-46.

[14] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer,

"Provenance for the Cloud," in 8th USENIX Conference on File

and Storage Technology (FAST'10), San Jose, CA, USA, 2010, pp.

197-210.

[15] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, et al., "Cost-

aware Cooperative Resource Provisioning for Heterogeneous

Workloads in Data Centers," IEEE Transactions on Computers,

vol. 62, pp. 2155-2168, 2013.

[16] R. Chen, X. Weng, B. He, M. Yang, B. Choi, and X. Li,

"Improving Large Graph Processing on Partitioned Graphs in

the Cloud," in ACM Symposium on Cloud Computing (SoCC2012),

http://aws.amazon.com/

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID

2012.

[17] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L.

Zhuang, "Nectar: Automatic Management of Data and

Computation in Datacenters," in 9th Symposium on Operating

Systems Design and Implementation (OSDI'2010), Vancouver, BC,

Canada, 2010, pp. 1-14.

[18] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The

Cost of Doing Science on the Cloud: the Montage Example," in

ACM/IEEE Conference on Supercomputing (SC'08), Austin, Texas,

2008, pp. 1-12.

[19] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W.

Storer, "Maximizing Efficiency by Trading Storage for

Computation," in Workshop on Hot Topics in Cloud Computing

(HotCloud'09), San Diego, CA, 2009, pp. 1-5.

[20] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-demand Minimum

Cost Benchmarking for Intermediate Datasets Storage in

Scientific Cloud Workflow Systems," Journal of Parallel and

Distributed Computing, vol. 71, pp. 316-332, 2011.

[21] D. Yuan, Y. Yang, X. Liu, W. Li, L. Cui, M. Xu, et al., "A Highly

Practical Approach towards Achieving Minimum Datasets

Storage Cost in the Cloud," IEEE Transactions on Parallel and

Distributed Systems, vol. 24, pp. 1234-1244, 2012.

[22] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, "Multi-Resource

Allocation: Fairness-Efficiency Tradeoffs in a Unifying

Framework," in 2012 Proceedings IEEE INFOCOM 2012, 2012,

pp. 1206-1214.

[23] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, "Green cloud

computing: Balancing energy in processing, storage, and

transport," Proceedings of the IEEE, vol. 99, pp. 149-167, 2011.

[24] F. Chen, J. Grundy, Y. Yang, J.-G. Schneider, and Q. He,

"Experimental Analysis of Task-Based Energy Consumption in

Cloud Computing Systems," in Proceedings of the ACM/SPEC

International Conference on Performance Engineering, 2013, pp. 295-

306.

[25] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.

Madhyastha, "Spanstore: Cost-Effective Geo-Replicated Storage

Spanning Multiple Cloud Services," in Proceedings of the 24th

ACM Symposium on Operating Systems Principles (SOSP 2013),

2013, pp. 292-308.

[26] D. Yuan, X. Liu, L. Cui, T. Zhang, W. Li, D. Cao, et al., "An

Algorithm for Cost-Effectively Storing Scientific Datasets with

Multiple Service Providers in the Cloud," in 9th International

Conference on e-Science (e-Science2013), , 2013, pp. 285-292.

[27] S. Xu, J. H. Beynon, D. Ruan, and G. Lu, "Experimental study of

the out-of-plane dynamic compression of hexagonal

honeycombs," Composite Structures, vol. 94, pp. 2326-2336, 2012.

[28] D. Yuan, X. Liu, and Y. Yang, "Dynamic on-the-fly Minimum

Cost Benchmarking for Storing Generated Scientific Datasets in

the Cloud," IEEE Transactions on Computers, vol. 64, pp. 2781-

2795, 2015.

[29] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Cost-Effective Strategy

for Intermediate Data Storage in Scientific Cloud Workflows,"

in 24th IEEE International Parallel & Distributed Processing

Symposium (IPDPS'10), Atlanta, Georgia, USA, 2010, pp. 1-12.

[30] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, "A Data

Dependency Based Strategy for Intermediate Data Storage in

Scientific Cloud Workflow Systems," Concurrency and

Computation: Practice and Experience, vol. 24, pp. 956-976, 2010.

[31] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Local-Optimisation

based Strategy for Cost-Effective Datasets Storage of Scientific

Applications in the Cloud," in Proc. of 4th IEEE International

Conference on Cloud Computing (Cloud2011), Washington DC,

USA, 2011, pp. 179-186.

Authors:
Dong Yuan received the PhD degree
from Swinburne University of Tech-
nology, Australia, in 2012. He is a lec-
turer at Sydney University. His re-
search interests include cloud compu-
ting, data management in parallel and
distributed systems, scheduling and
resource management, business pro-

cess management and workflow systems.

Lizhen Cui received the PhD degree
from Shandong University in 2005. He
is a full professor at Shandong Univer-
sity. His research interests include
workflow and distributed data man-
agement for cloud computing, service
computing.

Wenhao Li received the PhD from

Swinburne University of Technology,

Australia in 2014. He is a post-doc at

Shandong University. His research in-

terests include parallel and distributed

computing, cloud and grid computing,

workflow technologies and data man-

agement in distributed computing environment.

Xiao Liu received the PhD degree

from Swinburne University of Tech-

nology, Australia in 2011. He is an

associate professor at East China

Normal University. His research

interests include workflow man-

agement systems, scientific work-

flow, business process management

and data mining.

Yun Yang received the PhD degree

from the University of Queens-

land, Australia in 1992. He is a full

professor at Swinburne University

of Technology. His research inter-

ests include software technologies,

cloud computing, workflow sys-

tems and service-oriented computing.

