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Abstract—The proliferation of cloud computing allows users to flexibly store, re-compute or transfer large generated datasets 
with multiple cloud service providers. However, due to the pay-as-you-go model, the total cost of using cloud services depends 
on the consumption of storage, computation and bandwidth resources which are three key factors for the cost of IaaS-based 
cloud resources. In order to reduce the total cost for data, given cloud service providers with different pricing models on their 
resources, users can flexibly choose a cloud service to store a generated dataset, or delete it and choose a cloud service to 
regenerate it whenever reused. However, finding the minimum cost is a complicated yet unsolved problem. In this paper, we 
propose a novel algorithm that can calculate the minimum cost for storing and regenerating datasets in clouds, i.e. whether 
datasets should be stored or deleted, and furthermore where to store or to regenerate whenever they are reused. This minimum 
cost also achieves the best trade-off among computation, storage and bandwidth costs in multiple clouds. Comprehensive 
analysis and rigid theorems guarantee the theoretical soundness of the paper, and general (random) simulations conducted with 
popular cloud service providers’ pricing models demonstrate the excellent performance of our approach. 

Index Terms—Cloud Computing; Data Storage and Regeneration; Minimum Cost  
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1 INTRODUCTION

N recent years, cloud computing is emerging as the latest 

computing paradigm which provides redundant, inexpen-

sive and scalable resources on demand to users [1] [2]. IaaS 

(Infrastructure as a Service) is a very popular way to deliver 

services in the cloud [3], where users can deploy their applica-

tions in unified cloud resources such as computing, storage 

and network services without any infrastructure investments. 

However, along with the convenience brought by using on-

demand cloud services, users have to pay for the resources 

used according to the pay-as-you-go model, which can be 

substantial. Especially, nowadays applications are getting 

more and more data intensive [4], where the generated data 

are often gigabytes, terabytes, or even petabytes in size. These 

generated data contain important intermediate or final results 

of computation, which may need to be stored for reuse [5].  

Hence, cutting the cost of cloud-based data management in a 

pay-as-you-go fashion becomes a big concern for deploying 

applications in cloud computing environment.  

Cloud computing has such a fast growing market, more 

and more cloud service providers appear with different prices 

of computation, storage and bandwidth resources [6] [7]. As 

unlimited storage and processing power can be easily ob-

tained on-demand from different commercial service provid-

ers like utilities, users have multiple options to cope with the 

large generated application data, e.g., datasets d1, d2 … d8 in 

Figure 1. Specifically, users can store all data in the cloud and 

simply pay for the storage cost, and alternatively, they can 

delete some data to save the storage cost and pay for the com-

putation cost to regenerate them whenever they are reused, 

e.g, datasets d2, d6 and d8 are deleted in Figure 1. Further-

more, users can also change to cheaper service providers to 

store or to regenerate data with paying for the bandwidth cost 

for data transfer1. Hence, there is a trade-off among computa-

tion, storage and bandwidth in clouds, where different storage 

and regeneration strategies lead to different total costs for stor-

ing the generated application data. In light of this, users need 

comprehensive understanding of cost in clouds in order to 

take advantage of the cost-effectiveness of cloud computing, 

especially for storing and regenerating data with multiple 

cloud service providers2. 

Finding the trade-off among computation, storage and 

bandwidth costs in clouds is a complicated problem. Different 

cloud service providers have different prices on their re-

 

1 The “vendor lock-in” issue may bring extra cost in regenerating applica-
tion data with different cloud service providers. In this paper, we do not 
consider this extra cost in clouds, and we have listed this issue as our 
future work. 
2 In this paper, term “cloud service provider(s)” refers to IaaS provider, 
and term “user(s)” refers to users of IaaS providers who are often Soft-
ware as a Service (SaaS) and Platform as a Service (PaaS) providers. 
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sources and datasets also have different sizes, generation 

times and usage frequencies. Intuitively, some heuristics can 

be applied. For example, we can store the frequently used 

data which have high generation costs in cloud services with 

cheaper storage resources. Also, we can delete the less fre-

quently used data which have large sizes but small regenera-

tion costs, and regenerate them in cloud services with cheaper 

computation resources. Not only those, but data also have 

dependencies in clouds, i.e. the complex generation relation-

ships. The data regeneration cost depends on their stored 

provenance data; hence the change of storage status of any 

data will impact regeneration cost of the data derived from 

them.  

Generated application datasets
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Figure 1. Storage and regeneration of application datasets 

in clouds 

In this paper, we propose a novel GT-CSB algorithm that 

can find the best trade-off among computation, storage and 

bandwidth costs in clouds. This trade-off is represented by the 

theoretical minimum cost strategy for storing and regenerat-

ing application data among multiple cloud service providers. 

This minimum cost is a very important reference for cloud 

users in the following three aspects: 1) it can be used to design 

minimum cost benchmarking approaches for evaluating the 

cost effectiveness in clouds; 2) it can guide cloud users to de-

velop cost effective storage strategies for their applications; 

and 3) it can demonstrate the constitution of different costs in 

clouds and help users to understand the impact of different 

workloads on the total cost.  

The remainder of this paper is organised as follows. Section 

2 discusses the related work. Section 3 introduces a motivating 

example of our research and presents the preliminaries in-

cluding some important concepts and the trade-off based cost 

model in clouds. Section 4 presents our GT-CSB algorithm to 

find the best trade-off among computation, storage and 

bandwidth in clouds. Section 5 discusses the utilisation of the 

GT-CSB algorithm in designing cost effective storage strategy 

and minimum cost benchmarking approaches. Section 6 de-

scribes our experimental results for evaluation. Section 7 

summarises our conclusions and points out future work. 

2 RELATED WORK 

In the research area of resource management, much work has 

been done about resource negotiation [8], replica placement 

[9] and multi-tenancy in clouds [10], by taking advantage of 

different types of resources. Our work also investigates differ-

ent types of resources, but we mainly focus on the trade-offs 

among them. Another important foundation for our work is 

the research on data provenance [11]. More specifically, Os-

terweil et al. [12] present how to generate a provenance based 

data derivation graph for execution of a workflow. Foster et al. 

[13] propose the concept of virtual data in the Chimera sys-

tem, which enables the automatic regeneration of data when 

needed. Recently, research on data provenance in cloud com-

puting systems has also appeared [14]. Based on the above 

research, in this paper, we utilise a Data Dependency Graph 

(DDG) which is based on data provenance. DDG depicts the 

generation relationships of all the generated data in clouds, 

with which we can manage where the data are stored or how 

to regenerate them. Since graph theory is a useful tool in com-

puter science [15] [16], we create a transitive graph based on 

DDG and propose an algorithm that can find the best trade-

off among computation, storage and bandwidth in clouds. 

Plenty of research has been done with regard to the trade-

off between computation and storage. The Nectar system [17] 

is designed for automatic management of data and computa-

tion in data centres, where obsolete data are deleted and re-

generated whenever reused in order to improve resource uti-

lisation. In [18], Deelman et al. present that storing some pop-

ular intermediate data can save the cost in comparison to al-

ways regenerating them from the input data. In [19], Adams et 

al. propose a model to represent the trade-off of computation 

cost and storage cost. In [20], the authors propose the CTT-SP 

algorithm that can find the best trade-off between computa-

tion and storage in the cloud, based on which a highly cost-

effective and practical strategy is developed for storing da-

tasets with one cloud service provider [21]. However, the 

above work did not consider the bandwidth cost into the 

trade-off model.  

As the trade-off among different costs is an important issue 

in the cloud, some research has already embarked on this is-

sue to a certain extent. In [22], Joe-Wong et al. investigate 

computation, storage and bandwidth resources allocation in 

order to achieve a trade-off between fairness and efficiency. In 

[23], Baliga et al. investigate the trade-off among computation, 

storage and bandwidth at the infrastructure level of cloud 
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systems, where reducing energy consumption is the main 

research goal. In [24], Chen et al. further analyse the impacts of 

computation, storage and bandwidth on the total energy con-

sumption by investigating different types of applications in 

the cloud. In [6], Agarwala et al. transform application data to 

certain formats and store them with different cloud services in 

order to reduce storage cost in the cloud, but data dependency 

and the option of data regeneration are not considered in their 

work. In [25], Wu et al. propose SPANStore which can cost-

effectively place data replicas among geo-distributed data 

centres to reduce the access delay. It only finds the trade-off 

between storage and bandwidth. In our prior work [26], we 

propose the T-CSB algorithm which can find a trade-off 

among Computation, Storage and Bandwidth costs (T-CSB). 

However, it is not generic because there is a strong assump-

tion that all the computation (i.e. data regeneration) must be 

conducted in one cloud service, which poses certain limita-

tion.  

In this paper, we propose the GT-CSB algorithm, which 

can find a Generic best Trade-off among Computation, Stor-

age and Bandwidth (GT-CSB) in clouds. This generic best 

trade-off represents the minimum cost storage and regenera-

tion strategy, in which data can be stored or regenerated with 

any cloud service providers.  

3 MOTIVATING EXAMPLE AND PRELIMINARIES 

In this section, we first present a motivating example, in 

which our GT-CSB algorithm can be used. Then we intro-

duce some preliminaries, including a classification of ap-

plication data in clouds, the concept of Data Dependency 

Graph (DDG) and the trade-off based cost model among 

computation, storage and bandwidth costs for datasets 

storage and regeneration in cloud computing. 

3.1 Motivating Example 

In order to explore the usage scenarios of our approach, we 

have investigated some data intensive applications, which are 

1) a Finite Element Modelling (FEM) application in Structural 

Mechanics, 2) a Climatological Analyses Application in Mete-

orology and 3) a Pulsar Searching Application in Astrophys-

ics. Due to the page limit, we only present the FEM applica-

tion in this section as a motivating example and provide the 

other two applications in Supplementary Materials.  

Finite Element Modelling (FEM) is an important and wide-

ly used method for impact test of objects, where classic appli-

cations are Hopkinson pressure bar test, gas gun impact test, 

drop hammer test, etc. At Swinburne University of Technolo-

gy, researchers of the Structural Mechanics Research Group 

conduct FEM simulations of Aluminium Honeycombs under 

dynamic out-of-plane compression to analyse the impact be-

haviour of the material and structure [27]. In their research, 

numerical simulations of the dynamic out-of-plane compres-

sion are conducted with ANSYS/LS-DYNA software, which is 

a powerful FEM tool for modelling non-linear mechanics of 

solids, fluids, gases and their interaction. The FEM application 

has four major steps as shown in Figure 2. 

From Figure 2, at beginning, based on the researchers’ de-

sign, the object with special structure (i.e. the honeycombs 

structure in this example) for FEM analysis is generated in the 

Object Modelling step. Then, researchers specify more de-

tailed parameters of the object model in the FEM Initiation 

step, e.g. material of the object and elements for modelling. 

Based on the well-defined model, researchers can run differ-

ent FEM simulations according to requirements of the exper-

iment, e.g. speed of the compression and time interval for re-

cording data. This is the most time consuming and important 

step in the FEM application, which also generates the largest 

volume of data as simulation results. Depending on the speed 

of the compression, the computation time of this step varies 

from several hours to around one hundred hours, while de-

pending on the time interval for recording data, the size of 

generated data varies from gigabytes to hundreds of giga-

bytes. These data are very important for researchers, based on 

which the simulation results can be demonstrated in various 

ways for analysis.  
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Figure 2. Overview of FEM application 

With cloud computing, researchers can easily obtain com-

putting resources to run the application, e.g., Amazon EC23. 

As time goes on, large volumes of simulation results are ac-

cumulated (e.g., Step 3 in Figure 2). As these data have high 

generation cost, they should be stored for reuse. The often-

used datasets can be stored in Amazon S34, and for the rarely 

used datasets, it is more cost effective to transfer them to Am-

azon Glacier5 for storage. Futhermore, for some rarely used 

datasets that do not have high generation cost (e.g., the vedio 

file in Step 4 in Figure 2), it is more cost effective to delete 

them and regenerate whenever reused. In this paper, the pro-

posed GT-CSB algorithm can automatically calculate the min-

imum cost storage and regeneration strategy for the applica-

tion data in multiple clouds. 

 

3 http://aws.amazon.com/ec2/ 
4 http://aws.amazon.com/s3/ 
5 http://aws.amazon.com/glacier/ 
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3.2 Preliminaries 

3.2.1 Classification of Application Data in Clouds 

In general, there are two types of data stored in clouds, 

original data and generated data. 

1) Original data are the data uploaded by users, for ex-

ample, in scientific applications they are usually the raw 

data collected from the devices in the experiments. For 

these data, users need to decide whether they should be 

stored or deleted since they cannot be regenerated by the 

system once deleted. As cost of storing original data is 

fixed, they are not considered in the scope of this paper. 

2) Generated data are the data newly produced in the 

cloud while the applications are running. They are the 

intermediate or final computation results of the applica-

tions, which can be reused in the future. For these data, 

their storage can be decided by the system since they can 

be regenerated if their provenance is known. Hence, our 

storage and regeneration strategy is only applied to the 

generated data in the cloud that can automatically decide 

the storage status of generated datasets in applications. In 

this paper, we refer generated data as dataset(s). 

3.2.2 Data Dependency Graph (DDG) 

In this paper, we use DDG to represent generated datasets 

and their relationships. DDG [20] is a directed acyclic 

graph (DAG) which is based on data provenance in appli-

cations. All the datasets once generated in the cloud, 

whether stored or deleted, their references are recorded in 

DDG. In other words, it depicts the generation relation-

ships of datasets, with which the deleted datasets can be 

regenerated from their nearest existing preceding datasets. 

Figure 3 depicts a simple DDG, where every node in the 

graph denotes a dataset, and the whole DDG will be the 

input of the GT-CSB algorithm. We denote dataset di in 

DDG as DDGdi  . Furthermore, d1 pointing to d2 means 

that d1 is used to generate d2; d2 pointing to d3 and d5 means 

that d2 is used to generate d3 and d5 based on different op-

erations; d4 and d6 pointing to d7 means that d4 and d6 are 

used together to generate d7. 

d1 d2

d3

d8d7

d6

d4

d5

 
Figure 3. A simple Data Dependency Graph (DDG) 

To better describe the relationships of datasets in DDG, 

we define a symbol:  , which denotes that two datasets 

have a generation relationship, where didj means that di 

is a predecessor dataset of dj in DDG. For example, in Fig-

ure 3’s DDG, we have d1d2, d1d4, d5d7, d1d7, etc. 

Furthermore,   is transitive, i.e. 

      kikjjikji ddddddddd  . 

3.2.3 Datasets Storage and Regeneration Cost Model 

In a commercial cloud computing environment, service 

providers have their pricing models to charge users. In 

general, there are three basic types of resources in the 

cloud: computation, storage and bandwidth. In this paper, 

we facilitate our cost model in the cloud as follows:  

Cost = Computation + Storage + Bandwidth  

where the total cost of the datasets storage, Cost, is the 

sum of Computation, which is the total cost of computation 

resources used to regenerate datasets, Storage, which is the 

total cost of storage resources used to store the datasets, 

and Bandwidth, which is the total cost of bandwidth re-

sources used for transferring datasets  via the network.  

In order to utilise the datasets storage and regeneration 

cost model, we present the following assumptions, deno-

tations and definitions. 

Assumptions: We assume that the application be de-

ployed with m Cloud Service Providers, denoted as 

CSP={c1, c2, … cm}, and each ci has computation, storage 

and network services with different prices6. Furthermore, 

we assume there be n datasets in the DDG, denoted as 

DDG={d1, d2, … dn}. For every dataset DDGdi  , it can be 

either stored with one of the cloud service providers or be 

deleted. If it is deleted, it can be regenerated with any one 

of the cloud service providers jc CSP  whenever it needs 

to be reused.  

Denotations: We use X, Y, Z to denote the computa-

tion cost, storage cost and bandwidth cost of datasets re-

spectively. Specifically, for a dataset DDGdi  : 
j

i

c

d
X  denotes the computation cost of regenerating da-

taset di from its direct predecessors in the DDG with cloud 

service provider cj, which is calculated as the multiplica-

tion of the generation time of di and the price of computa-

tion resources of cj;  
j

i

c

d
Y  denotes the storage cost per time unit of storing 

dataset di with cloud service provider cj, which is calculat-

ed as the multiplication of the size of di and the price of 

storage resources of cj;  
,k j

i

c c

d
Z  denotes the bandwidth cost of transferring da-

taset di from cloud service provider ck to cj, which is calcu-

lated as the sum of outbound cost of di from ck and in-

bound cost of di to cj. Especially, if ck = cj which means the 

 

6 Popular cloud services providers’ cost models are based on these types 
of resources. For example, Amazon cloud services’ prices are as follows:  
$0.10 per CPU instance hour for the computation resources;  
$0.15 per Gigabyte per month for the storage resources;  
$0.12 per Gigabyte bandwidth resources for data downloaded from Am-
azon via the Internet.  
The prices may fluctuate from time to time according to market factors. 
As this paper’s focus is cost-effectiveness, to simplify the problem, we 
assume that in one cloud service provider, the same types of computation 
resources are used for regenerating datasets, and the same types of stor-
age resources are used for storing datasets.  
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data transfer is inside the same cloud service provider, 

then 
, 0k j

i

c c

d
Z  . 

Furthermore, we use 
id

v  to denote the usage frequency 

of di, which means how often di is reused. In cloud, da-

tasets are often shared by many users on the Internet. 

Hence 
id

v  cannot not be defined by a single user. In prac-

tice, it should be an estimated value from the dataset’s 

usage history recorded in the system logs. 

In a cloud computing environment, in order to regen-

erate a deleted dataset in the DDG, e.g. DDGdi  , first we 

need to find its stored provenance dataset(s), then we need 

to choose the cloud service providers to regenerate it.  

Definition 1: Regeneration strategy of a deleted da-

taset is the selection of cloud service providers where the 

dataset is regenerated from its stored provenance da-

taset(s).  

Hence, the regeneration cost of a dataset is twofold: 1) 

the bandwidth cost of transferring its stored provenance 

dataset(s) and intermediate dataset(s) to the correspond-

ing cloud services, and 2) the computation cost of regener-

ating the dataset in these cloud services. However, differ-

ent selections of cloud service providers for regeneration 

lead to different regeneration costs of the dataset.  

We denote the minimum regeneration cost of dataset 

DDGdi   as ( )
i

minGenCost d . In the next section, we 

will present the method of finding the minimum cost re-

generation strategy in detail. 

As this paper investigates the cost-effectiveness of 

long-term usage of cloud services, we introduce the con-

cept of Cost Rate for datasets in clouds.  

Definition 2: Cost rate of a dataset is the average cost 

spent on this dataset per time unit in clouds. For DDGdi  , 

we denote its cost rate as ( )
i

CostR d , which depends on 

the storage status of di. If di is stored, its cost rate is the 

storage cost per time unit in the corresponding cloud ser-

vice. If di is deleted, its cost rate is the minimum regenera-

tion cost multiplied by its usage frequency. Formally,  

( ) , / /
( )

, / /

i

j

i

i d i

i c

i jd

minGenCost d v d is deleted
CostR d

Y d is stored in c


 
 .  

Based on the above definition, the Total Cost Rate of a 

DDG is the sum of cost rate of all the datasets in it, which 

is denoted as ( )
id DDG i

TCR CostR d  .  

Definition 3: Storage strategy of a DDG is the storage 

status of all datasets in the DDG, i.e. whether the datasets 

are deleted or stored, and furthermore, which cloud ser-

vices the datasets are stored in.  

Furthermore, we can calculate the minimum total cost 

rate as a benchmark. 

Definition 4: Minimum cost benchmark of a DDG is 

the minimum total cost rate for storing and regenerating 

datasets in the DDG with the minimum cost strategy, 

which is denoted as 

  min
min ( )

id DDG i
TCR CostR d  . 

Based on the definitions above, the minimum cost 

benchmark facilitates the minimum cost storage and re-

generation strategy of datasets in a DDG, which is also the 

best trade-off among computation, storage and bandwidth 

costs in clouds. In the next section, we will present the 

design of our algorithm to derive this benchmark.  

4 GT-CSB ALGORITHM 

In the section, we present our novel GT-CSB algorithm. It 

can find the minimum cost storage and regeneration strat-

egy for datasets, which represents the minimum cost 

benchmark in clouds. First, we briefly introduce the phi-

losophy of the GT-CSB algorithm. Then, we present the 

detailed steps of the algorithm, as well as the proofs of the 

minimum cost benchmark in clouds. For the ease of illus-

tration, we present the GT-CSB algorithm on linear DDG 

in this section. Linear DDG means a DDG with no branch-

es, where each dataset in the DDG only has one direct 

predecessor and successor except the first and last da-

tasets. The GT-CSB algorithm for general DDG is dis-

cussed in Section 5. At last, we analyse the computation 

complexity of the GT-CSB algorithm.   

4.1 Overview of GT-CSB Algorithm  

The GT-CSB algorithm is a graph based algorithm, which 

has the following main steps. 

Step 1: Construct a Cost Transitive Graph (CTG) based 

on the DDG. First, for every dataset in the DDG, we create 

a set of vertices in the CTG representing services from dif-

ferent cloud service providers where datasets can be 

stored or regenerated. Then, we add edges to the CTG and 

guarantee that the paths in the CTG (from a start vertex to 

an end vertex) have one-to-one mapping to the storage 

strategies of datasets in the DDG. 

Step 2: Set weights to the edges in the CTG. We present 

how to calculate the weights of edges that guarantee that 

the length of every path in the CTG (from a start vertex to 

an end vertex) equals to the total cost rate of the corre-

sponding storage strategy with the minimum cost regen-

eration strategy of the deleted datasets.   

Step 3: Find the shortest path in the CTG. We can use 

the well-known Dijkstra shortest path algorithm (or Dijks-

tra algorithm for short) to find the shortest path in the 

CTG, which in fact represents both the minimum cost 

strategy for storing and regenerating datasets in the DDG 

with multiple cloud service providers, and the best trade-

off among computation, storage and bandwidth costs in 

clouds.  

Next, we will describe these steps in more detail on a 

linear DDG. 
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(a) Step 1.1: Create vertices for CTG

(b) Step 1.2: Create edges for CTG

 

Figure 4. Construct CTG from DDG 

4.2 Detailed Steps in GT-CSB Algorithm on Linear 
DDG 

Given a linear DDG with datasets {d1, d2 … dn} and m cloud 

services {c1, c2 … cm} for storage. The GT-CSB algorithm has 

the following steps: 

Step 1: Construct CTG based on DDG. 

Step 1.1: Create vertices for the CTG. As shown in Fig-

ure 4.(a), first, we create the start and end vertices, denot-

ed as verstart and verend. Then, for every DDGdi  , we create 

a vertex set  1 2, ... m

i i i i

cc c

d d d d
V ver ver ver , where m is the 

number of cloud service providers with which di can be 

stored or regenerated. Hence s

i

c

d
ver  represents that dataset 

di is with cloud service provider cs.  

Step 1.2: Create directed edges for the CTG. As shown 

in Figure 4.(b), for every s

i

c

d
ver CTG , we add out-edges 

from it to all vertices which are created for the datasets 

succeeding to di in the DDG. Formally,  

 '( , )s s

i i

c c
i i i id dver ver CTG d d DDG d d 

       . 

 In other words, for any two vertices 

,s s

i i

c c

d d
ver ver CTG


  belonging to different datasets’ vertex 

sets (i.e. 
i id d

V V


 ), we create an edge between them. For-

mally,  

, ( , )

,

s s

i i

s s

i i

c c
i i i id d

c c

d d

ver ver CTG d d DDG d d

e ver ver









     

  
. 

Especially, we add out-edges from startver  to all other 

vertices in the CTG, and we add in-edges from all other 

vertices in the CTG to endver .  

Lemma 1: The storage strategies for a DDG have one-to-one 

mapping to the paths from startver  to endver  in the CTG.  

Proof: For any path from startver  to endver , we can find the 

vertices that it traverses. The storage strategy of the 

DDG for this path is to store the datasets with the 

cloud service providers that the traversed vertices rep-

resent, and delete the datasets that the path crosses 

over. On the contrary, given any storage strategy of the 

DDG, we can find the vertices in the CTG that repre-

sent the stored datasets and the corresponding cloud 

services providers. Then we can find the path from 

startver  that traverses all the vertices found to endver . 

Lemma 1 holds. 

Step 2: Set weights to the edges in the CTG. 

Definition 5:  For an edge ,s s

i i

c c

d de ver ver 


   in the CTG, 

we define its weight as the sum of Cost Rates of di' and the 

datasets between di and di', supposing that only di and d i' 

are stored with cs and cs' and the datasets between di and d 

i' are all deleted. Formally, 
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{ }

,

( ) ( )

s s

i i

k k i k i

c c

d d

i kd d DDG d d d

e ver ver

CostR d CostR d





    

 

 
. 

According to the definition of cost rate (Definition 2), 

we can get 

 { }

,

( )

s s

i i

s

ki k k i k i

c c

d d

c
k dd d d DDG d d d

e ver ver

Y minGenCost d v







    

 

  
. 

Based on the definition above, in order to calculate the 

weight of ,s s

i i

c c

d de ver ver 


  , we have to calculate the min-

imum regeneration cost of datasets between di and di', i.e. 

 k k i k id d DDG d d d     . 

In order to regenerate a dataset 

 j k k i k id d d DDG d d d      , we need to start from 

the stored provenance dataset di, and regenerate all the 

datasets between di and dj, i.e.

 k k i k jd d DDG d d d    . All these can be regenerated 

with any cloud service providers in {c1, c2 … cm}.  

We design an iterative method to find all the minimum 

cost regeneration strategies for datasets in 

 k k i k id d DDG d d d     , which utilises the vertices 

in the CTG. 

Definition 6: We define the value of a vertex 
s

i

c

d
ver CTG  as the minimum regeneration cost of di un-

der the condition that regeneration of di from its direct 

predecessor is with cloud service provider cs.  

Based on this definition, for edge ,s s

i i

c c

d de ver ver 


  , the 

values of vertices are 

 
1 1

1 1

,

,
1min

k s k k

i i i

k h h k k

j j j j

c c c c

d d d

c c c c cm
hd d d d

ver Z X

ver ver Z X

 

 

  



  


                      

where 1 1 2, { , ,... }j i j i k md DDG d d d c c c c     . 

By using the above iterative function, we can calculate 

the values of vertices that are needed for calculating the 

weight of ,s s

i i

c c

d de ver ver 


  , as shown in Figure 5. Based on 

Definition 6, the minimum regeneration cost of dj with the 

stored provenance di is the minimum value of vertices in 

jd
V , formally7 

 1
( ) min h

j

cm

j h d
minGenCost d ver




. 

Figure 5 demonstrates the iteration process of calculat-

ing the minimum regeneration costs of datasets in 

 k k i k jd d DDG d d d    , which are needed for cal-

culating the weight of ,s s

i i

c c

d de ver ver 


  . 

Based on this iterative method, we can further derive 

the weight of the edge 

 

7 The formula of minimum regeneration cost naturally holds based on 
Definition 6 and the iteration process, hence we need not give a formal 
proof for this formula.  

 

  
{ }

1{ }

,

( )

min

s s

i i

s

ki k k i k i

s h

ki kk k i k i

c c

d d

c
k dd d d DDG d d d

c cm
h dd dd d DDG d d d

e ver ver

Y minGenCost d v

Y ver v







 



 

   

   

 

  

  




. 

This iterative method is a general method for calculat-

ing the weights of edges in the CTG. However, in today’s 

market, most cloud service providers do not charge data 

inbound cost (e.g. Amazon, Microsoft, etc.). This means 

that the costs of transferring a dataset from one place to all 

other cloud service providers are the same. Hence, in or-

der to regenerate di+1, the only two options are either 1) 

keeping di in cs where di is resided or 2) transferring di to 

the cloud service provider which has the lowest computa-

tion price, denoted as cl, to regenerate di+1.  

By introducing this condition, we can simplify the iter-

ation process. To calculate the weight of ,s s

i i

c c

d de ver ver 


  , 

we only need the values of vertices in the set of 

 , DDG ( )s l

j j

c c

d d j i j i
ver ver d d d d     , which can be cal-

culated as follows 

 
1 1

1 1 1

,

,
min ,( )

k s k k

i i i

k k s s k k

j j j j j

c c c c

d d d

c c c c c c

d d d d d

ver Z X

ver ver ver + Z X

 

  

  



 


 

where 1 , { , }j i j i k s ld DDG d d d c c c     . 

By using the above new iterative function, we can cal-

culate the values of vertices that are needed for calculating 

the weight of ,s s

i i

c c

d de ver ver 


  , and the minimum regen-

eration cost of dj with the stored provenance di is the 

smaller value of the two vertices 
s

j

c

d
ver  and 

l

j

c

d
ver , formally 

 ( ) min ,s l

j j

c c

j d d
minGenCost d ver ver

. 

Based on this iterative method, we can further derive 

the weight of the edge 

 

  
{ }

{ }

,

( )

min ,

s s

i i

s

ki k k i k i

s s l

ki k kk k i k i

c c

d d

c
k dd d d DDG d d d

c c c
dd d dd d DDG d d d

e ver ver

Y minGenCost d v

Y ver ver v







 



 

   

   

 

  

  




.  

Lemma 2: The length of every path from startver  to endver  in 

the CTG equals to the total cost rate of the DDG with the 

corresponding storage strategy and the minimum cost re-

generation strategy for the deleted datasets. 

Proof: A path from startver  to endver  in the CTG is com-

posed of connected edges, and its length equals the 

sum of weights of these edges. According to Definition 

5, the start and end vertices of every edge are deemed 

as stored datasets where their storage cost rates are 

added to the weights of edges. Also the datasets that 

the edges cross over are deemed as deleted datasets 

where their minimum regeneration cost rates are add-

ed to the weights of edges. Hence, the length of a path  
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Figure 5. Iteration process for calculating the weight of an edge in CTG 

from  to  contains 1) the sum of storage cost 

rates of datasets that the path traverses and 2) the sum 

of minimum regeneration cost rates of datasets that the 

path crosses over, which is the total cost rate of the 

storage strategy that the path represents. Lemma 2 

holds. 

Step 3: Find the shortest path of the CTG.  

From the above construction steps, we can clearly see 

that the CTG is a weighted directed acyclic graph. Hence 

we can use the Dijkstra algorithm to find the shortest path 

from startver  to endver . The Dijkstra algorithm is a classic 

greedy algorithm to find the shortest path in graph theory. 

We denote the shortest path from startver  to endver  as 

 endstart ververP ,min . 

Based on the above steps of the GT-CSB algorithm, we 

can draw the following theorem.  

Theorem: Given a linear DDG with datasets {d1, d2 … dn} and 

m cloud services {c1, c2 … cm} for storage, the length of 
 endstart ververP ,min  of its CTG is the minimum cost rate 

for storing and regenerating datasets of the DDG in clouds, 

which is the minimum cost benchmark. 

Proof: If the length of  endstart ververP ,min  is not the 

minimum cost benchmark, then there exists another 

storage and regeneration strategy of the DDG, which 

has a smaller total cost rate. According to Lemma 1, we 

can find a path in the CTG that represents this strate-

gy. According to Lemma 2, the length of the new path 

equals the total cost rate of the new strategy, which is 

smaller than the length of  endstart ververP ,min . This is 

contradicting to the condition that 

 endstart ververP ,min  is the shortest path from startver  

to endver  in the CTG. Hence, the length of 

 endstart ververP ,min  is the minimum cost benchmark 

of storing and regenerating dataset of the DDG in 

clouds. Theorem holds. 

4.3 Computation Complexity Analysis 

Based on the discussion in Section 4.2, we demonstrate the 

pseudo code of our GT-CSB algorithm in Figure 6.  

From Figure 6 we can see that the algorithm Step 1 is 

demonstrated in lines 1-7. For a linear DDG with n da-

tasets and m cloud service providers, we need to create mn 

vertices in the CTG in Step 1.1 (lines 1-4), and the number 

of edges added to the CTG in Step 1.2 (lines 5-7) is in the 

magnitude of m2n2.  

Step 2 is demonstrated in lines 8-16, which includes the 

iteration process. To calculate the weight of an edge in the 

CTG, we need to calculate at most mn vertices’ values 

(lines 11-12). Because of the iteration process, the calculat-

ed vertices’ values can be reused in the next iteration 

round. Hence the time complexity for calculating the val-

ue of one vertex is O(m) (line 13). Hence, the time com-

plexity of calculating the weight of an edge is O(m2n). 

Hence, the time complexity of calculating weights of all 

edges in the CTG is O(m4n3). 

In Step 3 (line 17), the time complexity of Dijkstra algo-

rithm is O(m2n2). 

Based on the above analysis, the total time complexity 

of the GT-CSB algorithm is O(m4n3). The space complexity 

of the GT-CSB algorithm is O(m2n2), which is the space to 

save the created CTG. 

 

startver endver
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Algorithm: GT-CSB

Input: A linear DDG {d1, d2 … dn};

Cloud service providers {c1, c2 … cm};

Output: The minimum cost benchmark

Create 

for ( every dataset di in DDG ) //Create vertices for CTG

      Create 

Add vertices                                                       to CTG;

for ( every                       ) //Create edges for CTG

      for ( every                                                                  )

Create //Create an edge

for (every                      ) //Calculate the edge weight

       

            

           for ( every                                                 )

      for ( every                   )

                         

      

Set     //Set edge weight

    //Find the shortest path

Return P; //The benchmark is the length of P

01.

02.

03.

04.

05.

06.

07.
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Figure 6. Pseudo code of GT-CSB algorithm 

5 UTILISATION OF GT-CSB ALGORITHM 

The major contribution of the GT-CSB algorithm is to cal-

culate the minimum cost for storing and regenerating 

datasets in multiple clouds. It can be widely utilised in 

cloud computing. As stated in Section 1, by using this 

algorithm, users can 1) design minimum cost benchmark-

ing approaches to evaluate the cost effectiveness in 

clouds; 2) design cost-effective strategies to store and re-

generate application datasets and 3) understand the cost 

constitution of their application. In our prior work [20] 

[28] [21], we proposed the CTT-SP algorithm that can find 

the best trade-off between compuatation and storage in 

one cloud, and used it in designing cost-effective storage 

strategies and benchmarking approaches. As the same 

philosophy can be applied in this paper, we briefly intro-

duce how to design minimum cost benchmarking ap-

proaches and cost-effective strategies based on the GT-

CSB algorithm for storing and regenerating datasets in 

clouds. In Section 6, we will demonstrate the constitution 

of different costs for the application under different types 

of workload. 

5.1  Minimum Cost Benchmarking Approaches 

In this section, we describe how to facilitate benchmark-

ing approaches by using the GT-CSB algorithm. Accord-

ing to different usage scenarios, we have two different 

benchmarking approaches. 

5.1.1 Static On-Demand Minimum Cost 
Benchmarking  

In clouds, whenever users want to know the minimum 

cost benchmark, they can launch this approach on the 

DDG of all application datasets and wait for the 

benchmark to be calculated. This approach is more suita-

ble for the situation that less frequent benchmarking is 

requested, primarily before runtime. In order to build the 

approach, we need to apply the GT-CSB algorithm to the 

general DDG. In our prior work [20], we proposed a re-

cursive algorithm for general DDG to find the best trade-

off between computation and storage costs in one cloud, 

which is based on the CTT-SP algorithm. The same pro-

cedure can be adapted to the GT-CSB algorithm, based on 

which we can build a static on-demand minimum cost 

benchmarking approach. Specifically, given a general 

DDG, we randomly choose one linear data dependency 

path as “main branch” to construct the CTG, and the rest 

of datasets in the DDG are deemed as “sub-branch”. 

Then, we can call the GT-CSB algorithm on the CTG of 

the “main branch”, and recursively call the algorithm for 

the “sub-branch” based on smart rules for setting the 

weights to different types of edges. Finally, we can find 

the minimum cost storage and regeneration strategy of 

the whole DDG.  

5.1.2 Dynamic On-the-fly Minimum Cost 
Benchmarking  

Although the general GT-CSB algorithm can calculate the 

minimum cost benchmark, its computation complexity is 

high. If there are frequent benchmarking requests, the on-

demand approach will be inefficient, because we have to 

run the genreal GT-CSB on the whole DDG for every re-

quest. Hence, we need another approach which is more 

suitable for the situation that more frequent benchmark-

ing is requested at runtime. In our prior work [28], we 

also proposed a dynamic on-the-fly benchmarking ap-

proach for one cloud by taking advantage of saved pre-

calculated results. In this approach, we utilise the classic 

Master-Worker architecture in the implementation which 

guarantees the efficiency of pre-calculation. The same 

philosophy can also be applied in the GT-CSB algorithm 

to achieve a dynamic on-the-fly minimum cost bench-

marking approach. Specifically, for every linear segment 

of a general DDG, we pre-calculate all its possible mini-

mum cost storage and regeneration strategies and save 

them in a solution space. By merging and utilising the 

saved solution spaces, we can derive the minimum cost 

benchmark of the whole DDG and dynamically keep it 

updated whenever new datasets are generated or existing 

datasets’ usage frequencies are changed. 



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCC.2015.2491920, IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON CLOUD COMPUTING,  MANUSCRIPT ID 

 

5.2  Cost-Effective Storage and Regeneration 
Strategy 

The GT-CSB algorithm can also be used for designing 
cost-effective storage and regeneration strategies. Differ-
ent from the benchmarking approach, the minimum cost 
strategy may not be the best strategy for storing and re-
generating datasets. Besides cost effectiveness, a good 
strategy should take users’ preferences into consideration 
(e.g., users’ tolerance of data accessing delay). In our prior 
work [21], we developed a local-optimisation based strat-
egy for storing and regeneration datasets in one cloud, 
which is highly cost-effective and practical. The same phi-
losophy can be applied in this work to derive our cost-
effective storage and regeneration strategy with multiple 
cloud services.  

Specifically, in order to reflect users’ preferences, we 
can enhance the GT-CSB algorithm by introducing two 
parameters denoted as T and λ, which are same as our 
prior work [21]. T is the parameter used to represent us-
ers’ tolerance on data accessing delay. Users need to in-
form the cloud service provider about the datasets that 
they have requirements on their availabilities. λ is the 
parameter used to adjust the storage strategy when users 
have extra budget on top of the minimum cost benchmark 
to store more datasets for reducing the average datasets 
accessing time. Based on the enhanced GT-CSB algorithm, 
we can adapt the philosophy of local-optimisation to 
achieve the high efficiency of the storage strategy, which 
is as follows: 

 (1) Given a general DDG, we first partition it into line-
ar segments and apply the GT-CSB algorithm to calculate 
the storage strategy.  

We search for the datasets that have multiple direct 
predecessors or successors (i.e. the join and split datasets 
in the DDG), and use these datasets as the partitioning 
points to divide it into linear DDG segments, as shown in 
Figure 7. Based on the linear DDG segments, we use the 
GT-CSB algorithm to find their storage strategies. This is 
the essence for achieving the cost-effectiveness. 

(2) When new datasets are generated in the system, 
they are treated as a new DDG segment and added to the 
old DDG. Correspondingly, its storage status is calculated 
in the same way as the old DDG.  

(3) When a dataset’s usage frequency is changed, the 
storage status of the linear DDG segment that contains 
this dataset is re-calculated.  

 

...

...

...

...

Linear DDG1

Linear DDG3

Linear DDG2

Linear DDG4

Partitioning 

point dataset

Partitioning 

point dataset

Figure 7. Dividing a DDG into linear DDG segments 

By utilising the GT-CSB algorithm, our strategy 
achieves the local-optimisation of storing datasets in the 
DDG. The theoretical analysis of cost-effectiveness for the 

local-optimisation based strategy is given in our prior 
work [21]. In Section 6, we will demonstrate experimental 
results to further evaluate the cost-effectiveness of our 
strategy.  

6 EVALUATION 

As Amazon is a well-known and widely recognised cloud 

service provider, we conduct experiments on Amazon 

cloud using on-demand services for simulation. We im-

plement the GT-CSB in the Java programming language 

and run it on the virtualised EC2 instance with the Ama-

zon Linux Image to evaluate its cost effectiveness and effi-

ciency. We choose the standard small instance (m1.small) 

to conduct the experiments, because it is the basic type of 

EC2 CPU instances, which has a stable performance of one 

ECU8. In the simulation, we use randomly generated DDG 

with datasets of random sizes, generation times and usage 

frequencies. We also use popular cloud service providers’ 

pricing model. The experiment code is available at 

http://www.ict.swin.edu.au/personal/yyang/doc/TCC14.zip. 

In this section, we summarise the evaluation results. 

In Section 6.1, we evaluate the cost effectiveness of the 

minimum cost benchmark. We compare it with different 

representative storage strategies and demonstrate their 

cost differences to the minimum cost benchmark. In Sec-

tion 6.2, we investigate the cost constitution in the mini-

mum cost benchmark. We demonstrate the proportions of 

computation, storage and bandwidth costs in the mini-

mum cost benchmark and the change of the proportion 

with different DDG inputs. In Section 6.3, we evaluate the 

efficiency of the GT-CSB algorithm. We demonstrate that 

the algorithm has a polynomial time complexity as both 

the number of datasets in the DDG and the number of 

cloud service providers grow. 

6.1  Cost Effectiveness Evaluation 

We evaluate the cost effectiveness of our minimum cost 

benchmark by comparing it with some representative 

storage strategies as follows. 

 Store all datasets strategy, in which all generated da-

tasets of the application are stored in the cloud. This 

strategy represents the common approach used in most 

applications in the cloud.  

 Store none datasets strategy, in which all generated 

datasets of the application are deleted after being used. 

This strategy is often used in scientific applications that 

generate large and rarely used intermediate datasets. 

 Cost rate based strategy reported in [29] [30], in which 

we store datasets in the cloud by comparing their own 

generation cost rate and storage cost rate.  

 
 

8 ECU (EC2 Computing Unit) is the basic unit defined by Amazon to 
measure the compute resources. Please refer to the following address for 
details: http://aws.amazon.com/ec2/instance-types/  

http://www.ict.swin.edu.au/personal/yyang/doc/TCC14.zip
http://aws.amazon.com/ec2/instance-types/
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 Local-optimisation based strategy reported in [31] [21], 

in which we only achieve the localised optimum of the 

trade-off between computation and storage in the 

cloud.  

 T-CSB algorithm based strategy reported in [26], in 

which datasets can be transferred to different cloud 

service providers for storage.   

These strategies are designed for deploying applica-

tions with one cloud service provider, which is assumed to 

be Amazon cloud, i.e. using EC2 service ($0.10 per CPU 

instance hour) for computation and S3 service ($0.15 per 

gigabyte per month) for storage. In the T-CSB algorithm 

based strategy, we assume that datasets can be transferred 

to Haylix cloud for storage.  

Haylix is a leading Australian IaaS cloud service pro-

vider, who provides reliable cloud storage with fast access 

for local Australian users. As data transfer over the Inter-

net is often expensive and relatively slow in general, some 

cloud service providers (e.g. Amazon) cooperate with 

network infrastructure providers (e.g. Equinix) to provider 

dedicate connection service (e.g. AWS Direct Connect) for 

boosting the data transfer speed in and out of the cloud. 

Hence, we use the pricing models of Haylix and AWS Di-

rect Connect in our simulation, i.e. $ 0.11 per CPU instance 

hour for computation, $0.12 per gigabyte per month for 

storage, $0.046 per gigabyte for outbound data transfer 

from Haylix. 

In real world applications (e.g., case studies in Section 

3 and supplementary materials), generated datasets vary 

dramatically in terms of size, generation time, usage fre-

quency and the sturcutre of DDG. Hence, we set random 

parameters in our experiments to evaluate the general 

performance of our GT-CSB algorithm without the loss of 

generality. Specifically, we randomly generate DDGs with 

different number of datasets, each with a random size 

from 1GB to 100GB. The generation time is also random, 

from 10 hours to 100 hours. The usage frequency is again 

random, from once per month to once per year.  

The simulation results are demonstrated in Figure 8. 

As we can see that the “store all datasets” and “store none 

dataset” strategies are very cost ineffective. By investigat-

ing the trade-off between computation and storage, the 

“cost rate based strategy” and “local-optimisation based 

strategy” can smartly choose to store or delete the datasets, 

thereby largely reducing the cost rate for storing datasets 

with one cloud service provider. If more cloud storage 

services are available, the simulation of “T-CSB algorithm 

based strategy with Haylix storage” demonstrates further 

reduction of the cost rate by taking bandwidth cost into 

account. However, it cannot achieve the minimum cost 

due to the limitation of the T-CSB algorithm, i.e., computa-

tion can only happen in one cloud. In contrast, our GT-

CSB algorithm based minimum cost benchmark has the 

lowest cost rate among different storage strategies. 

6.2  Constitution of Differnet Costs in Clouds  

One of the important utilisations of the minimum cost 

benchmark is to help users to understand the constitution 

of different costs of their applications in the clouds. In this 

sub-section, we demonstrate the constitution of computa-

tion, storage and bandwidth costs in the minimum cost 

benchmark of different input DDGs. 

We use a randomly generated DDG with 50 datasets 

and 3 cloud service providers with the pricing models as 

follows. 

 Cloud 1: $0.11 per hour CPU, $0.1 per gigabyte per 

month for storage, and $0.01 per gigabyte for out-

bound data transfer. 

 Cloud 2: $0.15 per hour CPU, $0.05 per gigabyte per 

month for storage, and $0.15 per gigabyte for out-

bound data transfer. 

 Cloud 3: $0.12 per hour CPU, $0.07 per gigabyte per 

month for storage, and $0.03 per gigabyte for out-

bound data transfer. 

 

Figure 8. Cost-effectiveness comparison
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We only use the above prices as representatives, as 

many cloud service providers (e.g. GoGrid9, Rackspace10, 

Haylix11, etc.) have similar pricing models. 

Based on the above setting, we calculate the minimum 

cost benchmark for a 50 datasets DDG with 3 cloud service 

providers. Figure 9 demonstrates the constitution of costs 

in this benchmark and how datasets are stored and regen-

erated in the three cloud service providers.  

Given different DDGs, the constitution of costs in the 

benchmark will be different. Next, we change the parame-

ters for generating the DDGs (i.e. size, regeneration time 

and usage frequency), and demonstrate the corresponding 

change of the costs constitution in the minimum cost 

benchmark, as well as the change of storage and regenera-

tion strategies in the three cloud service providers. 

Figures 10, 11 and 12 show the impact of datasets’ sizes, 

regeneration times and usage frequencies on the mini-

mum cost benchmark respectively. We can see from the 

figures that when datasets’ sizes, regeneration times or 

usage frequencies are doubled or halved in the DDG, the 

constitution of costs in the benchmark does not change 

proportionally. Understanding the relationship between 

DDG and the constitution of costs in the minimum cost 

benchmark can help users to optimise the cost of their ap-

plications in clouds. 

6.3  Efficiency Evaluation of the GT-CSB Algorithm  

As presented in Section 4.3, the GT-CSB algorithm has a 

polynomial time complexity of O(m4n3). In this sub-section 

we demonstrate the algorithm efficient of our implementa-

tion. Figure 13 (a) shows the results of running the GT-

CSB algorithm on three cloud service providers with dif-

ferent number of datasets in the DDG. Figure 13 (b) shows 

the results of running the GT-CSB algorithm on a 50 da-

tasets DDG with different number of cloud service pro-

viders. As we can see from Figure 13, the CPU time of exe-

cuting the GT-CSB algorithm has a polynomial growth as 

the increase of datasets in the DDG or number of cloud 

service providers. 

 

Figure 9. Constitution of costs in the minimum cost 

benchmark 

 

9 GoGrid: http://www.gogrid.com/  
10 Rackspace: http://www.rackspace.com/ 
11 Haylix: http://www.haylix.com/ 

(a) Datasets’ sizes are doubled in the DDG 

 

(b) Datasets’ sizes are halved in the DDG 

Figure 10. Impact of datasets’ sizes on the minimum 

cost benchmark 

 

(a) Datasets’ regeneration times are doubled in the DDG 

 

(b) Datasets’ regeneration times are halved in the DDG 

Figure 11. Impact of datasets’ regeneration times on 

the minimum cost benchmark 

 

(a) Datasets’ usage frequencies are doubled in the DDG 

 

(b) Datasets’ usage frequencies are halved in the DDG 

Figure 12. Impact of datasets’ usage frequencies on 

the minimum cost benchmark 

http://www.gogrid.com/
http://www.rackspace.com/
http://www.haylix.com/
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(a) 3 cloud service providers    (b) 50 datasets DDG  

Figure 13. Efficiency evaluation of GT-CSB algorithm 

7    CONCLUSIONS AND FUTURE WORK 

In this paper, we have investigated the minimum cost 

strategy for storing and regenerating datasets based on the 

pay-as-you-go model with multiple cloud service provid-

ers. Towards achieving a generic best trade-off among 

computation, storage and bandwidth, we have designed 

the GT-CSB algorithm, which calculates the minimum cost 

benchmark for storing and regenerating datasets in clouds. 

We have presented the design of the algorithm in detail 

and rigid proof to guarantee the validity of minimum cost 

benchmark. Experimental results also demonstrated the 

excellent performance of the proposed approach. 

In our current work, we assume that cloud service 

providers have unified prices for computation, storage 

and bandwidth resources. However, in the real world, the 

prices of cloud services can well be different according to 

different requirements and usages. Furthermore, extra cost 

might be caused by the “vender lock-in” issue among dif-

ferent cloud service providers, large number of requests 

from input/output (I/O) internsive applications, etc. In the 

future, we will incorporate more complex pricing models 

in our datasets storage and regeneration cost model.  

In this paper, our focus is to solve the crucial problem 

of calculating the minimum cost for data storage and re-

generation in multiple clouds. Hence the efficiency of the 

GT-CSB algorithm design has not been comprehensively 

investigated. In the future, we will re-design the algorithm 

by using Dynamic Programming techniques, which can 

further significantly reduce the algorithm complexity. 
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