
© 2012, IJARCSSE All Rights Reserved Page | 42

 Volume 2, Issue 6, June 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

SQL INJECTIONS – A HAZARD TO WEB APPLICATIONS

Neha Singh
Guru Nanak Dev Co-ed Polytechnic,

New Delhi, India
neha.s02dec@gmail.com

Ravindra Kumar Purwar

University School of Information Technology, Guru

Gobind Singh Indraprastha University,

New Delhi, India

Abstract — With changing times, our dependence on the web applications for the fulfilment of our daily needs (like online

shopping, banking, share trading, ticket booking, payment of bills etc.) has increased. Because of this, our confidential data is

present in the databases of various applications on Web. The security of this myriad amount of data is a matter of major concern.

In recent times, SQL Injection attacks have emerged as a major threat to database security. In this paper we define SQL Injections,

illustrate how SQL Injections are performed. In addition we have also surveyed the various SQL Injection detection and Prevention

tools and well-known attack methods. Finally, we have provided our solution to the problem and have assessed its performance.

Keywords — SQLIA, Database, Web application, SQL query, attacker.

I. INTRODUCTION

The numerous advances in technology have simplified

many of our daily tasks. With multiple services

available via a single click through various Web

Applications, we don‟t have to stand in long queues at

the banks or have to go to the markets to shop for the

latest trends. The gaining popularity of the Web

Applications has drawn the attention of many hackers.

With so much personal data scattered over the Web in

various databases, hackers can certainly harm many

lives by gaining access to it or by making changes to it.

For instance, if a hacker obtains the bank account

details of an individual, he can misuse this information

(like account number, account balance, loan amount,

etc.) and can also alter the data to cause harm to the

concerned individual.

SQL (Structured Query Language) is a common

language used to insert, retrieve, update and delete data

from the databases. When we enter our information

(like login credentials etc.) in the input fields provided

on the web form of a Web Application, it forms the part

of the SQL query written at the backend, to be executed

on the database. For instance, when we login in our

mailbox, we provide username and password. The

username and password form the part of the internal

SQL query. Then the SQL query is executed on the

database to check whether the login credentials

provided match with those present in the tables on the

database. The attacker, who is not aware of the login

credentials but, wants to gain access to the mailbox by

unfair means, provides SQL code instead of correct

input in the test fields of the web form. This malicious

code changes the structure of the original SQL query

and consequently, allows the attacker to gain access to

the information it was not authorized for. This type of

attacks, which allow the attacker to change the meaning

of the original SQL query by inputting

illegitimate SQL code from the front end of the Web

application are termed as SQLIAs (SQL Injection

Attacks).

SQLIAs pose a serious threat to the data security of the

Web applications. These are the most popular and

harmful attacks used by the hackers to attack databases.

In SQLIAs, the attacker provides SQL code instead of

the legitimate input in the input fields of the web form

in order to change the meaning of the original SQL

query issued by the database at the backend. Once the

attacker gains access to the database, it can alter any

data.

II. DEFINITION

SQL Injections are attacks by which an attacker alters

the structure of the original SQL query by injecting

SQL code in the input fields of the web form in order to

gain unauthorized access to the database.

III. ILLUSTRATION OF A SIMPLE SQL ATTACK

There are several methods which an attacker can use to

gain access to the database of a Web Application. We

have developed a tool using Apache Tomcat and Oracle

to illustrate SQLIAs.

Tautology is a conditional statement which always

evaluates to true. This type of method is used to attack

the SQL queries which use the „WHERE‟ clause. Here

the intention of the attacker is to make the condition in

the query as true. To do so, the attacker adds the most

common tautology condition „1=1‟ in the input field of

the web form. Tautology attacks are illustrated in fig.1

below:

http://www.ijarcsse.com/
mailto:neha.s02dec@gmail.com

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 43

FIGURE I

ILLUSTRATION OF SQL ATTACK

The SQL query being executed at the backend is

‘Select * from login where Username = ‘ ’ or 1 = 1 --

‘ and Password= ‘xxxxx’’

The single quote entered by the attacker closes the

Username field and the double dashes comments out

everything after the dashes. Therefore, the query

retrieves all the records in the LOGIN table and returns

them back to the attacker.

IV. BACKGROUND

Research has been going since long to mitigate the

effects of SQLIAs and consequently many detection

and prevention tools have been developed over the

years. We‟ve surveyed some of these tools and have

summarized them in the table 1 below. ([3],[5],[8]-

[15]).

TABLE II
SQL INJECTION DETECTION AND PREVENTION TOOLS

CANDID It is a tool developed to guard Web

applications in Java language against

SQL Injection attacks. It uses candidate

inputs to dynamically infer about the

programmer intended query structure.

Candid consists of two components: an

offline Java program transformer and an

online SQL parse tree checker.

AMNESIA Detection and prevention technique,

which uses static and dynamic analysis

in combination. During static analysis, it

predicts the legitimate queries that can

be generated by the application. During

dynamic analysis, it uses runtime

monitoring to check the queries

generated in static analysis against the

actual set of generated queries.

Positive

Tainting

Dynamic approach to detect and prevent

SQL injections by performing dynamic

tainting. Firstly, it finds and highlights

the trusted data. Then it performs

accurate taint propagation by

highlighting the trusted data at character

level. Finally, it performs syntax-aware

evaluation of the queries, where all

queries containing untrusted characters

are blocked from execution on the

database.

SQL Rand The concept of Instruction-Set

randomization is applied to the SQL

language to detect and abort queries

which contain injected code. Here, each

SQL keyword is joined with a random

integer to mislead the attacker.

SQL DOM Object oriented model in which SQL

queries are generated by manipulating

objects which are strongly-typed to the

database. It inspects the dynamically

generated queries at of compile time.

Viper A tool used for Web Application

penetration testing which uses heuristic

approach for detecting SQL Injections.

SQL-Prob

SQL Proxy-based Blocker which fetches

the user input from the SQL query of the

application and checks it against the

syntactic structure of the query.

ADMIRE It is a threat risk model which provides a

thorough and step-by-step technique to

identify and moderate the effect of SQL

Injections.

WAVES A Black box technique which searches

for vulnerable locations in a Web

application using a Web Crawler and

then builds attacks which target these

locations. Finally, it watches the

responses of the Web application to

these attacks using machine learning

techniques.

JDBC-

Checker

It is a static checking technique which

checks for the correctness of the

dynamically-generated SQL queries.

V. SQL INJECTION ATTACK METHODS

There are multiple methods by which a Web application

can be attacked. We‟ve discussed each of these

methods in detail to illustrate how each of them is used

to attack the database of the application.

([1],[2],[4],[6],[9]).

Tautology based SQL Injections - It is used to inject a

tautology statement (e.g. “1=1”) to the conditional SQL

query so that it evaluates to true always. SQL query

containing „WHERE‟ clause is vulnerable to this kind

of attack.

Example -

Original Query- „ Select accountno, balance from

accounts where loginid=‟abc‟ and pwd=‟xxxxx‟‟

Injected Query- „Select accountno, balance from

accounts where loginid=‟ ‟ or 1=1 --„ and pwd=‟not

required‟‟

Result- It shows the account number and balance

amount for all values of loginid from the accounts table.

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 44

Statement Injection - It is used to inject a new SQL

query to the original SQL query, through the front-end

of an application using query delimiter “;”.

Example -

Original Query- „Select * from employee where

empid=‟1234‟ and password=‟xxxx‟‟

Injected Query- „Select * from employee where

empid=‟ ‟; Delete from employee where empid= ‟1234‟

--‟ and password=‟not required‟‟

Result- It deletes the record for empid=1234 from

employee table.

Stored Procedures - A Stored Procedure consists of

precompiled set of SQL statements referred by a single

name. As a stored procedure is coded by the

programmer, it is as vulnerable to SQL injections as the

other Web Applications.

Example -

Consider the stored procedure below:

CREATE PROCEDURE new_dept(new IN varchar2,

old IN varchar2)

IS

 line varchar2(8000);

BEGIN

 line:='begin

 update department set dept=''' || new ||

''' where dept= '''|| old || ''';' || 'END;';

 DBMS_OUTPUT.PUT_LINE('line: ' || line);

 EXECUTE IMMEDIATE line;

END;

This procedure has two input fields, old department

name and new department name and replaces old name

with the new one. The attacker injects the code

[„ ‟;SHUTDOWN;--] in either of the two fields. This

injection generates the following query:

Update department Set dept =‟abc‟;SHUTDOWN;--

where dept=‟aaa‟

At this stage, the attack behaves like the statement

injection attack where the injected query is made to

execute with the original query using query delimiter „;‟.

Illogical/Incorrect queries - The attacker deliberately

inputs incorrect information in order to gather

information about the internal database structure of the

application, through the displayed error messages.

Example - Consider the stored procedure below:

CREATE PROCEDURE sales

 (tot OUT number,dt in date)

 IS

 line CONSTANT VARCHAR2(4000) :='select

sum(price) from orders where odate+30>'''||dt||'''';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('line: ' || line);

 EXECUTE IMMEDIATE line into tot;

 DBMS_OUTPUT.PUT_LINE('total sales:'||tot);

 END;

It requires odate as input from the user. The attacker

inputs date as „5a‟, which is an incorrect date format.

The error displayed is

javax.servlet.ServletException: ORA-06550: line 1,

column 7:

PLS-00306: wrong number or types of arguments in

call to 'SALES'

ORA-06550: line 1, column 7:

PL/SQL: Statement ignore….

Two important pieces of information can be inferred

from the above error. First, the name of the procedure is

SALES and second, the name of the database is Oracle.

Union query - The original SQL query is concatenated

to the injected query by using the SQL keyword

„UNION‟, to gather information from other tables

related to the application.

Example -

Original Query- 'Select salary from employee where

empid='1234''

Injected Query- 'Select salary from employee where

empid=' ' Union select * from employee'

Result- It will return all the records from the employee

table.

Alternate Encodings - The attacker uses Alternate

Encodings like, ASCII, Unicode, EBCDIC and

Hexadecimal to inject code so that it can bypass the

validations on the input, if any.

Example -

Original Query- „Select * from login where username =

„a123‟ and pwd=‟xxx‟‟

Injected Query- „Select * from login where username =

„ ‟; exec(char(0x73687574646f776e)) --‟ and pwd=‟not

required‟‟

Result- The value passed to the char() function is the

hexadecimal encoding for SHUTDOWN. Thus as the

above injection uses hexadecimal encoding instead of

actual characters, it will bypass the input validations

and will cause the SHUTDOWN command to be

executed.

Inference - These types of attacks are framed where the

applications have input validations and thus it is

relatively difficult for the attacker to deduce

information about the vulnerable parameters and

structure of the database. Still, attacker tries to gain

information from the application by changing the

behaviour of the queries. These attacks are bifurcated

into two major types: Blind Injection and Timing

Attacks.

Blind Injection: The query is transformed into a group

of true/false questions in order to fetch information

related to the behavior of the application.

Example -

Original URL -

http://www.myarea.com/value/value.asp?value=111

Injected URL-

http://www.myarea.com/value/value.asp?value=111

and „1=0‟

Result- If there is no input validation present on the

application; the following error message will be

produced.

Select *from users where userid=111 and „1=0‟

From the message, we can infer that table name is

„users‟ and field name is „userid‟. But if the application

has incorporated input validations, then no error will be

returned by the application. This piece of information

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 45

will be useful for the attacker to sight the vulnerable

parameters in the application.

Timing Attacks: They examine the timing delays in

responses from the database to fetch information from

the application (e.g. WAITFOR keyword is used to

execute a SQL statement after some specified delay).

The attacker asks questions through the queries and sets

time delay for a condition in the query. If the condition

is true, the delay takes place, which allows the attacker

to gain information about the application.

Example -

Original Query- „Select * from users where uid=‟c12‟

and pwd=‟xxx‟‟

Injected Query- „Select * from users where uid=„ c12‟

and ascii(substring(pwd,1,1)) > Z waitfor delay „0:0:7‟

--‟and pwd=‟not required‟‟

Result- If the ascii value of the first character of pwd is

greater than the value z, the query will generate a delay

for seven seconds.

VI. PROPOSED SOLUTION

The gaining popularity of SQL Injection attacks is

attributed to the fact that many Web Applications do

not perform any validations on the data input by the

user. This enhances the chances of the attacker to gain

unauthorized access to the database of the application.

Our proposed solution to prevent SQL Injection Attacks

suggests performing validations on the data entered by

the user through the web form. We create three tables at

the database, one which contains the list of all the SQL

operators, second which contains the list of all the SQL

keywords and third which contains special characters

(like ;, „,‟,--, etc.). The input given by the user through

the web form is tested against the data present in these

tables. If the data contains SQL operators, SQL

Keywords or special characters, the SQL query is

terminated and is not allowed to be executed on the

database.

FIGURE II

PREVENTION OF SQL ATTACK

We‟ve implemented this prevention approach in our

Apache Tomcat and Oracle tool. The results are as

shown in the FigureII below.

Here, the input containing a tautology is supplied as

input. The application prevents the resultant query from

executing it on the database (as the data input by the

user contains SQL code) and consequently the number

of keywords, operators and special characters present in

the user input are returned.

The performance our solution depending upon its

ability to counter various attack methods is given below

in tableII.

TABLE II

PERFORMANCE OF OUR SOLUTION

TAUTOLOGY BASED SQL INJECTION YES

STATEMENT INJECTION YES

UNION QUERY YES

STORED PROCEDURES YES

ALTERNATE ENCODINGS NO

ILLOGICAL/INCORRECT QUERIES YES

INFERENCE NO

VII. CONCLUSION AND FUTURE WORK

SQL injection Attacks are a serious hazard to the

growing popularity of these applications. The main

target of these attacks is the database of the Web

application and attackers have devised various methods

for the same. We have surveyed all the common attack

methods and have provided simple illustrations for each

of them. Also, we have formulated a new solution to

counter the problem of SQL Injection Attacks but, it is

not fool proof against every well-known attack method.

In future we would like to improvise our solution so

that it can counter all types of attacks.

REFERENCES

[1] Evaluation of SQL Injection Detection and

Prevention Techniques By Atefeh Tajpour ,

Centre for Advanced Software Engineering

(CASE) ,University Technology Malaysia

,Kuala Lumpur, Malaysia ; Mohammad JorJor

zade Shooshtari ,Centre for Advanced

Software Engineering (CASE) ,University

Technology Malaysia,Kuala Lumpur,

Malaysia

[2] A Survey On Sql Injection: Vulnerabilities,

Attacks, And Prevention Techniques By Diallo

Abdoulaye Kindy and Al-Sakib Khan Pathan

Department of Computer Science,

International Islamic University Malaysia,

Malaysia

[3] AMNESIA: Analysis and Monitoring for

NEutralizing SQLInjection Attacks by

William G.J. Halfond and Alessandro Orso

,College of Computing Georgia Institute of

Technology

[4] SQL Injection Detection and Prevention Tools

Assessment By Atefeh Tajpour CASE Center

University Technology Malaysia Kuala

,Lumpur, Malaysia ; Mohammad Zaman

Heydari ,IT & Management Dep UCSI

University Kuala Lumpur, Malaysia ; Maslin

Volume 2, Issue 6, June 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 46

Masrom ,CASE Center University Technology

Malaysia Kuala ,Lumpur, Malaysia , Suhaimi

Ibrahim ,CASE Center UTM University Kuala

Lumpur, Malaysia

[5] Shielding Against SQL Injection Attacks

Using ADMIRE Model By Prof (Dr.) Sushila

Madan Supriya Madan ,Department of

Computer Science ,Lady Shri Ram College

,University of Delhi ; Supriya Madan

,Department of Information

Technology,Vivekananda Institute of

Professional Studies

[6] A Survey of SQL Injection Defense

Mechanisms By Kasra Amirtahmasebi, Seyed

Reza Jalalinia and Saghar Khadem, Chalmers

University of Technology, Sweden

[7] An Authentication Mechanism against SQL

Injection on Web Platform process. By Kamal

Kumar1 Sandeep Jain2 ,1Assistant Professor,

M.M.E.C., M. M. University, Mullana

(Ambala, India) kumarkamal78@yahoo.com ;

2M. Tech Student , M. M. University, Mullana

(Ambala, India), 26sand@gmail.com

[8] CANDID : Preventing SQL Injection Attacks

Using Dynamic Candidate Evaluations By

PRITHVI BISHT ,University of Illinois,

Chicago ;P. MADHUSUDAN,University of

Illinois, Urbana-Champaign and V. N.

VENKATAKRISHNAN, University of

Illinois, Chicago

[9] A Classification of SQL Injection Attacks and

Countermeasures By William G.J. Halfond,

Jeremy Viegas, and Alessandro Orso, College

of Computing, Georgia Institute of

Technology

{whalfond|jeremyv|orso}@cc.gatech.edu

[10] Using Positive Tainting and Syntax-Aware

Evaluation to Counter SQL Injection Attacks

By William G.J. Halfond, Alessandro Orso,

and Panagiotis Manolios College of

Computing – Georgia Institute of Technology

{whalfond|orso | manolios}@cc.gatech.edu

[11] SQLrand: Preventing SQL Injection Attacks

By Stephen W. Boyd and Angelos D.

Keromytis, Department of Computer Science,

Columbia University,{

fswb48,angelosg}@cs.columbia.edu

[12] SQL DOM: Compile Time Checking of

Dynamic SQL Statements By Russell A.

McClure and Ingolf H. Krüger, University of

California, San Diego, Department of

Computer Science and Engineering 9500

Gilman Drive, La Jolla, CA 92093-0114,USA

{rmcclure, ikrueger} @ cs.ucsd.edu

[13] A heuristic-based approach for detecting SQL-

injection vulnerabilities in web applications

By Angelo CiampaUniv. Of Sannio,

ItalyCorrado Aaron VisaggioUniv. Of Sannio,

ItalyMassimiliano Di PentaUniv. Of Sannio,

Italy

[14] SQLProb: A Proxy-based Architecture

towards Preventing SQL Injection Attacks By

Anyi Liu, Yi Yuan, Duminda Wijesekera and

Angelos Stavrou, Department of Computer

Science, George Mason University { aliu1,

yyuan3,wijesekera,astavrou}@gmu.edu

[15] ADMiRe: An Algebraic Approach to System

Performance Analysis Using Data Mining

Techniques By Kien A. Hua, Ning Jiang, Roy

Villafane and Duc Tran, University of Central

Florida { kienhua, njiang, villafan, dtran}@

cs.ucf.edu

mailto:kumarkamal78@yahoo.com
mailto:26sand@gmail.com
http://dl.acm.org/author_page.cfm?id=81464644068&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81464644068&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81464644068&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81464644068&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100032155&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100032155&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100032155&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100574934&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100574934&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348
http://dl.acm.org/author_page.cfm?id=81100574934&coll=DL&dl=ACM&trk=0&cfid=107881646&cftoken=93643348

