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Abstract—Examining the effectiveness of control in networked
systems is a thriving research area. Autonomous systems that can
be intermittently influenced (controlled) by external agents find ap-
plications ranging frommachine calibration to satellite control.We
refer to this class of networks as semi-autonomous. If the semi-au-
tonomous agents’ interaction dynamics are consensus-based, we
dub this subclass as semi-autonomous consensus, which is the focus
of the paper. Within such a subclass, we consider the dynamics of
networked agents in the context of performance (friendly influence)
and security (unfriendly influence). Our approach to appraise a
semi-autonomous consensus network is to expose the network to
fundamental test signals, namely white noise and an impulse, and
use the resultant system response to quantify network performance
and security. Traditionally, input-output properties are varied by
altering the dynamics of the network agents.We instead adopt topo-
logicalmethods for this task, designingfiveprotocols for treegraphs
that rewire the network topology, leaving the network agents’
dynamics untouched. In pursuit of this objective, four adaptive
protocols are introduced to either increase or decrease the mean
tracking and variance damping measures, respectively. Finally,
a proposed fifth hybrid protocol is shown to have a guaranteed
performance for bothmeasures using a game-theoretic formalism.

Index Terms—Adaptive networks, consensus protocol, coordi-
nated control over networks, graph theory, network security, semi-
autonomous networks.

I. INTRODUCTION

C ONSENSUS-based systems provide effective means
of distributed information-sharing and control for net-

worked, multi-agent systems in settings such as multi-vehicle
control, formation control, swarming, and distributed estima-
tion; see for example, [2]–[6]. One of the appeals of consensus
algorithms is their ability to operate distributively and au-
tonomously over simple trusting agents. This has the added
benefit that external (control) agents, perceived as native agents,
can seamlessly attach to the network and steer it in particular di-
rections. These additional agents, ignoring consensus rules, will
influence the system dynamics compared to the unforced net-
worked system resulting in scenarios such as leader-follower [3],
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[6], and drift correction [7]. The detriment is that this same ap-
proach can be adopted by malicious infiltrating agents. We refer
to consensus-based systems, with friendly and/or unfriendly
attached nodes, as semi-autonomous consensus networks. Al-
though the convergence properties of consensus algorithms has
been extensively studied, examining the network input-output
properties in a controlled setting, and their interpretation, is in its
infancy—studied in such recent works as [8]–[10].
For a semi-autonomous consensus network exposed to ei-

ther (or both) friendly and unfriendly agents, it is necessary to
reason about either (or both) performance and security. Perfor-
mance (friendly external agents) in the traditional undirected
consensus is a well studied problem with a general favoritism
for the second smallest eigenvalue of the graph Laplacian as a
metric to quantify the convergence rate [6], [11], though interest
has also been shown with other network measures, for example,
the largest eigenvalue of the graph Laplacian [12]. These met-
rics prove less attractive in a semi-autonomous consensus set-
ting where convergence rates can vary dramatically based on
where in the network external agents have attached. An alterna-
tive is to examine worst, best, or average case convergence of
the directed network formed by treating external agents as na-
tive agents [1], [6]. Network design to improve some of these
measures are explored in [12]–[14].
In regard to security (unfriendly external agents), most

modern day semi-autonomous networks rely on access security
to the network which is unsuited for a trusting semi-autonomous
consensus setting. An alternative to generate a secure network
is intrusion detection1 coupled with either inter-agent security
through each agent’s dynamics or intra-agent security via the
network topology. The former includes implementation of
disturbance rejection or agent disabling techniques, e.g., noise
canceling systems and power grid “brown outs.” The latter
involves global or local network rewiring, e.g., TCP network
re-routing. This adaptive topology approach for security as well
as performance is the main focus of the present work.
Network performance and security via adaptive topology

(intra-agent security) is a largely unexplored area within the
semi-autonomous consensus setting. We are particularly moti-
vatedbyscenarioswhereanadaptive topology is theonly security
response available, for example, when the agents dynamics and
the underlying interaction protocol are assumed to be fixed or
expensive to alter. Representative instances of such systems
include: networkswith hardwired dynamics and interactions, for
example; due to safety and requirements on performance; and
systems with physically and biologically motivated dynamics

1Techniques for intrusion or fault detection on consensus-type networks in-
clude those based on reachability analysis [15], and the more popular unknown-
input observers [9], [16], [17].
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Fig. 1. Illustration of the problem setup: External agents (squares) inject white
noise into the network manipulating the state output of the native agents (cir-
cles). A protocol performs edge swaps to alter the state output, specifically the
network’s mean tracking and variance damping measures.

and interactions, e.g., diffusion-driven self assembly and bio-in-
spired roboticnetworks.Furthermore, in thecasewhere the intent
of external agents may only be known probabilistically, network
rewiring presents a security option that is less dramatic than
altering agent dynamics and interactions. Characteristics such
as the consensus value of an uninfluenced diffusion network are
invariant under network rewiring which is not generally the case
when the agents’ dynamics and interactions are altered due to a
security and performance criteria—an attractive property in the
event that the intent of the external agent had beenmisdiagnosed.
The main difficulty for analyzing networks where both

friendly and unfriendly agents can attach is that features that
are conducive to security are not generally favorable for per-
formance. Our work provides metrics for both performance
and security, and discusses associated topological features that
can be used to design performant and secure networks. We also
propose protocols that rewire the network topology in order to
exploit these topological features.
Approach: In this paper, we examine the performance and se-

curity of a network in response to an external agent injecting a
test signal, namely a white Gaussian signal or an impulse, into
the network. The performance and security of the network is
measured in terms of the subsequent mean and variance of the
agents’ state; we refer to these metrics as the mean tracking
measure and variance damping measure. Both measures are
used to propose five decentralized protocols for tree graphs that
adaptively aim to improve or degrade either the performance
or the security of the network by undertaking local edge swaps.
Fig. 1 illustrates these concepts where the graph topology is used
to vary the output characteristics of the network.
Two motivating applications for the present work and the

utility of the metrics as they relate to each are:
• Distributed state estimation—where the local estimate at
each node reaches the global network-level estimate via
consensus, used in scenarios such as drift correction and
time synchronization [18], [19]. Consider now external
agents that do not accept information exchanges from other
agents and deliver instead a Gaussian white noise with unit
intensity to their neighboring agents. The external agents’
disregard of the consensus dynamics may be due to supe-
rior sensing compared to native agents, malfunctions, or
malicious intent. Viewing the difference between a states’

value and the external agents’ as the state error, the mean
tracking measure is the expected quadratic performance
of this state error. The variance damping measure, on the
other hand, is the expected nodes’ error variance. The in-
tent of an external agent can only be known probabilisti-
cally, and as such, security in the system is left to the less
intrusive adaptive topological methods, leaving the agents
and their interaction dynamics unchanged.

• Flocking—where (e.g., , 3) is the velocity
of agent , , and is dependent on the relative
velocities of neighboring agents, used in scenarios such
as UAV flocking and fish swarming [6], [11]. A node can
then be considered as an external agent guiding the flock
by ignoring consensus with either friendly or malicious in-
tent. The ease with which the flock tracks this agent while
the agent holds its velocity constant can be gauged using
the mean tracking measure while if the agent undertakes a
sudden impulse-like maneuver, the damping of its state’s
propagation through the network can be quantified by the
variance damping measure. The underlying interaction dy-
namics are fixed due to the nature of the onboard relative
sensors. The agent dynamics are fixed to guarantee predes-
ignated performance characteristics such as bounds on in-
teragent distances. Subsequently, improving performance
and security of the network can only rely on methods that
utilize an adaptive topology.

To clarify the contributions of this paper, it is worthwhile to com-
pare our results and approach with similar works in literature.
Designing topologies to optimize for certain metrics has been
addressed in [13] formaximizing the second smallest eigenvalue
of the graph Laplacian, in [12] for optimizing the network
performance, and in [14] for maximizing the largest eigenvalue
of the graph Laplacian, each using optimization techniques
over weighted graphs. Our problem of edge swaps considered
in this paper in an optimization setting, would require NP-hard
mixed-integer programming.We have thus opted for a game the-
oretic formalism to quantify network performance and security.
The protocol’s effectiveness is qualified using the sub-optimality
properties of theNash equilibria bymodeling the external-native
agent dynamics as a non-cooperative game [7], [20]. The sim-
plest form of adaptive network security is the removal of those
nodes in the network connected to infiltrators [15], [21]. Using
percolation theory, Callaway et al. [22] illustrated this to be a po-
tentially disruptive remedy as it can cause the network to become
disconnected even for highly dense graphs which subsequently
provides an attack vector that an infiltrator could exploit, e.g., by
falsely tagging trustworthy agents as untrustworthy. Tyson et al.
[23] has discussed intuitivemethods for network reconfiguration
in order to improve resilience, specifically using thresholding
methods to decide when to alter the topology. Security tech-
niques that involve adapting the agent dynamics to compensate
for infiltrators has been addressed for connected graphs
for Byzantine faults and connected graphs for general
faults in [17], [24].
The main contributions of this paper are threefold. First, a

pair of network measures are proposed. The mean tracking mea-
sure is the average quadratic performance measure of the error
in response to the test signal and is linked to the network struc-
ture via an electrical network analogy. The variance damping
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measure, on the other hand, is the expected mean square error
of the states, which can be calculated using the controllability
gramian and can also be related to the network structure using
an electrical network analogy. Secondly, four protocols are de-
veloped to optimize the network topology with respect to the
proposed measures. These protocols each locally rewire the net-
work topology, using edge swaps between neighboring nodes,
to favorably increase or decrease each measure respectively, but
not concurrently, thus improving global performance with re-
spect to friendly or unfriendly attached agents. Finally, we for-
mulate the metrics in terms of the effective resistance of an elec-
trical network and, in so doing, illustrate the coupling between
mean tracking and variance damping measures. This has moti-
vated the development of a hybrid protocol using a game theo-
retic formalism that provides a balance between input rejection
with respect to the mean and variance measures, particularly
useful in security scenarios. All protocols perform edge swaps
(rewiring) which can be executed in parallel, asynchronously,
and require only local agent information of the network struc-
ture. The protocols are applied to two motivating applications,
namely, time synchronization and UAV flocking.
The paper is organized as follows. Section II contains the

problem formulation and relevant background. The mean
tracking measure is examined in Section III and its relationship
to the effective resistance is established and subsequently used
to design two protocols for increasing and decreasing the mean
tracking measure. A similar treatment of the variance damping
measure is presented in Section IV. Section V presents a more
versatile protocol that provides guarantees on both measures
analyzed using game theoretic techniques. We conclude the
paper with a few remarks in Section VI.

II. BACKGROUND AND MODEL

We provide a brief background on constructs that will be used
in this paper, including abbreviated descriptions on graphs and
the consensus protocol for its unforced and forced versions. First
we introduce the notation: denotes the Euclidean norm;
denotes the trace of a matrix; denotes the cardinality of a set;
and denotes the th smallest eigenvalue of the symmetric
matrix .
An undirected graph is defined by a node set

with cardinality , i.e., the number of nodes in the graph, and an
edge set comprised of pairs of distinct nodes, where nodes
and are adjacent if .2 A special family
of graphs of particular interest in our subsequent discussions is
the set of tree graphs, denoted by , comprised of connected
graphs without cycles. Within this family are the path graph ,
where for , and the star graph
, where for .
We denote the set of nodes adjacent to as and the

minimum path length, induced by the graph , between nodes
and as . The degree of node is the number

of its adjacent nodes. The degree matrix is a di-
agonal matrix with as its th diagonal entry. The adjacency
matrix is an symmetric matrix with when

and otherwise. The combinatorial
Laplacian is defined as which

2The notation refers to the set of two-element unordered subsets of .

Fig. 2. Example of the notation used for semi-autonomous consensus.

is a (symmetric) positive semi-definite matrix. A subset of our
results will be concerned with the spectrum of the graph Lapla-
cian. This spectrum is assumed to be ordered as

, where, for brevity, we have used
instead of .
Now consider to be the th node’s (or for our case

agent’s) state at time . The continuous-time consensus protocol
is defined as . In a compact
form with , the corresponding collective dynamics is
represented as , with being the Lapla-
cian of the underlying interaction topology [2].
We next introduce a model of influenced consensus associ-

ated with a pair , where is the element ex-
ternal agent set and is the set of edges used by the
external agents to inject signals into the network. It is assumed
that each external agent is attached to exactly one node

along one of the edges and subsequently
delivers a signal . Fig. 2 provides a graphical repre-
sentation of the notation and setup.
The resulting influenced system now assumes the form

(1)

where with when
and otherwise, and

(2)

where . We also introduce a
special type of single-agent control as where and

. Further, the set of agents such that
for some will be denoted by ; this is the set of native

agents that directly connect to external agents.
We recognize in (2) as the Dirichlet matrix, or

grounded Laplacian [19], [25]. The spectrum of re-
lates closely to the spectrum of . In this way, the structure
of the underlying graph are related to the dynamics of model
(1). An auxiliary observation on the Dirichlet matrix, to be used
subsequently, is the following.
Proposition 2.1: [1] The matrix of model (1) is

negative definite (and thus invertible) if the original graph is
connected.
We approach the network performance and security problem

from two fronts; first via the cost to the network for its agents
to track a constant signal—dubbedmean trackingmeasure (dis-
cussed in Section III) and secondly, as the cost to the network
to dampen a noisy external agent’s signal—dubbed variance
damping measure (discussed in Section IV). The following two
sections will focus on these measures.
Remark 2.2: A popular model for network intrusion or faults

is to consider native agents as those ignoring consensus instead
of attaching external agents [8], [9], [17]. This model can be
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adapted by considering the subgraph of behaving agents as
and each edge between the misbehaving agents and as

corresponding, in our model, to a behaving agent
at one end and an external agent at the other. The

presented analysis is therefore applicable to both models. As
this paper has a particular focus on tree graphs it is worthwhile
mentioning that if the original graph is a tree then in (1)
will be the union of tree graphs. The converse is not true; the
original graph need not be a tree if in (1) is a tree.

III. MEAN TRACKING MEASURE

The mean tracking measure is a metric for the effectiveness
of a network to track a constant external agents’ signal .
This metric is equally applicable to the network’s performance
in regard to tracking the mean of the external agents’ noisy
signal, e.g., Gaussian noise with mean ; hence the metric’s
name mean tracking. We derive the mean tracking measure as
the cost incurred by external agents to steer the mean of the
agents’ state to over an infinite horizon. In order to quan-
tify the performance and security of the network to resist the in-
fluence of external agents injecting noisy signals, the following
two observations are in order: (i) the dynamics of the state mean
is captured by model (1) where for all external agents is
replaced by the mean of external agents’ signal , (ii) when
the underlying graph is connected, all agents’ state converge in
the mean to . The last statement is a direct consequence of
Proposition 2.1. More specifically, noting that ,

, , and ,
the quadratic performance cost of the mean, with coordinate
change , where is the ex-
pected value of the variable at time , can be derived as,3

where we have used instead of for brevity.

3The scaling by 2 is cosmetic.

In order to parametrize the performance and security of the
network for a specific set , let us define the accumulative state
mean over the length of time the input is applied as

where denotes the expected value over all initial
conditions satisfying , for constant satisfying

.
It is assumed that the native agents in the network do not

know the value of ; as such, in the remaining parts of our paper
we assume that is large, justifying the use of
as the mean tracking measure. In fact for brevity, we denote

as , which we now formally define.
Definition 3.1: The mean tracking measure of a network is

the average quadratic performance cost incurred by external
agents to steer the mean state of the network to their mean value,
over an infinite horizon, and is equal to

(3)

Remark 3.2: We briefly note the connection between the
more familiar best case convergence rate of the grounded dy-
namics, the average convergence rate of the grounded dynamics
and the mean tracking measure, i.e., the minimum nonzero
eigenvalue of the Laplacian, the average of the eigenvalues
of the Laplacian and the measure (3). Consider
fusing all external agents to form a node and adding
it to our graph , connecting to the network through
“directed” edges from to each node in ; we call
this new “directed” graph .4 Then and have the property

, where
refers to the th eigenvalue of the in-degree Laplacian of ,

.5 The following section will provide more insights into
the mean tracking measure.

A. Analysis of Mean Tracking Measure

It has previously been established that the diagonal of the ma-
trix , has a resistive electrical network interpreta-
tion [19]. In this setup, the agents and , defined in Section II,

4For a survey of directed graphs we refer the reader to [6].
5All eigenvalues of are real, and

for .
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Fig. 3. (a) Network graph with external (control) agents and attached
to agents and respectively, leading to an altered Laplacian and
input matrix of model (1). (b) Equivalent electrical network. The poten-
tial difference is the effective resistance between and common
resistor node .

represent respectively, connection points between resistors cor-
responding to the edges and . In addition, all connection
points corresponding to the set are electrically shorted. The
effective resistance between two connection points in an elec-
trical network is defined as the voltage drop between the two
points, when a 1 Amp current source is connected across the
two points. Then, the th diagonal element of is
the effective resistance between the common shorted
external agents and . An example of the equivalent elec-
trical network is displayed in Fig. 3. The implication is that

(4)

Tree graphs are often adopted for agent-to-agent communi-
cation topologies as they minimize edge (communication) costs
while maintaining connectivity. Using (4), we introduce some
properties of (3) specific to trees.
Let us first define the special set of agents that lie on any of

the shortest paths between agents in as the main path agents,
designated by the set . This is a unique set for a given pair

. Moreover for all , there exists a unique
that has a shorter minimum path to than any other agent in ;
we define this agent as , i.e., is the closest agent to
that is a member of the main path. Therefore, for tree graphs

we can state the following.
Lemma 3.3: [Mean Tracking Measure for Trees] For the
-agent connected tree , the mean tracking measure is

Proof: If then the equivalent electrical network
involving can be simplified into a resistor representing

ohms in series with resistors.
The result then follows from (4).
There is an intuitive link between the centrality of an agent

in a network and its influence on the network’s dynamics. This
correlation becomes apparent for tree graphs in the following.

Corollary 3.4: [Single-External Mean Tracking Measure]:
For the -agent connected tree , the mean tracking measure
of the network for a single external agent attached to any agent

is

Proof: The proof follows from Lemma 3.3 with
and .
Corollary 3.4 has a few immediate ramifications. Consider

the single external agent as a native node of the graph
forming the new graph with nodes. The mean tracking
measure is then equal to the closeness centrality
measure of node ,6, i.e.

Further, as

themost influential node to attach in a tree graph under the mea-
sure (3) is the one with the largest closeness centrality mea-
sure.
Corollary 3.5: [Single-External Mean Tracking Mea-

sure Bounds] For the -agent connected tree , the
mean tracking measure of the network for a single ex-
ternal agent attached to any agent is bounded as

.
Proof: Over all trees, the central node of the star graph has

the smallest accumulative distance of to all other nodes
and an end node of the path graph has the largest accumula-
tive distance of to all other nodes. The statement of the
corollary follows from these two observations.
Proposition 3.6: [Multi-External Mean Tracking Measure

Bounds] For the -agent connected tree , the mean tracking
measure for external agents attached to any set of agents in
is bounded above by a tree graph with all main path nodes

satisfying , in which case

Proof: From the effective resistance interpretation of
in (4), we note that adding resistors in series gener-

ates a higher resistance than adding them in parallel. Therefore,
is a tree and the influence set ,

where , as adding an agent to the main path places
resistors in parallel rather than the alternative which places
them in series. Denote this family of graphs with
as . Furthermore from Lemma 3.3, the largest accumulative
distance of these nodes will correspond to a path connected to
the highest effective resistance node of the main path subgraph.
Now, the main path subgraph of a tree in with the largest
effective resistance sum, is the star graph as the equivalent

6Closeness centrality is the mean of the shortest path lengths be-
tween node and other nodes in the graph .
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electrical network has the least number of parallel resistors.
Applying resistor rules, we thus obtain

(5)

Similarly, the largest for any single node of a
tree in corresponds to the main path subgraph, and thus

where is the th Fibonacci number and is the golden ratio.7

The largest effective resistance sum over trees in of a non-
main path subgraph can now be formed from a path attached to
an end node of the main path subgraph, i.e.

(6)

Using bounds (5) and (6) combined with (4) we have

B. Adaptive Protocols to Improve or Degrade the Mean
Tracking Measure for Trees

We now propose a pair of protocols applicable to tree graphs
that locally trade edges, e.g., communication links, between
adjacent agents with the objective of deterring or encouraging
the influence of external agents attached to the network, feeding
in a constant mean signal. We consider a scenario where agents
in broadcast acknowledgment signals informing the net-
work that they are being favorably or unfavorably influenced.
Consequently all agents within the graph are aware of the
“local” directions of the external agents, and more specifically,
their neighboring agents that are closer to these external agents.
We denote by the set of all agents that are neighbors of
and lie on the shortest path between and any .

Formally

7The derivation follows from that of the infinite connected resistor network
and the recursive definition of the golden ratio . One has

.

We emphasize that we assume that the external agents in set
are solely composed of friendly or unfriendly agents and agents
are able to distinguish between the external agents’ intent.8

The following lemma describes Protocol 1 which can be ex-
ecuted by an arbitrary agent and requires the knowledge of

and ; hence the protocol operates on “local” infor-
mation. In the following, we denote edge removal and addition
by the set notation “ .”

Protocol 1 Increased mean tracking measure edge swap

for all Agent do

if , and then

end if

end for

Lemma 3.7: [Edge Swap for Improved Mean Tracking Mea-
sure] Under Protocol 1, (3) is strictly increasing.

Proof: If then for all we have
. Therefore in the context of Protocol 1,

. Thus from Lemma 3.3, before the edge swap, we have
, and after the edge swap

. Any agent such that lies on the
shortest path between and any agent in , will increase its
effective resistance by 1 after the edge swap. Since the effective
resistance strictly increases or stays the same for all agents fol-
lowing the edge swap, increases.
Some attractions of Protocol 1 is that it can be executed con-

currently or in a random agent order, guarantees that
increases, and maintains a connected tree at each iteration.
This is attained without the knowledge of the global network
topology.
When all agents adopt Protocol 1, trees with a single attached

external agent will eventually evolve to a graph with the greatest
, namely a path graph with the external

agent at one end. Trees with multiple external agents will ac-
quire a path-like appearance with the main path unaffected by
the protocol’s edge swaps.
Protocol 1 was applied to a random tree graph on 40 agents

with a single external agent connected to . The path graph
with the external agent attached to its end node was achieved
after 100 edge swaps. A sample of the intermediate graphs, the
mean tracking measure over all iterations, and the evolution of
the state mean are displayed in Figs. 4 and 5. The network mea-
sure increased for each edge swap and no more edge
swaps were possible when the tree became a path graph with

.
A complementary Protocol 2 that aims to decrease

can also be obtained from Lemma 3.7. Under this protocol the
graph converges to a star-like graph, while preserving the struc-
ture of themain path. The protocol was run on a 40 agent random
tree graph with 3 external agents. The original and final graphs,
achieved after 21 edge swaps, are displayed in Fig. 6.

8For unfavorable detection an algorithm such as those proposed in [9],
[15]–[17] can be used.
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Fig. 4. Selected iterations of an adaptive tree graph running Protocol 1 with
an external agent attached (square).

Fig. 5. (a) Mean tracking measure and (b) state mean for the fixed and adap-
tive tree graphs over time for the 40 agent random tree graph in Fig. 4 running
Protocol 1.

Fig. 6. (a) Original and (b) final tree graphs with three external agents attached
(squares) after applying Protocol 2.

Protocol 2 Decreased mean tracking measure edge swap

for all Agent do

if , and then

end if

end for

Fig. 7. Tree graphs, (a) and (b) , with two attached external agents
. The effective resistance appears adjacent to each agent. The

variables and are the lengths of the paths connected to agent and ,
respectively.

Remark 3.8: For agent having access to the “local” in-
formation provided by and , Lemma 3.7 describes
the only edge swaps protocol that guarantee increases
and a connected tree is maintained. Let us illustrate this by ex-
amining edge swap protocols not covered by Lemma 3.7; for
these edge swap cases and/or can be main path agents,
i.e., swaps involving and/or . Consider
the tree graph displayed in Fig. 7(a). We note that

where and are the lengths of the paths incident on agents
and , respectively.
Let us consider the potential edge swaps available to agent

. Locally, agent is aware that
and . The potential edge swaps cases available
are:
1) One neighbor on and one off the main path, e.g., swap

, forming and
forming .

2) Both neighbors on the main path, e.g., swap
forming .

Under Case 1, we have

and .
As under “local” information and are indiscernible,

Case 1 does not guarantee that is increasing or de-
creasing.
In the meantime, under Case 2, we are led to graph as

displayed in Fig. 7(b), with

and . Thus

if
otherwise.

Under only “local” information, the relative magnitudes of
and cannot be discerned so no monotonicity guarantees may
be assumed.
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A by-product of this remark is that a strictly increasing local-
knowledge protocol cannot guarantee the tree graph with the
largest (3) for external agents.

C. Example: Clock Synchronization

Clock synchronization is often necessary in many distributed
systems, improving the consistency of data and the correctness
of algorithms. Precise time synchronization is needed for
distributed applications such as sensor data fusion, scheduling,
localization, coordinated actuation and power-saving duty
cycling. Motivated by the work of [7], we assembled the
following experiment.
Consensus on clock time was run on 100 decentralized com-

puter terminals (agents) communicating over a tree network.
Because time consensus can only correct for differential er-
rors between terminals and not absolute errors without a ref-
erence, friendly external agents periodically connect to the net-
work and deliver the constant correction for the absolute bias in
the system. Upon connection, the friendly external agents ini-
tiate a friendly flag which is passed through the network, pro-
viding the local direction of the friendly agents and initiating
Protocol 2. The network adapts under this protocol to promote
convergence to the correct absolute clock time. On disconnec-
tion, the agents initiate a disconnect flag.
Similarly, we introduce a malicious external agent that at-

tempts to drive the system to a false absolute time. Upon con-
nection, the neighbors of the external agents send out a dis-
tress signal triggering the network to initiate Protocol 1 so as
to deter the false convergence of the network. It is assumed that
the friendly agents on discovery of a malicious external agent
will clear the network of these foreign agents and trigger the
termination of Protocol 1 before commencing delivery of the
correction signal again. In other words, we assume friendly and
malicious agents would not be concurrently connected to the
network.
To examine the performance of the protocols, equal access

time was provided for both friendly and malicious external
agents, specifically alternating 100 s intervals for 5000 s. This
switching interval is long enough for transients to settle and is
appropriate for the application of these protocols. The network
was initialized as a random tree with all agents at the time
offset of 0 s (the correct offset is 1 s). The set of agents
connected to 3 external agents is randomly selected at each
new 10 s interval. The friendly and unfriendly external agents
deliver time offsets of 1 s and 1 s, respectively. The average
of the constant values, i.e., 0 s, would be expected for the mean
offset without the application of the protocols. In the meantime,
the protocols are able to favor the friendly agent, bringing the
average offset to 0.26 s. Clock offset means are displayed for
the first 1000 s for the fixed and adaptive trees in Fig. 8.

IV. VARIANCE DAMPING MEASURE

It can be the case that the mean is not of central interest and
that adjustment of the variance of the states may be more de-
sirable. Further, motivated by devious intrusion type techniques
that may employ pulse-like control to avoid triangulation, the
energy of the states from a unit impulse input is another poten-
tially desirable indicator for network performance and security.

Fig. 8. Clock offset mean of the fixed and adaptive tree graphs (running Proto-
cols 1 and 2) and the corresponding mean state. Friendly and unfriendly agents
alternate delivering 1 s and 1 s offsets, respectively for 100 s intervals.

With this in mind, the controllability gramian, defined as
for the system ,

proves to be particularly suitable for such an analysis. We will
focus on, as: (a) the average variance of the agents’ state
is

as , where and is a zero mean
Gaussian with covariance , and (b) the energy of the states at
the output from a unit impulse input when is

We note that the controllability gramian for (1) will be depen-
dent on and and henceforth is denoted by . The
variance dampingmeasure is a metric quantifying the network’s
susceptibility to white noise from external agents.
Definition 4.1: The variance damping measure of a network

is defined as9

(7)

The following section will provide more insights into the
variance damping measure (7).

A. Analysis of Variance Damping Measure

Directly from the definition of the controllability gramian one
has

(8)

9The scaling by is cosmetic.
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Lemma 4.2: [General Variance DampingMeasure] For a con-
nected graph , the variance damping measure is

(9)

Proof: We note that is a diagonal matrix with
if and , otherwise.

Therefore

if
otherwise.

The statement of the lemma now follows.
Corollary 4.3: [Single-External Variance DampingMeasure]

For a connected graph and the influence model (1) with one
external agent

Proof: The equivalent effective resistance between and
with is as there is only one

resistor link between and . The statement of the corollary
now follows.
Remark 4.4: The implication of Corollary 4.3 is that on av-

erage, a single-external agent attached to an -agent connected
networkhas thesamereduction inaveragevariance towhitenoise
and energy dissipation from an impulse input regardless of the
structure of the network andwhere the external agent is attached.
Proposition 4.5: [Multiple-External Variance Damping Mea-

sure]: For connected graphs and the influence model (1) with
external agents, the variance damping measure is bounded

below by a graph with all main path nodes satisfying
, in which case

Proof: By Rayleigh’s Monotonicity Principle10 the min-
imum effective resistance will occur when the main path is
only composed of the agents . Of these agent graphs,
the path graph with the most resistors in parallel will have the
smallest effective resistance and therefore the smallest value
of . The eigenvalues of the Laplacian of an -node
path graph are , for
[27]. For corresponding to an external agent attached to
every agent in , from (2) and , it follows that

. Hence from (8), we
conclude that

B. Adaptive Protocols to Improve or Degrade the Variance
Damping Measure for Trees

We now propose another protocol for tree graphs with the
objective of reducing the state variance due to external agents

10Rayleigh’s Monotonicity Law states that if the edge resistance in an elec-
trical network is decreased, then the effective resistance between any two agents
in the network can only decrease [26].

attached to the network and feeding in Gaussian white noise
with covariance , i.e., decreasing the variance damping mea-
sure (7). Again the protocol involves local edge trades executed
concurrently and/or in a random agent order, guarantees that

decreases, and maintains a connected tree at each
iteration. A complementary protocol to increase the variance
damping measure is also proposed.
We note that for a connected tree graph is only

dependent on for all pairs in the set (as de-
fined in Section II), and so only dependent on the main path with
agent set (as defined in Section III-A).
Lemma 4.6: [Edge Swap for Decreased Variance Damping

Measure] Under Protocol 3, (7) monotonically
decreases.

Protocol 3 Decreased variance damping measure edge swap

for all Agent do

if where then

end if

end for

Proof: Firstly, when , . As and
are closer to an external agent than the main path agent , one
has . The edge swap involves removing from
, so the effect is to reduce the resistance of an edge within

the electrical network representing this subgraph. By Rayleigh’s
Monotonicity Law, the sum will not in-
crease and the lemma follows.
Single-external agent trees will remain unaffected by Pro-

tocol 3. For double-external agent trees, the main path will de-
generate to , where .
Protocol 3 was run on a 40 agent random tree with 3 ex-

ternal agents injecting zero mean white noise to the network.
The original and final graphs, the variance damping measure,
and a sample output comparison between the fixed and adaptive
networks (running Protocol 3) are displayed in Figs. 9 and 10.
A complementary energy amplification Protocol 4, that aims

to increase , can also be obtained from Lemma
3.7. This protocol is suitable for impulse detection as a larger

produces higher output energy.

Protocol 4 Increased variance damping measure edge swap

for all Agent do

if and , and
then

end if

end for
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Fig. 9. (a) Original and (b) final tree graphs with three external agents attached
(squares) after applying Protocol 3.

Fig. 10. (a) Variance damping measure and (b) one of the state node’s output
for the fixed and adaptive tree graphs over time for the 40 agent random tree
graph in Fig. 9 exposed to 3 external agents running Protocol 3.

Remark 4.7: For the case where , an edge swap
has the effect of reducing ’s degree and elongates the main
path subgraph. Rayleigh’s Monotonicity Law cannot be applied
in this scenario as no “resistance” is being removed from the
main path. Similar to Remark 3.8, these edge swaps do not guar-
antee that (7) is monotonically decreasing. Therefore,
the proposed protocols are the best “local” information edge
swapping protocols and no guarantees can be made that the
“local” information protocol will converge to the best “global”
information edge swap solution.
Remark 4.8: We previously remarked that Protocols 1 and

2 do not alter the main path. Consequently, by Lemma 4.2, the
quantity is conserved throughout these protocols so
that, although the mean tracking measure is altered, the vari-
ance damping measure remains the same. The converse is not
true as Protocols 3 and 4 involve manipulations of the main
path and, as mentioned in Remark 3.8, this can arbitrarily vary

(3). Generally speaking as increases under
Protocol 4 the graph elongates and so tends to in-
crease. Similarly, as decreases under Protocol 3 the
graph compresses and so tends to decrease. This trend
is starkly apparent when the two metrics are requoted in terms
of the effective resistance, i.e., by rearranging (4) and (9), we
note that

(10)

Remark 4.9: We can requote the two metrics in terms of the
error signal and using the stochastic inter-
pretation of [28] as

The two metrics can also be interpreted to characterize different
components of the output signal. The metric with re-
spect to the mean is mainly influenced by the initial deviations
of , or in other words, the transient response. On the other
hand, with respect to the variance is more sensitive to
long term fluctuations or steady state response.
Remark 4.10: The adaptive Protocols 1–4 and a subset of our

results are specific to tree graphs. As a preliminary extension to
more general connected graphs we consider any spanning tree
of a connected graph . In terms of our electrical resistance

analogy, the resistor network is formed by removing resistors
from . Applying Rayleigh’s Monotonicity Principle leads to

and , i.e., both
metrics on the graph are bounded above by the corresponding
measures on its spanning trees.

C. Example: UAV Flocking Gust Correction

UAV flocking involves the distribution of tasks, normally per-
formed by one central aerial vehicle, to many smaller vehicles
which act cooperatively. One of the costs of such an architec-
ture is increased susceptibility to external disturbances and in-
trusions.
In this example we consider a UAV flock of 40 agents with

subgroups of agents exposed to wind gust disturbances. The net-
work of UAVs is assumed to be running consensus on velocity
and is initialized with all agents at hover, i.e., for all .
The network configuration is assumed to be chosen to minimize
relative sensing costs which are required to maintain velocity
consensus, leading to a tree network . Each agent is assumed
to be equipped with an accelerometer to sense for wind gusts.
The procedure when a gust is detected is for the affected agent
to break from the consensus protocol and reacquire the last up-
date state value. In response, similar to the time synchroniza-
tion example (Section III-C), the non-affected agents rewires
the network topology11 following Protocol 3 with the objec-
tive of minimizing the amplification of the gust impulse on the
UAV network. After 10 s the affected agents then return to their
normal consensus dynamics and all agents reverse the rewiring
process to again achieve the graph . It is assumed that the flock
is sufficiently spread such that a proximity appropriate subgroup
of only 1–2 agents experience a wind gust with a period of 20 s
that increases the affected agents’ velocity to 20 m/s.
As mentioned in Remark 2.2, the external agent model is ap-

propriate to the misbehaving native node scenario as well. A
comparison of the system state mean when running Protocol 3

11Edges directly attached to the affected agents can not be wired as it is as-
sumed that affected agents upon reacquiring their normal operation, will expect
to utilize these edges.
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Fig. 11. Average velocity variance over time of a fixed and adaptive (running
Protocol 3) 40-agent UAV flock with 1–2 agents exposed to wind gusts of 20
m/s every 20 s.

(adaptive topology) and one with a static topology is shown in
Fig. 11. Over 100 s, the average velocity variance for the model
running Protocol 3 is 68% of the static tree model.

V. GAME THEORETIC ADAPTIVE PROTOCOL

Protocols 1–4 in Section III and Section IV possess guaran-
tees on increasing (or decreasing) either the mean tracking or
variance damping measures of the network. The weakness of
these protocols is that they tend to converge to graphs associ-
ated with a local minimum (or maximum) of either
or , with potentially sub-optimal performance. Fur-
thermore the protocols cannot be applied concurrently, e.g., for
security applications where poor tracking of the mean (high

) and good noise damping (low ) is favor-
able. We now present a protocol that exhibits these attributes,
i.e., the final graphs are within guaranteed bounds of the optimal
network over all graphs for maximizing and mini-
mizing , but the protocol no longer possess strictly in-
creasing and decreasing . We will present
the protocol and use a game theoretic formalism to bound the
protocol’s performance.
In the following, our game theoretic objective is to increase

and decrease ; in terms of effective resis-
tance, the aim is to increase the final term in (10) while keeping

small. This produces a graph that both damps the ex-
ternal agents’ effect on the system’s state mean and variance.
The proposed Protocol 5 concurrently applies Protocols 1

and 3 with a slight adaption to the latter, specifically, relaxing
the condition to . This adap-
tion guarantees that the main path subgraph will converge to a
graph of only native agents where the external agents directly
attach, i.e., . The remaining nodes in the graph, in
the meantime, will form paths connected to an agent in .
There are many graphs and external agents pairs that
satisfy these properties; we call the set of such pairs the ac-
quirable set . In fact, the specific “equilibrium” that Protocol
5 converges to will depend on the initial graph structure and
the sequence of edge swaps prescribed by the protocol. It turns
out that the convergence of the protocol falls under a special
class of repeated games called potential games [29], and as
such, exhibits certain sub-optimality guarantees that will be
explored further.

Protocol 5 Increased mean tracking and decreased variance
damping measure edge swap

for all Agent do

if , , and [ or
( and )] then

end if

end for

A. Game Theoretic Analysis

Game theory supplies tools to assess the optimality properties
of equilibria reached following local decisions. Two metrics are
generally used for this purpose; the price of stability which is the
ratio between the “best” equilibria obtained from local decisions
and the global optimum, and the price of anarchy which is the
ratio of the “worst” equilibria obtained from local decisions and
the global optimum. For our case, these metrics will capture the
success of our local protocol with respect to the mean tracking
and variance damping measures.
First, we need to establish that the protocol indeed con-

verges to some equilibrium; for this task we use the concept
of a potential game. A potential function is a function that
maps a strategy vector (a vector of each agent’s edge swap)

to a real number. The implementation of
a strategy on graph will alter it to produce a graph . A
protocol leads to a potential game if for as an alternate
strategy (edge swap) for agent , the local cost benefit to the agent

ismirrored by the change in the potential, i.e.,12

(11)

where . Consider now the potential
function

where is defined in Section III-A. Therefore if the local
cost of agent is

(12)

then the condition (11) is met. Since Protocol 5 satisfies (12),
it can be considered as a potential game.13 An important conse-
quence of this observation is that Protocol 5 will always con-
verge to an equilibrium [29].
We can now find the price of stability and anarchy with

respect to the maximization of measures and
under Protocol 5.

Proposition 5.1: Under Protocol 5, for the price
of stability is equal to 1 and the price of anarchy is less than or
equal to .

12The signum function is represented by .
13This approach is similar to other network game problems [6], [29].
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Proof: As the graph corresponding to the smallest
(3) is in the acquirable set (by Proposition 3.6),

the price of stability is equal to 1.
From Proposition 3.6 the maximum is bounded as

An acquirable graph with the smallest corresponds to
a network with the main path subgraph as a path (by Propo-
sition 4.5) with

The equilibrium graph in corresponding to the smallest
compared to the tree from

will have agents attached as a path
to each of the main path agents.14 Applying Lemma 3.3 leads
to the inequality

For , the protocol always acquires the optimal equi-
librium of a path graph with an external agent attached to one
end node, so for this case the price of anarchy is equal to 1. For

, on the other hand

thus proving the proposition.
Proposition 5.2: Under Protocol 5, for (7) the

price of stability is equal to 1 and the price of anarchy is less
than .

Proof: As the graph corresponding to the maximum
is in (by Proposition 4.5), the price of stability is

equal to 1.
From Proposition 4.5, the optimal graph for corre-

sponds to a network with the main path subgraph as a path
with

From (5), the equilibrium graph in with the largest value of
is associated with the main path subgraph as a star

with

14 is defined as the ‘floor’ of .

Fig. 12. Original and final tree graphs with seven external agents attached
(squares) after applying Protocols 1, 3 and 5.

Fig. 13. (a) and (b) after each edge swap from Protocols
1, 3 and 5 applied to the original graph in Fig. 12 as well as the optimal tree
graphs with 40 nodes and 7 external agents.

For , 2, 3, the protocol always acquires the optimal equi-
librium corresponding to the main path subgraph as a path so
for this case the price of anarchy is equal to 1. For ,
on the other hand

thus proving the proposition.
Protocol 5 was applied to a 40 node tree graph with 7 ex-

ternal agents attached. For comparison, Protocol 1 (increasing
mean tracking measure) and Protocol 3 (decreasing variance
damping measure) were applied to the same graph. The orig-
inal and final graphs for each protocol appear in Fig. 12 while
the metrics and for each protocol, as com-
pared with the optimal trees for and , are
displayed in Fig. 13. We note that Protocol 5 outperforms Pro-
tocols 1 and 3. The ratio of the optimal to the final equilibrium
under Protocol 5 was less than 1.51 for and 1.08 for

, agreeing with the game-theoretic bounds stated in
Propositions 5.1 and 5.2.
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VI. CONCLUSION

The aim of the present work is to propose a system-theoretic
approach to examine the notion of semi-autonomy. In particular,
the paper presents a class of consensus-type networks under the
influence of external agents and proposesmetrics for quantifying
the network’s ability, via its topology, to promote or resist the
influence of external agents. Four decentralized protocols were
proposed for tree graphs to vary the mean tracking and variance
damping measures within the network. The protocols were ap-
plied to time synchronization and UAV flocking applications.
The proposed metrics were then analyzed and an effective

resistance analogy was established by modeling the intercon-
nection as a resistive network. The effective resistance inter-
pretation provided a method to compare the two metrics and
illustrated their relationship. The challenge of presenting a pro-
tocol that increased one metric while decreasing the other was
addressed for tree graphs with a hybrid protocol and analyzed
using a game theoretic approach. The extension of these proto-
cols to more general networks will be discussed in a subsequent
work. Finally, we encourage future research into performance
and security of networks exploiting both topological and agent
dynamic features of the network.
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