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Delay-Based Network Utility Maximization
Michael J. Neely, Senior Member, IEEE

Abstract—It is well known that max-weight policies based on a
queue backlog index can be used to stabilize stochastic networks,
and that similar stability results hold if a delay index is used. Using
Lyapunov optimization, we extend this analysis to design a utility
maximizing algorithm that uses explicit delay information from
the head-of-line packet at each user. The resulting policy is shown
to ensure deterministic worst-case delay guarantees and to yield
a throughput utility that differs from the optimally fair value by
an amount that is inversely proportional to the delay guarantee.
Our results hold for a general class of 1-hop networks, including
packet switches and multiuser wireless systems with time-varying
reliability.

Index Terms—Optimization, queueing, stochastic control.

I. INTRODUCTION

T HIS paper considers the problem of scheduling for max-
imum throughput utility in a network with random packet

arrivals and time-varying channel reliability. We focus on 1-hop
networks where each packet requires transmission over only one
link. At every slot, the network controller assesses the condi-
tion of its channels and selects a set of links for transmission.
The success of each transmission depends on the collection of
links selected and their corresponding reliabilities. The goal is to
maximize a concave and nondecreasing function of the time-av-
erage throughput on each link. Such a function represents a
utility function that acts as a measure of fairness for the achieved
throughput vector.
In the case when traffic is inside the network capacity region,

the utility-optimal throughput vector is simply the vector of
arrival rates, and the problem reduces to a network stability
problem. In this case, it is well known that the network can
be stabilized by max-weight policies that schedule links every
slot to maximize a weighted sum of transmission rates, where
the weights are queue backlogs. This is typically shown via
a Lyapunov drift argument (see [2] and references therein).
This technique for stable control of a queueing network was
first used for link and server scheduling in [3] and [4] and has
since become a powerful method to treat stability in different
contexts, including switches and computer networks [5]–[7],
wireless systems and ad hoc mobile networks with rate and
power allocation [8]–[10], and systems with probabilistic
channel errors [11], [12].
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In the case when traffic is either inside or outside of the
capacity region, it is known that the max-weight policy can
be combined with a flow control policy to jointly stabilize the
network while maximizing throughput utility. This is shown
in [2], [13], and [14] via a Lyapunov optimization argument,
and in [15] via a fluid limit analysis. Utility optimization for
the special case of “infinitely backlogged” sources is shown
in [16]–[18] and was perhaps first addressed for time-varying
wireless downlinks without explicit queueing in [19] and [20].
The stability works [3]–[12] all use backlog-based transmis-

sion rules, as do the works in [2] and [13]–[18], which treat
joint stability and utility optimization. However, work in [21]
introduces an interesting delay-based Lyapunov function for
proving stability, where the delay of the head-of-line packet is
used as a weight in the max-weight decision. This approach in-
tuitively provides tighter control of the actual queueing delays.
Indeed, a single head-of-line packet is scheduled based on the
delay it has experienced, rather than on the amount of addi-
tional packets that arrived after it. This delay-based approach to
queue stability is extended in [22], where the Modified Largest
Weighted Delay First algorithm is developed, and in [23], which
uses a delay-based exponential rule. However, [21]–[23] use
delay-based rules only in the context of queue stability. To our
knowledge, there are no prior works that use delay-based sched-
uling to address the important issue of joint stability and utility
optimization.
This paper fills that gap. We use a delay-based Lyapunov

function and extend the analysis to treat joint stability and
performance optimization via the Lyapunov optimization
technique from our prior work [2], [13], [14]. The extension
is not obvious. Indeed, the flow control decisions in the prior
work [2], [13], [14] are made immediately when a new packet
arrives, which directly affects the drift of backlog-based Lya-
punov functions. However, such decisions do not directly affect
the delay value of the head-of-line packets, and hence do not
directly affect the drift of delay-based Lyapunov functions. We
overcome this challenge with a novel flow control policy that
queues all arriving data, but makes packet dropping decisions
just before advancing a new packet to the head-of-line. This
policy is structurally different from the utility optimization
works [2] and [13]–[20]. This new structure leads to determin-
istic guarantees on the worst-case delay of any nondropped
packet and provides throughput utility that can be pushed arbi-
trarily close to optimal. Specifically, for any integer , we
can construct an algorithm that ensures all nondropped packets
have delay less than or equal to slots, with total throughput
utility that differs from optimal by . The deterministic
delay guarantee is particularly challenging to establish, and for
this we introduce a new technique of concavely extending a
utility function.
Similar performance tradeoffs are

shown for queue-based Lyapunov functions in the previous
work [2], [13], [14] (see also [24]–[26] for improved tradeoffs),
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but these guarantees apply only to queue size, rather than delay.1

The deterministic delay guarantees we obtain in this present
paper are quite strong and show the advantages of our new flow
control structure. However, a disadvantage is that admit/drop
decisions are delayed until a packet is at the head-of-line, rather
than being determined immediately upon arrival. Moreover,
due to correlation issues unique to this delay-based scenario,
analysis is simplified if we assume the scheduler knows the
vector of arrival rates to each link (although we also generalize
to cases when these rates are unknown). Furthermore, while our
deterministic delay guarantees hold for general arrival sample
paths, our utility analysis assumes all arrival processes are in-
dependent of each other (possibly with different rates for each
process) and independent and identically distributed (i.i.d.)
over time-slots. Nevertheless, it is important to analyze these
delay-based policies because they improve our understanding
of network delay, and because the deterministic guarantees they
offer are useful for many practical systems.
We further show via simulation that our algorithms maintain

good performance when the i.i.d. arrivals are replaced by er-
godic but temporally correlated “bursty” arrivals with the same
rates. However, the worst-case delay required to achieve the
same utility performance is increased in this case. This is not
surprising if we compare to known results for backlog-based
Lyapunov algorithms. Backlog-based algorithms were first de-
veloped under i.i.d. assumptions, but later shown to work—with
increased delay—for non-i.i.d. cases (see [28] and references
therein). Thus, while we limit our analytical proofs to the i.i.d.
setting, we expect the algorithm to approach optimal utility in
more general cases, as supported by our simulations.
While our algorithm can be used to enforce any desired delay

guarantee, it is important to emphasize that it does not maxi-
mize throughput utility subject to this guarantee. Such a problem
can be addressed with Markov decision theory, which brings
with it the curse of dimensionality (see structural results and ap-
proximations in [29] and weighted stochastic shortest-path ap-
proaches in [30]). In this paper, we claim only that the achieved
utility is within of the largest possible utility of any sta-
bilizing algorithm. However, because (for large ) our utility is
close to this ideal utility value, it is even closer to the maximum
utility that can be achieved subject to the worst-case delay con-
straint. That is because a basic stability constraint is less strin-
gent than aworst-case delay constraint, and so the optimal utility
under a stability constraint is greater than or equal to the op-
timal utility under a worst-case delay constraint. Furthermore,
our approach offers the low-complexity advantages associated
with Lyapunov drift and Lyapunov optimization. Specifically,
the policy makes real-time transmission decisions based only
on the current system state and does not require a priori knowl-
edge of the channel-state probabilities. The flow control deci-
sions here can also be implemented in a distributed fashion at
each link, as is the case with most other Lyapunov-based utility
optimization algorithms.
It is important to distinguish our work, which considers actual

network delay, from work that approximates network delay as a
convex function of a flow rate (such as in [27] and [31]). While

1Of course average delay and average backlog are directly related through
Little’s Theorem [27], but this is not true for worst-case backlog and delay.

it is known that average queue congestion and delay is convex
in the arrival rate if traffic from an arbitrary arrival process is
probabilistically split [32], this is not necessarily true (or rel-
evant) for dynamically controlled networks, particularly when
the control depends on the queue backlogs and delays them-
selves. Actual network delay problems involve not only opti-
mization of rate based utility functions, but engineering of the
Lagrange multipliers (which are related to queue backlogs) as-
sociated with those utility functions [25], [26].
Prior work on throughput-optimal control in networks with

finite buffers is in [33]–[35], where [33] considers queue
stability, [34] considers maximum throughput subject to av-
erage power constraints, and [35] considers utility-optimal
flow control. Work in [36] considers hop-count constrained
scheduling. The works [33]–[36] all treat multihop systems, but
use backlog-based scheduling and do not provide worst-case
delay guarantees. Our recent conference paper [37], developed
as an extension of this current paper, treats worst-case delay
guarantees in multihop networks in considerably more gen-
eral scenarios than the current paper. It treats non-i.i.d. and
nonergodic systems for which multiple packets can arrive and
depart a single queue each slot. However, it requires use of
an -persistent service queue for a carefully chosen .
Achieved utility can degrade if is too large, and the delay
bound grows proportionally to , where is another param-
eter that affects proximity to optimal utility. The current paper
considers a more restrictive setting, but obtains tighter results
that do not use an parameter.

II. NETWORK MODEL

Consider a 1-hop network that operates in discrete time with
normalized time-slots . There are links, and
packets arrive randomly every slot and are queued separately
for transmission over each link. Let
be the process of random packet arrivals, where is the
number of packets that arrive to link on slot . For simplicity,
assume that all packets have fixed size, and that there is at most
one packet arrival to each link per slot, so that
for all links and slots . The arrival vector is assumed
to be i.i.d. over slots. Furthermore, the arrival processes
for different links in each slot are assumed to be independent.
Let denote the integer number of
packets currently stored in each of the queues. All packets are
marked with their integer arrival slot, which is used to determine
their delay in the system. The one-step queueing equation for
each link is

(1)

where represents the amount of packets successfully
served on slot , and represents the number of packets
dropped on slot . A packet can be dropped at any time,
although in our specific algorithm we impose a two-stage struc-
ture that first makes a transmission decision and then makes a
dropping decision in reaction to the feedback obtained from the
transmission.

A. Time-Varying Link Reliability

For simplicity, assume that each link can transmit at most one
packet per slot, so that for all links and all
slots . Let denote a transmission
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vector, where , and if link attempts
transmission on slot . Let denote the set of all allowable link
transmission vectors, possibly being the set of all such vec-
tors, but also possibly incorporating some constraints (such as
permutation constraints for packet switches).We assume
has the natural property that for any , all subvectors ,

formed by setting one or more entries of to zero, are also in
. It is useful to assume a link can transmit even if it does not

have a packet, in which case a null packet is transmitted. Let
denote a link condition vector for

slot , which determines the probability of successful transmis-
sion on each slot. Specifically, given particular and
vectors, the probability of successful transmission on link is
given by a reliability function

(2)

The reliability function for each
is general and is assumed only to take real values between 0
and 1 (representing probabilities), and to have the property
that whenever . The channel condition
vector is assumed to be i.i.d. over slots and independent
of the process. Assume takes values in a set of
arbitrary cardinality. The vector is known to the network
controller at the beginning of each slot . In practice, is
the result of a channel measurement or estimation that is done
every slot. The estimate might be inexact, in which case the
reliability function represents the probability
that the actual network channels on slot are sufficient to
support the attempted transmission over link (given and
the estimate for slot ).
We assume the reliability function is known. Recent online

techniques for estimation of packet error rates are considered
in [38]. In the context of [38], a number of other decision
parameters to be chosen on each slot also affect reliability,
such as modulation, power levels, subband selection, coding
type, etc. These choices can be represented as a parameter
space . In this case, the reliability function can be extended
to include the parameter choice made every slot:

. This does not change our mathematical
analysis (see also Remark 1 in Section III-F), although for
simplicity we focus on the reliability function structure of (2).
We assume that ACK/NACK information is given at the end

of the slot to inform each link if its transmission was successful
or not. Packets that are not successful do not leave the queue
(unless they are dropped in a packet drop decision). With this
model of link success, the transmission variable in (1) is
given by

where is an indicator variable that is 1 if the transmission
over link is successful, and 0 otherwise. That is

with probability
with probability

The successes/failures over each link on slot are assumed to
be independent of past events given the current and
values. The successes/failures might be correlated over each
link. This is not captured in the functions alone and
can only be fully described by a joint success distribution func-
tion for all possible success/failure outcomes for a given

and . However, it turns out that the network capacity region,
and hence the associated maximum utility point, is independent
of such interlink success correlations [12]. Hence, it suffices to
use only the marginal distribution functions for each

.

B. Examples of Packet Switches and Wireless Networks

The above model applies to a wide class of 1-hop networks.
For example, it applies to the packet switch models
of [5] and [7] by defining to be a null vector (so that there
is no notion of channel variation) and by defining as the set of
all link transmission vectors that satisfy permutation constraints
(see Section VI-A). For wireless networks with interference but
without time-varying channels, the set can be defined as all
link activations that do not interfere with each other (i.e., that do
not produce collisions), as in [3]. The reliability function
can be used to extend the model to treat cases where interfering
links result in probabilistic reception.
Furthermore, the opportunistic scheduling systems of [4] with

time-varying ON/OFF channels can be modeled with being
the vector of ON/OFF channel states on each slot, and with the
function taking the value 1 whenever and
, and 0 otherwise. Finally, the model supports probabilistic

reception in the case when the link reliability can vary from slot
to slot.
A simple example is when represents the current prob-

ability that a link transmission would be successful, so that

if
if

This example has the success probability over link a pure func-
tion of and , and hence implicitly assumes that the
set limits all simultaneous link transmissions to orthogonal
channels. More complex interchannel interference models can
be described by more complex functions.

III. DELAY-BASED FLOW CONTROL

Let be the vector of arrival rates, so that
is the arrival rate to link (in units of

packets/slot). The network capacity region is defined as
the closure of the set of all long-term throughput vectors that
the system can support. The set is known to be the same
as the closure of the set of all arrival rate vectors for which
there exists a stabilizing scheduling algorithm, subject to the
constraint that the flow controllers are turned off (so that no
packets are dropped and for all and all ) [4], [12].
Specifically, in [12] it is shown that the set is given by the
set of all time-average transmission rates that can be achieved
by stationary and randomized algorithms, called -only algo-
rithms, that observe every slot and choose a (possibly
random) transmission vector according to a proba-
bility distribution that depends only on the observed channel
state . Thus, for every vector , with ,
there is an -only algorithm , with a corresponding
random service vector
that yields for each

(3)

where the expectation in (3) is with respect to the distribution
of and the distribution of given .
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A. Optimization Objective

Let be a continuous and concave utility function of the
-dimensional vector , where is used to
represent the time-average throughput on each link (in units of
packets/slot). The function can take positive or negative values
and is assumed to be defined over the hyper-cube ,
where inequality is taken entrywise, and and are vectors
with all entries equal to 0 and 1, respectively. Assume that
is nondecreasing in each entry . An example is the separable
utility function

(4)

where for each link is a concave and nondecreasing
function of , defined over the interval . We make
the following additional assumption.
Assumption 1: For each , the th right partial

derivative of , over all such that , is
bounded above by a finite constant , where .2

Assumption 1 implies that for any vectors and such that
, , and , we have

(5)

Note that Assumption 1 does not hold for the logarithmic utility
function associated with proportional fairness [39].
However, it does hold for the following useful utility function
example, which is often a good alternative way to treat network
fairness:

(6)

The above is also an approximation of proportional fairness
when for all , for some large value .
For each link , define as

(7)

Let be the time-average expectation of over slots

(8)

where is the drop vector for
slot . Let denote the limit of as (temporarily
assume the limit exists). The vector is the difference between
the rate of arrivals and packet drops, and hence (if queues are
stable) represents the throughput vector. The goal is to design
a delay-based transmission scheme with packet dropping that
solves the following problem:

Maximize (9)

Subject to (10)

for all (11)

2Right partial derivatives exist for any concave function, including nondif-
ferentiable functions such as , for which for
all .

Fig. 1. Illustration of the concave extension of .

Let be the supremum utility value for the above problem. In
addition to striving to achieve a utility that is close to , we
desire the actual delays of nondropped packets to be determin-
istically bounded.

B. Concavely Extended Utility Function

Suppose satisfies Assumption 1. Define the con-
cave extension of as the function defined over all

such that for all

(12)

where represents an entrywise projection to interval [0, 1]

Clearly, is entrywise nondecreasing, and

whenever

It can be shown that is concave over the region of all
such that for all .

Furthermore, because (5) holds, it can be shown that for any
vector in this region and any index , we have

(13)

where the vector is formed from the vector by replacing the
single entry with 1.
In the case when has the separable form (4), the con-

cave extension is given by , where each func-
tion concavely extends the function , originally de-
fined over the interval , to the interval ,
as shown in Fig. 1. This method of concavely extending the
utility function is crucial to engineer the network delays to be
bounded [in particular, it is needed to allow in (28)].

C. Problem Transformation With Virtual Queues

It is not difficult to show that the stochastic network opti-
mization problem (9)–(11) can be transformed using a vector

of auxiliary variables that are chosen
every slot according to the constraints . The
transformed problem is

Maximize (14)

Subject to for all (15)

for all (16)

for all (17)

and are achievable on the network (18)
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where is defined

We say that a nonnegative discrete-time stochastic process
is strongly stable if .

This transformation can be intuitively understood as follows.
The constraint (11) automatically holds for any achievable con-
trol policy, as the throughput cannot be larger than the raw ar-
rival rate, and hence is satisfied whenever (18) holds. The con-
straint (10) is ensured by the stability constraint (15) in the trans-
formed problem. Finally, one can always choose the auxiliary
vector to ensure that (16) and (17) are satisfied (note
that for all because arrival rates cannot be larger
than 1). The fact that is nondecreasing in each entry and
that whenever ensures that it suffices
to consider all constraints (16) holding with equality, so that any
control algorithm that solves (14)–(18) also solves (9)–(11).
The auxiliary variables are important for solving prob-

lems of maximizing a concave function of a time average and
are crucial for network utility maximization with randomly ar-
riving traffic [2], [28]. To ensure that the constraints (16) are
satisfied, we use a virtual queue for each link , with up-
date equation as follows:

(19)

Stabilizing this virtual queue ensures that the time-average
value of , defined in (7), is greater than or equal to the
time average of , which ensures (16). Specifically, using
the definition , from (19) it is clear that

and hence (by summing the above over and
dividing by )

Taking expectations of both sides and using yields

(20)

where is the time-average expected value of , defined
in (8), and is defined similarly. It follows from (20) that if

(a property that is satisfied if is strongly
stable, as shown in [28]), and if and have well-de-
fined limits and , then , so that the constraints (16)
are satisfied.
Implementation of the virtual queue (19) assumes the arrival

rates are known for each link . For simplicity, we first an-
alyze this case. However, if the rates are unknown, one can
modify the virtual queue update rule (19) to

where is a suitably large positive integer. This modification
is analyzed in Section V. The use of a -shifted arrival process

is unique to this delay-based analysis and is required
to handle subtle correlation issues between packet interarrival
times and virtual queue states.

D. Delay-Based Lyapunov Function

We now impose the following structure on our control policy.
Every slot, a packet transmission decision is made first. If a
transmission over link is successful (so that ), then
the packet is removed from the queue, and no packet is dropped
from link (so that ). Else, if link either did not
attempt transmission or if its transmission was unsuccessful,
we can decide whether or not to drop the packet, but no other
packet can be dropped from link . Thus, every slot , we have

. We show later that this structure does
not hinder our maximum utility objective. Furthermore, it is
useful to consider the possibility of transmitting or dropping a
null packet when the queue is empty, so that and in
principle can be chosen independently of queue backlog.
Let represent the waiting time of the head-of-line

packet in link on slot (being at least one if there is a packet),
and define if there are no packets in link at this
time. A new packet that arrives to an empty queue on slot
is not placed to the head-of-line until the next slot and is

designated to have a waiting time of 1 at slot . Define
as an indicator variable that is 1 if , and is zero

if the queue is empty. Let . Similar to [21],
we observe that satisfies the following:

(21)

where represents the interarrival time between the
head-of-line packet and the subsequent packet (possibly un-
known to the network controller if the subsequent packet has
not yet arrived). Because arrivals are Bernoulli, if ,
then is a geometric random variable with success prob-
ability , and takes values in the set . If

, then we define .
Equation (21) can be understood as follows. If ,

then so that queue is empty. In this case, the value of
is 1 if and only if there is a new arrival on slot . Alter-

natively, if , then . Suppose in this case that
the head-of-line packet is neither served nor dropped (so that

). Then, its delay increases by 1, as described
by (21). On the other hand, if the head-of-line packet is either
served or dropped (so that ), then the next
packet enters the head-of-line, with a total waiting time equal to

(where the additional “ 1” comes because
this operation takes one more slot). The captures the
possibility that the interarrival time is greater than , in
which case the queue is empty on slot with .
Without loss of generality, assume that for all links

(else, just remove the links that have no traffic).

Define , where and are vectors
of the virtual queues in (19) and the head-of-line values in (21).
We use the following nonnegative Lyapunov function:
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E. Minimizing the Drift-Plus-Penalty

Define as the one-step conditional Lyapunov drift

Using the Lyapunov optimization framework in [2] and [28],
our strategy is to make transmission and packet dropping deci-
sions to minimize a bound on the following “drift-plus-penalty”
expression every slot:

where is a nonnegative control parameter that is chosen as
desired and will affect an explicit utility–delay tradeoff. Here,
the “penalty” for slot is considered to be 1 times the “reward”

. We later show that our resulting algorithm has a certain
independence property, defined as follows.
Definition 1: We say that a control algorithm implemented

over time has the independence property if for any slot , every
link such that has a value of that is indepen-
dent of , , and .
To understand the above definition, suppose that

for a certain slot and queue . Then, queue has a packet in
the head-of-line, and is the random interarrival time be-
tween this head-of-line packet and the next packet. Because ar-
rivals are independent over queues and i.i.d. over slots, the in-
dependence property arises naturally in algorithms that make
control decisions up to time that are independent of the
value. In this case, given that is just a geo-
metric random variable with success probability and mean

.
Lemma 1: Every slot , for any value of , and under

any control policy that satisfies the independence property, the
Lyapunov drift satisfies

where is a finite constant that does not depend on .
Proof: The proof is given in Appendix B, where the con-

stant is also specified.
Lemma 2: Every slot , for any value of , and under any

control policy that satisfies the independence property, we have

where is the same constant from Lemma 1.

Proof: Let represent . Using the
law of iterated expectations, we have for any and any queue
such that

where we have used the fact that, by the independence prop-
erty, if , then is independent of and

. Thus, for any slot and any link
(regardless of whether or not ) we have3

(22)

Lemma 2 follows by plugging this identity into Lemma 1 and
subtracting from both sides.
Our dynamic policy below is designed to make control de-

cisions for , , and (and hence ) to minimize
the right-hand side of the drift-plus-penalty bound in Lemma 2.
To analyze performance, we later show that this policy indeed
satisfies the independence property.

F. Delay-Based Flow Control and Scheduling Algorithm

Every slot , observe , , and , and perform the
following operations, described as four control phases:
1) Auxiliary Variable Selection: Choose

as the solution to the following:

Maximize

Subject to for all

In the case of the separable utility function (4), this
amounts to solving single-variable concave optimiza-
tions over an interval and has a closed-form solution when

has a derivative with a closed-form inverse.
2) Transmission Scheduling: Observe and
choose a transmission vector to solve the following:

Maximize

Subject to

3) Packet Dropping: For each link that has a head-of-line
packet that was not successfully transmitted in the sched-
uling phase (either because its transmission was not
attempted or its transmission failed), drop the packet if

. Else, keep it in the head-of-line.
4) Queue Updates: Update the virtual queues according
to (19), using the values of and as determined
from the above auxiliary variable and packet dropping
phases. Also update the actual queues and the head-of-line
values according to (1) and (21) by simply removing any
packet that was either successfully transmitted or dropped.

3Note that the identity (22) is trivially true for the case .
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Now, for each link , define the quantity as follows:

(23)

Note that is .
Theorem 1 (Algorithm Performance): Suppose all queues are

initially empty and that Assumption 1 holds. If the above control
policy is implemented with a particular constant , then
achieved utility satisfies

(24)

where is defined in (8), is the constant from Lemma 1,
and is the optimal utility, defined as the supremum utility for
problem (9)–(11). Finally, for all links , we have

(25)

(26)

The above theorem provides the strong deterministic guar-
antee that head-of-line packets in queue always have delay
less than or equal to , and hence all nondropped packets
in queue have delay upper bounded by this value. Thus, if we
wish to enforce the constraint that worst-case delay in all queues
is less than or equal to a given constant , we can choose
to satisfy . As the delay con-

straint is relaxed, the value goes to infinity, and hence
by (24) we know that utility converges to the optimal value .
Specifically, for a given delay guarantee , the achieved
utility is guaranteed to be within of the optimal
utility .
Remark 1: In the case when link reliability is also affected by

a set of additional decision parameters , as discussed
in Section II-A, the transmission scheduling decision in phase 2
of the algorithm is modified to maximize

(27)

subject to and . Theorem 1 holds exactly as
stated under this modification, with the understanding that the
optimal utility value may change due to the increased options
for scheduling.
Remark 2: The deterministic guarantees (25) and (26) on

queue size and delay are sample path results that hold always,
regardless of whether or not the state vector is i.i.d. over
slots and/or the arrival vector has independent entries and
is i.i.d. over slots. The independence assumptions are used only
to prove the utility guarantee (24).

IV. PERFORMANCE ANALYSIS

Here, we prove Theorem 1. We first prove the deterministic
bounds (25) and (26), which use a preliminary lemma.
Lemma 3: If for a particular slot and link ,

then the auxiliary variable selection in the first phase of the con-
trol algorithm chooses for that slot.

Proof: The value of is determined by maximizing
over . By (13), we know

that for any vector such that

where is formed from by replacing entry with 1. Be-
cause , the right-hand side of the above bound is
maximized at , so that

and equality holds if and only if . Hence, the auxiliary
variable optimization must choose .

Proof [Deterministic Bounds (25) and (26)]: Fix a link .
We first show that for all . This clearly
holds for when all queues are empty. Suppose it holds at
some time . We prove it also holds for time .
Note from (19) that can increase by at most 2 every slot

(since and for all ). If ,
then and the bound holds. Else, we have

, and so by Lemma 3 we know that .
Because for all , we have

(28)

Hence, from the update equation for in (19), we have
, so the bound again holds.

Hence, for all .
Similarly, we use induction to show that
for all . It clearly holds for . Assume it holds for a

general slot . First suppose that . Because the
head-of-line delay can increase by at most 1 every slot, we know
that , and we are done. In the opposite
case when , we know that
(since, by assumption for slot , must be an integer that is
bounded by ). It follows that , and so
by the packet-dropping procedure in phase 3 of the algorithm,
the head-of-line packet will either be successfully transmitted
on this slot or dropped. It follows that in slot there will be
either no head-of-line packet (so that ), or there
will be a new head-of-line packet, in which case its delay is no
more than the delay of the previous head-of-line packet, so that

.
Finally, because there is at most one packet arrival to link

per slot, it is clear that the number of packets in the queue is no
more than the current delay of the head-of-line packet, so that

for all .
Lemma 4: The control policy chooses decision variables that

minimize the right-hand side of the drift-plus-penalty inequality
in Lemma 2.

Proof: See Appendix A.
Lemma 5: Assuming arrivals are independent over

links and i.i.d. over slots, the control policy has the indepen-
dence property needed for Lemma 2 to hold.

Proof: This follows immediately by noting that for any
slot and any link such that , the value of ,
being the interarrival time between the head-of-line packet at
link and the next packet, has not affected any queue values or
decisions up to (and including) slot .
We now prove the utility bound (24). We first use a prelim-

inary lemma, which demonstrates that our structure of making
a transmission decision first, and then choosing to drop at most
one packet per queue, does not limit optimality.
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Lemma 6: Let be the optimal time-average throughput
vector that solves (9)–(11), so that , and satis-
fies the constraints and . Then, there is
an -only algorithm that is independent of the current and
that observes and makes a randomized transmission de-
cision (leading to a vector of successful transmis-
sions), and then makes randomized packet drop decisions
in reaction to the ACK/NACK feedback, such that

for all , and

(29)

Proof: The proof follows easily from the fact (3) and is
omitted for brevity.

Proof [Utility Bound (24)]: Because our control algo-
rithm satisfies the independence property, the drift inequality
in Lemma 2 holds. Furthermore (by Lemma 4), our policy
minimizes the right-hand side of this inequality every slot. We
thus know

where , , and are from any -only policy (in-
dependent of ). Taking expectations of both sides of the
above and using the law of iterated expectations yields

(30)

Now choose the alternative auxiliary variable decision

(31)

This is a feasible decision because the optimal vector satisfies
for all , and so clearly for all .

Furthermore, choose and as the -only decisions
that yield (29) from Lemma 6. Plugging (31) and (29) into the
right-hand side of (30) and using the fact that yields

The above holds for all . Summing over
and dividing by yields

Using the fact that and rearranging terms yields

Using Jensen’s inequality in the concave function yields

(32)

where is defined as

However, because for all and all , we have
from (20)

where . For all , we have
and [where the latter can be shown by definition
of in (8)]. Thus

where is equal to if , 1 if , and 0 else.
Plugging this into (32) and using the fact that is nonde-
creasing in each entry yields

(33)

The above holds for all . By continuity of and the facts that
and , we have

(34)

Because whenever , we have

Using this in (34) proves (24).

V. UNKNOWN ARRIVAL RATES

Consider now a modification of the algorithm that performs
all operations in the sameway, with the exception that the virtual
queue update rule (19) for each is replaced by
the following:

(35)
where the time-shift constant is set to the following value:

(36)

Unlike the previous algorithm, this modified algorithm can be
implemented without knowledge of the values. Here, we
show that it also ensures all queue sizes are deterministically

, with deviation from the optimal utility .
Note that the deterministic bounds (25) and (26) still hold, so

that and for
all and all . In particular, all packets depart the system within
slots. This is because the proof of these bounds, given in

Section IV, only uses the fact that can increase by at most
every slot under the old update rule (19), which
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is still true under the modified update rule (35). Thus, it remains
only to show that the modified algorithm comes within
of the optimal utility .

A. Modified Drift Bounds

We have the following lemmas, which are modifications of
Lemmas 1 and 2.
Lemma 7: Under the givenmodified algorithm, the Lyapunov

drift satisfies the following for all slots and all possible

where is a finite constant that does not depend on .
Proof: The proof is similar to that of Lemma 1 and is

omitted for brevity.
Lemma 8: Under the givenmodified algorithm, the Lyapunov

drift satisfies the following for all slots and all possible :

where is the same constant from Lemma 7.
Proof: We show that the last term on the right-hand side

of the bound in Lemma 7 is the same as the last term on the
right-hand side of the bound in this lemma. To see this, note
that for all , all , and each , the following trivially holds
whenever (because ):

(37)

We now show that (37) also holds when . In this
case, there is a packet at the head-of-line in queue , and
is the interarrival time between this packet and the next. This
interarrival time has not affected any of the control decisions or
queue states up to and including slot because the virtual queue
(35) only uses arrival information of packets that arrived
or more slots ago, and all these packets have already departed.
Thus, given , the value is independent of ,

, and , so that

from which we obtain (37).
It is easy to see that the algorithm that minimizes the right-

hand side of the inequality in Lemma 8 is the same as that which
minimizes the right-hand side of the inequality in Lemma 2, and

so our algorithm accomplishes this. Thus, for all and all ,
we have

(38)

where are the result of any alternative deci-
sions for slot . However, we have

which follows because can change by at most 2 on any
slot , and

Plugging this into the right-hand side of (38) yields

where we define

Taking expectations of both sides and using iterated expecta-
tions yields

(39)

where we have used the fact that

which follows because arrivals are i.i.d. over slots, so that
is independent of .
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Fig. 2. Simulation for 3 3 switch with feasible traffic .

We now plug the values from the -only
policy that we used for the proof of the original algorithm, which
makes decisions independent of to yield

The bound (39) becomes

from which we obtain the following performance bound in the
same way as before [see (32)–(34)]:

VI. SIMULATIONS

This section presents simulation results for a 3 3 packet
switch and a two-user wireless downlink with time-varying
channels.

A. Scheduling for a 3 3 Packet Switch

Here, we consider a crossbar constrained 3 3 packet switch,
having three input ports and three output ports (as in [5] and
[7]). There are nine queues , representing packets that ar-
rived to input port that must be delivered to output port , for

, . Scheduling matrices are chosen
every slot within the set of six permutation matrices, so that at
most one packet is served per input and per output on a given
slot. Arrival processes to each queue are independent Bernoulli
processes, i.i.d. over slots with rates .We simulate themod-
ified delay-based utility maximization algorithm of Section V,
which does not require knowledge of the arrival rates .
All simulations are over 1 million slots. The utility function of
achieved throughput is

where denotes the natural logarithm. We choose as a
positive integer, so that the algorithm guarantees a worst-case
delay of slots.
We first consider a switch with feasible input rates ,

given in the first panel of Fig. 2. The rates are chosen so that
all input ports and output ports have a loading of 0.95. For ex-
ample, the loading of input port 1 is , being
the sum of the rates in the first row of the matrix. Be-
cause input rates are inside the capacity region of the switch,

Fig. 3. Simulation of a 3 3 switch with overloaded traffic. The arrival rates
are given in (40). Each process is i.i.d. over slots. (a) Performance

for overloaded switch . (b) Performance for overloaded switch
. (c) Performance for overloaded switch .

the utility optimal throughput matrix is . Thus,
the algorithm should learn to drop as few packets as possible.
We use , which guarantees a worst-case delay of

slots. The resulting throughput matrix and average
delays are shown in Fig. 2. The figure shows that average delays
are less than 12 slots, while the achieved throughput is almost
the same as the arrival rates (so the algorithm indeed learns to
drop almost no packets).4 The worst-case delays are much less
than the guarantee of 102 slots. While not shown in the figure,
we note that a simulation for the case yields almost the
same throughput, does not significantly change average delay,
but reduces the largest observed delay from 75 to 47 slots.
We next test the case when input rates exceed the switch

capacity region, so that the system is in overload and must drop
packets. We use rates given by

(40)

The sum of the arrival rates to the first input port is 1.4, which
is larger than 1. Fig. 3(a) shows results for the case .
The achieved throughput is within three significant digits
of the utility-optimal throughput matrix . Average delays
and worst-case delays are also shown. Fig. 3(b) and 3(c) shows
results for and . It is seen that delays reduce
when is decreased, with a consequent deviation from the ideal
throughput.

4For this case of feasible traffic with , the algorithm dropped only
11 packets during the course of the 1-million-slot simulation.
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Fig. 4. Two-state ON/OFF Markov chain .

Fig. 5. Simulation of a 3 3 switch with Markov ON/OFF arrival processes.
The arrival rates are given in (40). The worst-case delay bound is .
(a) Performance for non-i.i.d. switch . (b) Performance for non-i.i.d.
switch . (c) Performance for non-i.i.d. switch .

B. Packet Switch With Bursty Arrivals

Here, we consider the same switch and the same algorithm as
in Section VI-A, but we change the arrivals to non-i.i.d. “bursty”
processes. Specifically, for each , let be an
independent 2-state ON/OFF Markov chain with transition prob-
abilities and , as shown in Fig. 4. We have
if , and if . We
use , which means that ON periods have average size

slots. The OFF periods have average size , and
is set to ensure a desired arrival rate . Specifically, we have

, and so . We use the
same arrival rates as given in (40), for which the above
values are valid probabilities when .
We expect the admitted rates to approach the same ideal

values given in Fig. 3 for the i.i.d. case. This is indeed what
happens. However, we require larger values of to achieve
the same utility performance for this non-i.i.d. scenario, which
leads to larger delay. This is intuitive: These bursty arrivals
create more congestion and delay than i.i.d. arrivals. The re-
sulting throughput values for are shown in
Fig. 5. The case in Fig. 5(a) yields rates very close to
the ideal. The case in Fig. 5(c) has rates that deviate

Fig. 6. Capacity region of the two-user wireless downlink. (a) Input rate vec-
tors simulated, with sample points . (b) Resulting
achieved throughput vectors .

significantly from this ideal, in contrast to the case
for the i.i.d. system in Fig. 3(a).

C. Opportunistic Scheduling for a Two-User Wireless
Downlink

Here, we consider a two-user wireless downlink with ON/OFF
channels. The channel state processes are independent and
i.i.d. over slots with and

. Arrivals and are independent Bernoulli
processes, i.i.d. over slots with rates and . Every slot, the
network controller observes the channel states
and chooses a single queue to serve, transmitting exactly one
packet over a served channel that is ON, and no packets over a
channel that is not served or that is OFF. The capacity region is
shown in Fig. 6.
We simulate the delay-based algorithm of Section III-F,

which uses knowledge of the arrival rates . We use a
utility function

and use , which yields near-optimal utility. All sim-
ulations run for 4 million slots. We create 50 different simula-
tion runs, for arrival rates that scale linearly toward the
point (0.5, 1.0), as shown in the left panel of Fig. 6. The re-
sulting achieved throughput vectors are shown in the
right panel of Fig. 6.
The example arrival rate points in the left panel of

Fig. 6 are all inside the capacity region, and hence the achieved
throughputs should be the same. This is indeed the case, as
shown by the corresponding example points on the
right panel. Arrival point in the left panel is outside of the
capacity region, and its optimal achieved throughput is shown
on the boundary point in the right panel. Note that once the
arrival rates exceed the point in the left panel, the achieved
throughput is the same and is very close to (0.4, 0.4) (shown
as in the right panel). While these achieved throughputs
are for the delay-based algorithm with known arrival rates, we
note that we also simulated the modified delay-based algorithm
with unknown arrival rates, as well as the queue-based algo-
rithm of [2] (version CLC2 in [2]). The achieved throughputs
for all of these algorithms are nearly identical, and the picture
in the right panel of Fig. 6 would look the same for all three al-
gorithms.
We next consider the throughput and delay as a function of .

We fix (point on the left panel of Fig. 6)
and vary between 1 and 1000. Recall that the worst-case
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Fig. 7. (a) Achieved throughput and (b) delay performance versus (for
).

delay guarantee is slots. Fig. 7(a) shows the resulting
achieved throughputs versus for the delay-based algorithm
with known arrival rates, the modified delay-based algorithm
with unknown arrival rates, and the queue-based algorithm. The
achieved throughputs for all three algorithms are very
close and converge to the optimal values (0.4, 0.4) as is in-
creased. Finally, Fig. 7(b) shows the average delay and max-
imum observed delay for all three algorithms. The average de-
lays for the delay-based and modified delay-based algorithms
are very close and cannot be distinguished on the plot. The max-
imum delays for these are also similar and are only slightly
larger than the average delays, suggesting that oscillations are
tightly centered on the average (see also related exponential at-
traction results for queue-based algorithms in [26]). The average
and maximum delays for the queue-based algorithm are signifi-
cantly larger. Thus, not only does our new delay-based approach
provide worst-case delay guarantees, but it significantly reduces
average delay as compared to the queue-based approach.

VII. CONCLUSION

We have established a delay-based policy for joint stability
and utility optimization. The policy provides deterministic
worst-case delay bounds, with total throughput utility that is
inversely proportional to the delay guarantee. The Lyapunov
optimization approach for this delay-based problem is signifi-
cantly different from that of backlog-based policies. We believe
these results add significantly to our understanding of network
delay and delay-efficient control laws.

APPENDIX A
PROOF OF LEMMA 4

Here we show that the given delay-based control algorithm
maximizes the following expression, which is an expression that
considers only the terms in the right-hand side of the drift bound
in Lemma 2 that involve control variables:

The terms appear separably in this drift expression, and
hence they can be optimally chosen by observing and max-
imizing subject to
for all links . This is precisely the first phase of the control

algorithm. The remaining terms can be rearranged as (written
without the conditional expectation for convenience)

(41)

Define by

if and
otherwise.

Recall that the decision is made after the transmission de-
cision and is constrained to be 0 unless a packet in queue was
not transmitted successfully. Regardless of the transmission de-
cision, the term in the above expression is maximized by
selecting if and the packet in queue
was not transmitted successfully, and selecting oth-
erwise. This is exactly the packet-dropping rule of phase 3 in
the control algorithm. Using this dropping rule, we must have

(if it is trivially true, and if
, then by the dropping rule).

It now suffices to choose an optimal transmission vector ,
where . Recall that , where

is an indicator function that is 1 if and only if a packet in
link was transmitted successfully. Using ,
the expression (41) is thus

By adding and subtracting the same thing, this is written as

(42)

where we have used the following identities:

(43)

(44)

Identity (43) holds because if and , then
if and only if (that is, a packet for which
is dropped if and only if it is transmitted unsuccess-

fully). Likewise, (44) holds because if and ,
then . Rearranging terms of (42) that involve control
decisions yields

(45)

However, we have

This is because if , then , and so
. If , then ,
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and so . Plugging this identity into
the expression (45) yields

Taking conditional expectations of the above with respect to
yields

We seek a control rule that observes and and chooses
, so that the above expression is maximized. Define

. By iterated expectations, the above
expression is

where we have used the fact that .
The above expectation is thus minimized by observing the cur-
rent and allocating according to phase 2 of the
control algorithm.

APPENDIX B
PROOF OF LEMMA 1

Here, we prove the Lyapunov drift inequality of Lemma 1.
Squaring the queue update equation for in (19) and noting
that for any real number gives

Summing the above over and dividing by 2
yields

(46)

Similarly, squaring (21) and noting that and
yields

where the equality above uses the identities
and . Multiplying the above by and sum-
ming over yields

(47)

Combining (46) and (47) and taking conditional expectations
given the queue values yields

where is defined

It remains only to show that for some finite
constant . Because , ,
and if , we have

Therefore

Now, note that because is i.i.d. over slots, it is independent
of and . Recall that is an indicator
variable that is 1 if and only if . Because we assume
that the algorithm has the independence property, given
, is independent of , and so
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where the final equality is the second moment of a geometric
random variable with success probability . Therefore

Defining as the right-hand side of the above inequality proves
the result.
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