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Abstract—Using geo-social applications, such as FourSquare, millions of people interact with their surroundings through their friends
and their recommendations. Without adequate privacy protection, however, these systems can be easily misused, e.g., to track users
or target them for home invasion. In this paper, we introduce LocX, a novel alternative that provides significantly-improved location
privacy without adding uncertainty into query results or relying on strong assumptions about server security. Our key insight is to apply
secure user-specific, distance-preserving coordinate transformations to all location data shared with the server. The friends of a user
share this user’s secrets so they can apply the same transformation. This allows all location queries to be evaluated correctly by the
server, but our privacy mechanisms guarantee that servers are unable to see or infer the actual location data from the transformed
data or from the data access. We show that LocX provides privacy even against a powerful adversary model, and we use prototype
measurements to show that it provides privacy with very little performance overhead, making it suitable for today’s mobile devices.

Index Terms—Location privacy, security, location-based social applications, location transformation, efficiency.
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1 INTRODUCTION
With billions in downloads and annual revenue, smartphone
applications offered by Apple iTunes and Android are quickly
becoming the dominant computing platform for today’s user
applications. Within these markets, a new wave of geo-social
applications are fully exploiting GPS location services to
provide a “social” interface to the physical world. Examples
of popular social applications include social rendezvous [1],
local friend recommendations for dining and shopping [2], [3],
as well as collaborative network services and games [4], [5].
The explosive popularity of mobile social networks such as
SCVNGR [6] and FourSquare (3 million new users in 1 year)
likely indicate that in the future, social recommendations will
be our primary source of information about our surroundings.

Unfortunately, this new functionality comes with signifi-
cantly increased risks to personal privacy. Geo-social applica-
tions operate on fine-grain, time-stamped location information.
For current services with minimal privacy mechanisms, this
data can be used to infer a user’s detailed activities, or to
track and predict the user’s daily movements. In fact, there are
numerous real world examples where the unauthorized use of
location information has been misused for economic gain [7],
physical stalking [8], and to gather legal evidence [9]. Even
more disturbing, it seems that less than a week after Facebook
turned on their popular “Places” feature for tracking users’
locations, such location data was already used by thieves to
plan home invasions [10]. Clearly, mobile social networks of
tomorrow require stronger privacy properties than the open-
to-all policies available today.

*Work done while the first author was at UCSB. He is currently
affilicated with Bell Labs, Alcatel-Lucent. He can be reached at
krishna.puttaswamy_naga@alcatel-lucent.com.

Existing systems have mainly taken three approaches to
improving user privacy in geo-social systems: (a) introduc-
ing uncertainty or error into location data [11], [12], [13],
(b) relying on trusted servers or intermediaries to apply
anonymization to user identities and private data [14], [12],
[15], and (c) relying on heavy-weight cryptographic or private
information retrieval (PIR) techniques [16], [17], [18], [19].
None of them, however, have proven successful on current
application platforms. Techniques using the first approach fall
short because they require both users and application providers
to introduce uncertainty into their data, which degrades the
quality of application results returned to the user. In this
approach, there is a fundamental tradeoff between the amount
of error introduced into the time or location domain, and the
amount of privacy granted to the user. Users dislike the loss
of accuracy in results, and application providers have a natural
disincentive to hide user data from themselves, which reduces
their ability to monetize the data. The second approach relies
on the trusted proxies or servers in the system to protect user
privacy. This is a risky assumption, since private data can
be exposed by either software bugs and configuration errors
at the trusted servers or by malicious administrators. Finally,
relying on heavy-weight cryptographic mechanisms to obtain
provable privacy guarantees are too expensive to deploy on
mobile devices [20], [21], and even on the servers in answering
queries such as nearest-neighbor and range queries.

The challenge, then, is to design mechanisms that efficiently
protect user privacy without sacrificing the accuracy of the
system, or making strong assumptions about the security or
trustworthiness of the application servers. More specifically,
we target geo-social applications, and assume that servers (and
any intermediaries) can be compromised and, therefore, are
untrusted. To limit misuse, our goal is to limit accessibility of
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location information from global visibility to a user’s social
circle. We identify two main types of queries necessary to
support the functionality of these geo-social applications: point
queries and nearest-neighbor (kNN) queries. Point queries
query for location data at a particular point, whereas kNN
queries query for k nearest data around a given location
coordinate (or up to a certain radius). Our goal is to support
both query types in an efficient fashion, suitable for today’s
mobile devices.

To address this challenge, in this paper, we propose LocX
(short for location to index mapping), a novel approach
to achieving user privacy while maintaining full accuracy
in location-based social applications (LBSAs from here on-
wards). Our insight is that many services do not need to
resolve distance-based queries between arbitrary pairs of users,
but only between friends interested in each other’s locations
and data. Thus, we can partition location data based on
users’ social groups, and then perform transformations on the
location coordinates before storing them on untrusted servers.
A user knows the transformation keys of all her friends,
allowing her to transform her query into the virtual coordinate
system that her friends use. Our coordinate transformations
preserve distance metrics, allowing an application server to
perform both point and nearest-neighbor queries correctly on
transformed data. However, the transformation is secure, in
that transformed values cannot be easily associated with real
world locations without a secret, which is only available to
the members of the social group. Finally, transformations are
efficient, in that they incur minimal overhead on the LBSAs.
This makes the applications built on LocX lightweight and
suitable for running on today’s mobile devices.

2 SCENARIOS AND REQUIREMENTS
Here we describe several scenarios we target in the context
of emerging geo-social applications that involve heavy inter-
action of users with their friends. We use these scenarios to
identify the key requirements of a geo-social location privacy
preserving system.

2.1 Geo-social Application Scenarios
Scenario 1. Alice and her friends are excited about exploring
new activities in their city and leveraging the “friend referral”
programs offered by many local businesses to obtain discounts.
Alice is currently in downtown and is looking to try a new
activity in her vicinity. But she also wants to try an activity
that gives her the most discount. The discounts are higher for
a user that refers more friends or gets referred by a friend with
high referral count. As a result Alice is interested in finding out
the businesses recommended by her friends and the discounts
obtained through them, within her vicinity. In addition, she is
also interested in checking if there are discounts available for
her favorite restaurant at a given location.
Scenario 2. Alice and her friends are also interested in playing
location-based games and having fun by exploring the city
further. So they setup various tasks for friends to perform,
such as running a few miles at the Gym, swimming certain
laps, taking pictures at a place, or dining at a restaurant. They

setup various points for each task, and give away prizes for the
friends with most points. In order for Alice to learn about the
tasks available near her, she needs to query an application
to find out all tasks from friends near her and the points
associated with them.

The scenarios above, while fictitious, are not far from
reality. Groupon and LivingSocial are some example compa-
nies that are leading the thriving business of local activities.
SCVNGR [6] offers similar services as location-based games.
But none of these services provide any location privacy to
users: all the locations visited by the users are known to these
services and to its administrators.

Our goal is to build a system that caters to these scenarios
and enables users to query for friends’ data based on locations,
while preserving their location privacy. We want to support:
a) point query to query for data associated with a particular
location, b) circular range query to query for data associated
with all locations in a certain range (around the user), and
c) nearest-neighbor query to query for data associated with
locations nearest to a given location. Finally, while it is also
useful to query for data that belongs to non-friends in certain
scenarios, we leave such extensions for future.

2.2 System Requirements
The target scenarios above bring out the following key require-
ments from an ideal location-privacy service.

• Strong location privacy: The servers processing the data
(and the administrators of these servers) should not be
able to learn the history of locations that a user has
visited.

• Location and user unlinkability: The servers hosting the
services should not be able to link if two records belong
to the same user, or if a given record belongs to a given
user, or if a given record corresponds to a certain real-
world location.

• Location data privacy: The servers should not be able to
view the content of data stored at a location.

• Flexibility to support point, circular range, and nearest-
neighbor queries on location data.

• Efficiency in terms of computation, bandwidth, and la-
tency, to operate on mobile devices.

The need for each of these requirements becomes more clear
when we describe the related work and their limitations in
more detail in the next section. In our proposed system, LocX,
we aim to achieve all these requirements.

3 RELATED WORK

Prior work on privacy in general location-based services
(LBS). There are mainly three categories of proposals on
providing location privacy in general LBSs that do not specif-
ically target social applications. First is spatial and temporal
cloaking [11], [12], [13], [22], [15], wherein approximate
location and time is sent to the server instead of the ex-
act values. The intuition here is that this prevents accurate
identification of the locations of the users, or hides the user
among k other users (called k-anonymity [12], [13], [22]),
and thus improves privacy. This approach, however, hurts the



3

accuracy and timeliness of the responses from the server, and
most importantly, there are several simple attacks on these
mechanisms [23], [24], [25], [26] that can still break user
privacy. Pseudonyms and silent times [27], [14] are other
mechanisms to achieve cloaking, where in device identifiers
are changed frequently, and data is not transmitted for long
periods at regular intervals. This, however, severely hurts func-
tionality and disconnects users. The key difference between
these approaches and our work is that they rely on trusted
intermediaries, or trusted servers, and reveal approximate real-
world location to the servers in plain-text. In LocX, we do not
trust any intermediaries or servers. On the positive side, these
approaches are more general and, hence, can apply to many
location-based services, while LocX focuses mainly on the
emerging geo-social applications.

The second category is location transformation, which uses
transformed location coordinates to preserve user location pri-
vacy. One subtle issue in processing nearest-neighbor queries
with this approach is to accurately find all the real neighbors.
Blind evaluation using Hilbert Curves [21], unfortunately,
can only find approximate neighbors. In order to find real
neighbors, previous work either keeps the proximity of trans-
formed locations to actual locations and incrementally pro-
cesses nearest-neighbor queries [28], or requires trusted third
parties to perform location transformation between clients and
LBSA servers [29]. In contrast, LocX does not trust any third
party and the transformed locations are not related to actual
locations. However, our system is still able to determine the
actual neighbors, and is resistant against attacks based on
monitoring continuous queries [30], [31].

The third category of work relies on Private Information
Retrieval (PIR) [16] to provide strong location privacy. Its per-
formance, although improved by using special hardwares [17],
is still much worse than all the other approaches, thus it is
unclear at present if this approach can be applied in real LBSs.
Prior work on privacy in geo-social services For certain
types of geo-social services, such as buddy tracking services
to test if a friend is nearby, some recent proposals achieve
provable location privacy [18], [19] using expensive crypto-
graphic techniques such as secure two party computation. In
contrast, LocX only uses inexpensive symmetric encryption
and pseudorandom number generators. The closest work to
LocX is Longitude [32], [33], which also transforms locations
coordinates to prevent disclosure to the servers. However,
in Longitude, the secrets for transformation are maintained
between every pair of friends in order to allow users to
selectively disclose locations to friends. As in, Longitude can
let a user reveal her location to only a subset of her friends. In
contrast, LocX has a simpler threat model where all friends can
access a user’s information and hence the number of secrets
that users have to maintain is only one per user. LocX can
still achieve location and user unlinkability. In addition, LocX
can provide more versatile geo-social services, such as location
based social recommendations, reminders, and others, than just
buddy tracking as in the above prior work.
Anonymous communication systems. These systems, includ-
ing Tor [34], provide anonymity to users during network

Fig. 1. A basic design. In this design, 1) Alice and Bob
exchange their secrets, 2) Alice stores her review of the restau-
rant (at (x, y)) on the server under transformed coordinates, 3)
Bob later visits the restaurant and queries for the reviews on
transformed coordinates, and 4) decrypts the reviews obtained.

activity. One might ask, then, why using Tor to anonymously
route data to LBSA servers is not sufficient? This approach
seems to provide privacy as the server only sees location data
but not the identity of the user behind that data. However,
recent research has revealed that hiding the identity of the
users alone is not sufficient to protect location privacy. Even
if Tor is used, it is possible for an attacker with access
to the location data to violate our privacy and unlinkability
requirements. For example, using anonymized GPS traces
collected by the servers, it has been shown that users’ home
and office locations, and even user identity can be derived [23],
[24], [25], [26]. LocX defends against such attacks and meets
all our requirements.
Systems on untrusted servers. In the context of databases,
recent systems proposed running database queries on en-
crypted data (stored on untrusted servers), using heavy-weight
homomorphic [35] or asymmetric encryption [36] schemes.
These approaches are suitable for spatial data outsourcing or
data mining scenarios where the data is static and is owned by
limited number of users. But they are less suitable for LBSAs,
where the data is dynamic and personal, and thus cannot be
encrypted under a single secret key.

In the context of location and social applications, Per-
sona [37] and Adeona [38] also relied on encrypting all data
stored on untrusted servers to protect user privacy. Persona
focused on privacy in online social networks, and Adeona
focused on privacy in device tracking systems where there is
no data sharing among users. Applying Persona’s mechanisms
to LBSAs directly would encrypt all location coordinates,
making LBSAs unable to process nearest-neighbor queries.
But if location is not encrypted, attacks using anonymized
GPS traces, mentioned above, can succeed, making Persona
insufficient to protect location privacy. Similarly, Adeona is
useful for a user to retrieve her own data, but not the data
from her friends. Our contributions complement these systems.
Some techniques in these papers can help LocX as well,
e.g. Persona’s approach to partition data shared with friends
into fine-grained groups, and Adeona’s hardware-assisted ap-
proaches to speed up crypto processing.

4 SYSTEM DESIGN
In this section, we describe the design of LocX in detail.
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4.1 Terminology and Attacker Model
Terminology. Location coordinates refer to the longitude,
latitude pairs associated with real-world locations. A pair of
coordinates is returned from a GPS, and is used to associate
data with a location. Location data or location information
refers to such data associated with a location. For example,
when reviews (and referral point details) are written for a given
restaurant, the reviews are the location data associated with the
restaurant’s location coordinates.
System and Attacker Model. In this paper, we assume that the
companies that provide LBSA services manage the servers.
Users store their data on the servers to obtain the service.
The companies are responsible for reliably storing this data,
and providing access to all the data a user should have access
to. The companies can get incentives via displaying ads, or
charging users some usage fees. In our attacker model, we
assume that the attacker has access to the LBSA servers.
This attacker could be an employee of the company running
the service or an outsider that compromises the servers. The
attacker might even be an oppressive regime or a government
that obtains data from the providers via subpoenas. As a result,
in our model, the attacker can access all the data stored on the
servers, and can also monitor which user device is accessing
which pieces of information on the servers. Our goal is to
design a system that preserves the location privacy of users in
this setting. We assume that the attacker does not perform any
attacks on the consistency or integrity of data on the servers,
but aims only to learn users’ location information. Finally, like
all prior social systems [39], [40], [41], [37], we assume that
the friends of a user are trusted and do not collude with the
servers in breaking the user’s privacy.

4.2 A Basic Design
To clarify the need for each component in LocX, we start the
design description with a basic, simple design.

As listed in our requirements, the server should support
different types of queries (point, circular range and nearest-
neighbor queries) on location data. For the server to be able
to do this, we need to reveal the location coordinates in plain
text. But doing so would allow the malicious server to break
a user’s location privacy.

To resolve this problem, we propose the idea of coordinate
transformation. Each user u in the system chooses a set of
secrets that they reveal only to their friends. These secrets
include a rotation angle θu, a shift bu, and a symmetric key
symmu. The users exchange their secrets via interactions
when friends meet in person, or via a separate trusted channel,
such as email, phone etc. The secret angle and shift are used
by the users to transform all the location coordinates they
share with the servers. Similarly, the secret symmetric key is
used to encrypt all the location data they store on the servers.
These secrets are known only to the friends, and hence only
the friends can retrieve and decrypt the data.

For example, when a user u wants to store a review r for
a restaurant at (x, y), she would use her secrets to transform
(x, y) to (x′, y′) and store encrypted review E(r) on the server.
When a friend v wants to retrieve u’s review for the restaurant

at (x, y), she would again transform (x, y) using u’s secret
(previously shared with v), retrieve E(r), and then decrypt
it using u’s symmetric key to obtain r. Similarly, v would
transform (x, y) according to each of her friends’ secrets,
obtain their reviews, and read them. We only focus on point
queries for now. Figure 1 depicts this basic design.
A limitation. This basic design has one important limitation:
the server can uniquely identify the client devices (for e.g.,
using the IP address). Using this, the server can associate
different transformed coordinates to the same user (using the
IP). Sufficient number of such associations can break the
transformations (as we show in Section 5). So maintaining
unlinkability between different queries is critical.

One approach to resolve this limitation is to route all
queries through an anonymous routing system like Tor [34].
But simply routing the data through Tor all the time will be
inefficient. Especially in the context of recent LBSAs, that
adds larger multimedia files (pictures and videos) at each
location. So we need to improve this basic design to be both
secure and efficient.

4.3 Overview of LocX
LocX builds on top of the basic design, and introduces two
new mechanisms to overcome its limitations. First, in LocX,
we split the mapping between the location and its data into
two pairs: a mapping from the transformed location to an
encrypted index (called L2I), and a mapping from the index to
the encrypted location data (called I2D). This splitting helps in
making our system efficient. Second, users store and retrieve
the L2Is via untrusted proxies. This redirection of data via
proxies, together with splitting, significantly improves privacy
in LocX. For efficiency, I2Ds are not proxied, yet privacy is
preserved (as explained later).
Decoupling a location from its data. In today’s systems, lo-
cation data data(x,y) corresponding to the real-world location
(x, y) is stored under (x, y) on the server. But in LocX, the
location (x, y) is first transformed to (x′, y′), and the location
data is encrypted into E(data(x,y)). Then the transformed
location is decoupled from the encrypted data using a random
index i via two servers as follows: 1) an L2I = [(x′, y′), E(i)],
which stores E(i) under the location coordinate (x′, y′), and 2)
an I2D = [i, E(data(x,y))], which stores the encrypted location
data E(data(x,y)) under the random index i. The index is
generated using the user’s secret random number generator.
We refer to the server storing L2Is as the index server and the
server storing I2D as the data server. We describe these two
as separate servers for simplicity, but in reality they can be
on the same server, and our privacy properties still hold. This
separation of location information into two components (L2I
and I2D) helps us continue to efficiently run different types
of location queries on L2Is and retrieve only relevant I2Ds.

The key interfaces used by the applications to store and
retrieve data on the LocX servers are listed in Table 1. Figure 2
depicts the design of LocX.
Proxying L2Is for location privacy. Users store their L2Is
on the index server via untrusted proxies. These proxies can
be any of the following: PlanetLab nodes, corporate NATs
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API Call Purpose of the Call
putL2I ((x’, y’), E(i)) Put L2I of (x, y) on the IS.

getL2I ((x’, y’)) Get the L2I of (x, y) from the IS.
putD2I (i, E(data)) Put I2D of (x, y) on the DS.

getD2I (i) Get I2D of (x, y) from the DS.

TABLE 1
The index server (IS) and data server (DS) APIs and their

functions in LocX.

Fig. 2. Design of LocX. 1) Alice and Bob exchange their
secrets, 2) Alice generates and L2I and I2D from her review
of the restaurant (at (x, y)), and stores the L2I on the index
server via a proxy. 3) She then stores the I2D on the data server
directly, 4) Bob later visits the restaurant and fetches for L2Is
from his friends by sending the transformed coordinates via a
proxy, 5) he decrypts the L2I obtained and then queries for the
corresponding I2D, 6) finally Bob decrypts Alice’s review.

and email servers in a user’s work places, a user’s home
and office desktops or laptops, or Tor [34] nodes. We only
need a one-hop indirection between the user and the index
server. These diverse types of proxies provide tremendous
flexibility in proxying L2Is, thus a user can store her L2Is via
different proxies without restricting herself to a single proxy.
Furthermore, compromising these proxies by an attacker does
not break users’ location privacy, as (a) the proxies also only
see transformed location coordinates and hence do not learn
the users’ real locations, and (b) due to the noise added to
L2Is (described later). To simplify the description, for now, we
assume that the proxies are non-malicious and do not collude
with the index server. But we will later describe our solution
in detail to even defend against colluding, malicious proxies.

With this high-level overview, we now describe our solution
to store and query data on the servers in detail. We also explain
the challenges we faced, and the tradeoffs we made in making
our solution secure and efficient.

4.4 Privacy Preserving Data Storage
When a user generates the location data corresponding to a
location (x, y), she uses her secrets to decouple it into a L2I
and an I2D. Now we describe how they are stored on the index
and the data servers respectively.
Storing L2I on the index server. First consider storing L2I on
the index server. To perform this, the user transforms her real-
world coordinate (x, y) to a virtual coordinate (x′, y′) using

her secret rotation angle θu and secret shift bu: (x′, y′) ←
(cosθux − sinθuy + bu, sinθux + cosθuy + bu). This trans-
formation preserves the distances between points1, so circular
range and nearest neighbor queries for a friend’s location data
can be processed in the same way on transformed coordinates
as on real-world coordinates. Then the user generates a random
index (i) using her random number generator and encrypts
it with her symmetric key to obtain (Esymmu

(i)). The user
then stores this L2I, [(x′, y′), Esymmu

(i)], at the transformed
coordinate on the index server via a proxy. The L2I is small in
size and is application independent, as it always contains the
coordinates and an encrypted random index. Thus the overhead
due to proxying is very small (quantified in Section 6).
Storing I2Ds on the data server. The user can directly store
I2Ds (location data) on the data server. This is both secure and
efficient. 1) This is secure because the data server only sees
the index stored by the user and the corresponding encrypted
blob of data. In the worst case, the data server can link all
the different indices to the same user device, and then link
these indices to the retrieving user’s device. But this only
reveals that one user is interested in another user’s data, but
not any information about the location of the users, or the
content of the I2Ds, or the real-world sites to which the data
in the encrypted blob corresponds to. 2) The content of I2D
is application dependent. For example, a location-based video
or photo sharing service might share multiple MBs of data
at each location. Since this data is not proxied, LocX still
maintains the efficiency of today’s systems.
Intuition behind privacy. Due to the coordinate transforma-
tion, the index server does not see the real-world coordinate
of the user. Because of the proxy, the index server cannot link
the different L2Is stored on the index server to the same user.
The index server has a single coordinate space in which it
stores all the data from all the users. These are the reasons
behind the privacy in LocX. To break a user’s privacy, a
malicious index server will have to break two steps: a) learn
the transformation secrets of the user, and b) link a request to
the corresponding user (otherwise, the attacker does not know
which transformation secret to apply to a request). These two
steps significantly raise the bar for attacks.

4.5 Privacy Preserving Data Retrieval
Retrieving location data from the server in LocX is a more
challenging problem. In particular, we need to a) maintain
location privacy, and b) ensure that the retrieval is efficient.

Consider the following simple design for data retrieval.
A user takes the location coordinate she is interested in,
transforms it according to all her friends’ secrets, and sends a
query to the server containing all the transformed locations via
a proxy. If a user has f friends, and is at a location (x, y), she
sends a query with points ((x′

1, y
′

1), (x
′

2, y
′

2), ..., (x
′

f , y
′

f)) to
the server, where (x′

i, y
′

i) is the transformation of (x, y) with
friend i’s secret. The index server then fetches all the L2Is
at the locations in the query and returns them. The user then

1. Given any two real-world points (x1, y1), (x2, y2), it is easy to
see that the distance between their corresponding virtual coordinates√

(x′

2
− x

′

1
)2 + (y′

2
− y

′

1
)2 =

√
(x2 − x1)2 + (y2 − y1)2
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decrypts all the returned L2Is, and queries the data server for
the I2Ds she cares about. There might be collisions on the
indices generated by different users. However, as the data in
I2D is encrypted using shared symmetric keys, collisions do
not lead to unauthorized data access.

This design has two major problems. First, this approach to
query the server easily breaks a user’s privacy. Just by knowing
that all the transformed points sent by a user correspond to
the same real-world coordinate, the server can construct and
solve a set of equations to derive the real-world location of the
user (proven in Section 5). To prevent this derivation, if the
user were to query for each friend’s transformed coordinate
separately, then it would increase the total time (and the #
of RPCs) to retrieve the results, hurting the performance.
Thus we need a secure and efficient approach to retrieve L2Is
from the index server. Second, since the server sends all the
points stored at a transformed coordinate (x′

i, y
′

i) in the query
(irrespective of who stored data there), the user may get many
L2Is from non-friends who happen to store data at location
(x′

i, y
′

i). Since the user does not know the source, she will have
to attempt to decrypt all L2Is returned in response to location
(x′

i, y
′

i) with friend i’s symmetric key. This wastes significant
amount of computation cycles on the user’s device. Thus, we
need an efficient and secure mechanism to identify the L2Is
that are from friends, and to quickly reject L2Is from non-
friends. We next describe our solutions to these two problems.
Privacy while querying the index server. In order to prevent
attacks while querying the index server, we propose that
users add noise to the query. Noise in our solution is a
few (N ) additional, randomly selected points, ((x1′1, y1

′

1),
(x1′2, y1

′

2), ..., (x1
′

N , y1′N)), added to each query sent to the
index server. Of course, the noise added has to be minimal for
efficiency. We show through analysis (in § 5) that adding only a
few additional random points prevents privacy attacks, and the
server will not be able to derive the real location of the user. In
addition, the user can easily filter out the L2Is corresponding
to the noise. Note that the noise in LocX does not affect the
accuracy of the locations unlike prior systems [11].

Adding noise, coupled with routing the index server queries
via proxies (just like the way they were stored), provides
strong location privacy during querying. The queries only
contain a list of points in the transformed coordinate space,
without any user identifier or actual location information.
Due to proxying, the server cannot identify the client. And
finally the noise prevents derivation of user’s location based on
transformed coordinate. Putting noise and proxying schemes
together, the server cannot link multiple different queries to the
same user. We will later prove that this unlinkability preserves
the users’ secrets, and also show that this approach is resilient
against collusion between the proxies and the index server.
Securely and efficiently identifying L2Is of friends. In the
simple design for data retrieval described above, we query for
a set of points in the transformed coordinates and decrypt all
the returned results. This provides strong privacy as the server
does not learn which of the returned L2Is are relevant to the
user, but decrypting all the results increases the overhead on
the client’s device.

If, on the other hand, we provide some information to the
server to filter out the L2Is that are irrelevant for a user before
sending them, it provides efficiency, but breaks privacy. For
example, suppose each user attaches an anonymized ID to each
L2I. Then, a user can submit a list of IDs she cares about and
some additional IDs for noise. This allows the server to send
only the L2Is at a point that fall into the set of IDs specified by
the user. Even decryption would be efficient, as the user would
know the right key to use for each L2I. Unfortunately, these
IDs would enable the server to link different L2Is, and this
can lead to privacy leaks. For instance, the index server could
perform “fingerprinting attacks,” by leveraging the distance
preserving property of our transformations. In these attacks,
the server takes “fingerprints” of popular destinations (e.g.
airports in major cities), and uses the distance between these
destinations as fingerprints. It then matches these fingerprints
with the locations corresponding to a particular user identified
by the ID, and then derives the transformation secret of the
user. This would then reveal all the real-world locations of
that user, which could help identify the user behind the ID.

Fundamentally, there is a tradeoff between efficiency and
privacy. Revealing more information to the server leads to
efficiency, but hurts privacy, and vice versa. Exploring the
design spectrum to balance these two properties leads to the
following possible set of choices.

1) No tags. The basic design where no user-specific tag
is attached to L2Is, and the user simply queries and
decrypts all L2Is in the results for a location. This
approach provides high privacy, but low performance.

2) User ID tags. The prior design where the server filters
the L2Is in the response using the anonymized ID tags
that the users attach with each L2I. This approach
provides high performance, but low privacy.

3) Keyed hash tags. In this approach, each user u has a
secret text Tu that she shares with her friends. The user
u generates a new random string Sj for each new L2I
she stores, and tags it with < Sj , H(Tu.Sj) >, where
H() is a hash function such as SHA1. So the L2I now
contains
< (x′, y′), E(i), Sj , H(Tu, Sj) >. When a friend of u
wants to query for a location (x, y), she transforms her
location with u’s secret to obtain (x′, y′), and sends this
point in a query. Then the index server sends all L2Is at
(x′, y′) without any filtering. Upon receipt of the L2Is,
the client user appends Sj in an L2I to Tu, and then
compares the hash to check if it is indeed from user u. It
would decrypt the L2I only if this hash check is passed.
A similar check is performed on each L2I. Because of
the fact that hashing is nearly two orders of magnitude
(from our tests) faster than symmetric key decryption,
this approach is significantly more efficient than no tags
in terms of processing time on the user’s device, while
providing the same, strong privacy. We use HMACs [42]
with proven security guarantees for implementing this.

4) Random tags. In this approach, each user u has another
secret random number generator (rgenu) that she shares
with her friends. The user generates a new random num-
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ber rj from rgenu and attaches this tag to every new L2I
she stores. The L2I now contains < (x′, y′), E(i), rj >.
When a friend of u transforms her location (x, y) with
u’s secret to obtain (x′, y′) and sends this point in a
query, the index server sends all L2Is at (x′, y′) without
any filtering. Upon receipt of the L2Is, the friend checks
if the random tag, rj , in an L2I is within the set of
random numbers generated by rgenu. The friend only
decrypts the L2Is whose tags are in this set. Since the
membership check is faster than hashing (by about two
orders of magnitude in our tests), this approach is more
efficient than key-based hash tags, but requires some
additional state. Specifically, the users need to exchange,
with their friends, the maximum number of random
tags (from their rgen) they have used so far in tagging
L2Is. This helps them build the set of tags for checking
L2Is. Thus this approach provides both high privacy
and high efficiency. The idea of using random tags for
fast decryption is also used in prior work on preserving
privacy in accessing WiFi networks [43].

Both keyed hash tags and random tags nicely balance
privacy and performance. We did construct several other mech-
anisms along similar lines to efficiently identify L2Is from
friends while maintaining privacy, but we only discuss and
evaluate these two due to space limitations. Fundamentally,
all these mechanisms attach some additional tags to the L2Is,
which can only be usefully interpreted by the friends. Since
the server cannot link different L2Is from the same user, these
mechanisms provide strong location privacy.
Querying the data server and decrypting location data.
After obtaining the L2Is from the index server corresponding
to a point (x′, y′), say transformed with friend u’s secrets,
the client user identifies the L2Is from u (using the tags),
and then decrypts the returned L2Is with u’s symmetric key.
Then the user directly queries the data server for the I2Ds
corresponding to all the decrypted indices she cares about in
a batch: (i1, i2, ...). She then obtains the I2Ds from the data
server, decrypts them using the symmetric key of the friend
whose key was used to decrypt the corresponding index. And
then the user consumes the data as per the application. There is
no need for a proxy in this step as the index and the encrypted
data on the data server cannot link a user to her location. Since
the decrypted index is sent to the data server, it cannot even
be linked to an encrypted index on the index server.
Supporting circular range and nearest-neighbor queries. The
description so far was for point queries, where a user fetches
data at a given location coordinate. These steps naturally
extend to support more complex queries like circular range
and nearest-neighbor queries. The key change necessary is for
the index server to return data around a query point instead of
returning data at a query point (as was done so far). Since our
location transformation is distance preserving, building an R-
tree [44], [45] on the L2Is input by the users can support both
circular range and nearest-neighbor queries. Finally, the user
should mention the type of the query she wants to run, while
querying the index server. The rest of the steps in querying
remain the same.

One issue in processing a nearest-neighbor query by query-
ing at different transformed coordinates separately is that the
index server will return each friend’s nearest location data
instead of nearest location data taken based on all friends’
location data. As a result, additional answers that are not
necessarily needed by users might be included. While our
focus is not to explicitly remove those extra answers, one way
to remove them is to specify a query range along with the
query; another way is to let the users filter out such data after
decryption.

5 PRIVACY ANALYSIS
5.1 Intuition Behind Privacy in LocX
Here we describe the intuition behind LocX’s privacy, and how
it meets all of our requirements.
Defending against an attacker with access to data on the
servers. The data stored on both servers do not reveal any
information about their locations to the attacker. The L2Is
on the index server contain transformed coordinates and the
data on the data server are all encrypted. As a result, an
attacker with access to just the data on these servers cannot
de-anonymize the data to associate users with their locations.
Location privacy during server access. Even the attacker with
access to monitor both servers cannot link accesses to the
index and the data server because the indices stored on the
index server are encrypted, but the indices are not encrypted
on the data server. Only the users know how to decrypt the
encrypted indices. Without the decryption keys, the attacker
cannot link these records to figure out even the transformed
location of the users accessing the servers.
Location data unlinkability. The I2Ds are encrypted, and the
users access them only via indices. Hence users cannot be
linked to any locations. The indices stored or accessed by a
user are random numbers. The data server can link together the
indices accessed by the same user, but this does not help the
servers link the user to any locations. Finally, the users store
and retrieve L2Is on the index server via proxies, so servers
cannot link different transformed locations to the same user.
Together, these provide location unlinkability.

5.2 Privacy During Location Data Access
Here we present a theoretical analysis of the privacy properties
during data access in LocX. When a user accesses her friends’
data by transforming her own location to different points in the
transformed space and sending them in a query, a malicious
index server learns the different, transformed coordinates that
map to the same, real-world location (which is the user’s
current location). The question is whether an attacker could use
this information to derive the user’s real-world location. Here,
we discuss the fundamental constraints we need to preserve in
LocX to prevent the server from succeeding in such attacks.
Constraints in querying the index server. Assume first that
the users directly access the index server, without any proxies.
Each user has a secret angle, θ, and a secret shift, b, to trans-
form her location coordinates. Suppose a user has n friends
and she issues m location queries. In each of the m locations,
(xj , yj), the user searches for nj (nj ≤ n, 1 ≤ j ≤ m)
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friends’ information. Let us assume that all friends’ informa-
tion is queried at all m locations, and let us also assume the
worst case scenario where the friends’ transformed points are
queried in the same order. Consider that the index server is
malicious and sees the transformed coordinates of the user’s
friends, (xij , yij), in all m queries. The attacker (index server)
then builds (2n1 + 2n2 + ... + 2nm) equations as follows (2
equations for each requested friend at one location) in order to
solve 2m unknown real coordinates (xj , yj) and 2n unknown
friends’ secrets (θi, bi), where 1 ≤ j ≤ m, 1 ≤ i ≤ n.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos θi · x1 − sin θi · y1 + bi = xi1

sin θi · x1 + cos θi · y1 + bi = yi1
... = ...

cos θi · xm − sin θi · ym + bi = xim

sin θi · xm + cos θi · ym + bi = yim

(1)

The total # of unknown variables is 2m+2n. For the attacker
to solve all the unknowns, the following must hold:

2n1 + 2n2 + ...+ 2nm ≥ 2m+ 2n (2)
⇒ n1 + n2 + ...+ nm ≥ m+ n (3)

So to protect the users’ locations and friends’ secrets from
being inferred by the attacker, the reverse of Formula (3) must
hold:

n1 + n2 + ...+ nm < m+ n (4)

If the users query all n friends’ data at each location, nj =
n, a stronger version of Formula (4) must hold:

mn < m+ n (5)

We consider two special cases that satisfy Formula (5).
1) m = 1, meaning that the transformed coordinates of

friends should be only observed in one location. In other
words, the index server should not link multiple queries
to the same user. This can be achieved by using proxies
to anonymize user identities and ensure that the index
server cannot link different user requests to the same
user.

2) n = 1, meaning that the user is limited to access only
one, different friend’s data at each of the m locations.
In other words, the functionality the user obtains from
the applications is limited only to the data from an
unreasonably low number of friends, in all the locations.

For the general cases of m > 1, n > 1, we decide to exploit the
first case for our design, since we do not want to limit users
(and hence to hurt functionality) as in the second case. By
routing queries through proxies, we can easily satisfy Formula
(5) since the index server cannot link different requests to the
same user, as long as the proxies do not collude with the index
server. Thus, we have proved that the unlinkability of queries
due to proxies preserves users’ privacy in LocX.
Impact of malicious proxies. We assumed in the previous
analysis that all proxies are benign. However, a proxy may be
malicious and collude with the index server, which would then
violates the unlinkability of queries and hence violates users’
location privacy. Therefore, multiple proxies are needed, and
we need to control the number of queries any given proxy can

see. Based on Formula (4), the upper bound on the average
number of friends’ data a user can request at a given location
through a single proxy is

n1 + n2 + ...+ nm

m
<

m+ n

m
= 1 +

n

m
(6)

In a worse case, more than one proxy may be malicious, and
they may collude with the index server. Given the number
of colluding proxies, k, we have to further limit the average
number of friends’ requests that a user can send per location
via one proxy to: (1+ n

m
)/k = 1

k
+ n

mk
. This number, however,

becomes impractically small. We resolve this limitation by
adding noise to queries that users send via proxies.
Improving privacy using noisy queries. Now we derive the
amount of noise to add per query. Following Formula (6), if k
proxies are colluding, together they can see min{k·(1+ n

m
), n}

friend requests from the same user at one location (n is the
maximum number of friend requests of their interest for one
location query), which violates Formula (4) and hence the
user’s location privacy. To make sure the colluding proxies
cannot break Equation (1), we need to increase the number of
unknowns on the right side of Formula (4). This is achieved
by generating “dummy” friend requests based on false secrets
(θ′, b′). The user uses these false secrets to generate false
location points, inserts the random points along with the user’s
legitimate transformed points and routes them via the proxies.
The colluding proxies may then attempt to solve the equation
without knowing which requests are real and which ones are
fake. But since the solution to the equation is then based on
dummy random points, the attacker will not have the right
secrets for the user’s friends.

Let the minimum number of such noisy points be n′, and
the user asks for (n+n′) friends’ data in m location queries.
Then we should have min{k · (1 + n

m
), n} = 1+ n+n′

m
, from

which we get n′ = min{(k− 1) · (m+n),mn−m−n}. For
each of the m locations, the minimum amount of noise that
the user needs to generate on an average is

n′

m
= min{(k − 1) · (1 +

n

m
), n− 1−

n

m
} (7)

Note that 1) the overhead due to noise is proportional to
the amount of collusion in the system when the number of
colluding proxies k is ≤ mn

m+n
. The amount of noise does not

increase beyond n−1− n
m

when k > mn
m+n

, as all the requests
sent out by a user are learned by the attackers by now. And
2) the noise added above is an average value. We just need
to ensure that the noise added over m points averages to this
value – the noise does not have to be the same in each query.
We show in our evaluation the exact amount of noise added in
our setup for real values of parameters; and our results show
that the overhead due to the noise is very low.

Finally, we stress that even if noise is not added, the worst
that the attacker can do is to break a single user’s location
privacy – but not the location privacy of all her friends.
Moreover, even if users do not generate enough noisy friend
requests as the number specified in Formula (7), and the
attackers or malicious proxies are able to solve Equation (1),
it is still not easy for them to build the correct association
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between a real friend and a pair of secrets obtained from
the solution, since there are

(
n+n′

n

)
· n! possible associations.

Hence even in this worst case, the user’s friends’ secrets are
still kept secure. In this case, only the user’s current location is
revealed to the attacker (from the solution to the Equation (1)),
hence only this user’s location privacy is violated. This privacy
is also not violated arbitrarily long, but only so long as the
proxies continue to collude and associate the requests coming
to the index server to the same victim user.

5.3 Other Attacks and Defenses
We now discuss other possible attacks the servers can perform,
in addition to the attacks described before, and our proposed
solutions to ward off these attacks.
Query linking attacks by the index server. The index server
might attempt to link the queries from the same user using
some query “fingerprints.” For instance, the server might guess
that all queries with 199 points in them (one per friend) belong
to the same user – assuming that it is uncommon to have many
users that use the same proxy having 199 friends. Fortunately,
our extension of adding noise to the requests helps here. Since
the number of noisy points added varies per query, the server
cannot perform such attacks.
Fingerprinting using cookies in incoming connections.
We assume that the proxies or the clients scrub the outgoing
connections, using tools such as Privoxy [46], to remove
all user-identification information from the connection. This
assumption is common to all anonymity-preserving systems,
including Tor [34]. Thus such attacks do not work on LocX.
Localization-based attacks. As the users connect to the data
server directly, it can attempt to learn users’ location using
their IPs. Fortunately, the location from localization technolo-
gies is at the granularity of tens of miles [47]. To prevent
these attacks, accessing the server via proxies helps, but this
reduces the efficiency of the system. Recently proposed [48]
mechanisms can also help us in reducing the localization
accuracy of the server and even defeating these attacks.
Timing attacks by the index server. The index server may
attempt to link different requests that arrive at the server to
the same user or query using timing information. For example,
the server can say that all requests for I2Ds within a second
belong to the same user, and hence all such I2Ds are related.
Fortunately, we can leverage prior work on location privacy
here [49], [11], [12], [13], [22]. By using techniques such as
batching requests and randomly delaying requests to the server
at the proxies or at the clients, and by combining them with
noisy queries described before, we can deter these attacks.
Periodically refreshing a user’s secrets. So far we described
LocX as if only one pair of secrets (θ, b) is used by a user
to protect her data. But we can easily extend this to allow
users to use time-varying secrets. For e.g., Alice may use
(θ, b) to protect her data from the year 2010, and (θ′, b′)
(generated using a pseudorandom number generator) to protect
2011’s data. The time period for secret refresh can also be
configured by the user. The user could then share new secrets
with selected friends for better security (as described next).

Attacks due to stolen or compromised user devices and
colluding friends. An attacker with access to a user’s secrets,
obtained by compromising or stealing her device or by collud-
ing with one of her friends, obviously, has access to all her data
and her friends’ data. Unfortunately, this is a natural problem
shared by other prior social systems that have relied on friends
for performing certain tasks [41], [39], [40], [37]. That said,
we believe that the damage from this problem can be limited.
First, a colluding user can only leak her friends’ data to the
server and not more. So obtaining network-wide visibility
for an attacker will require a large number of colluding
users, which is hard. Second, using attributed-based encryption
(ABE) [50], similar to the approach in Persona [37], can help
limit the damage of this attack. With ABE the attacker will
have to get many colluding friends (and access all attributes)
to even obtain the data of even a single user. Finally, the users
can easily revoke the keys of a friend suspected to be colluding
or compromised, and periodically refreshing the keys (like
discussed above) of all friends forces friends to re-request
keys, thus providing an opportunity for users to “prune” their
network to only the trusted friends (and also limiting future
damage from already leaked keys).

Attacks using external information. Attackers can mount sev-
eral attacks on targeted users using information learned about
them from outside our system. For e.g., Bob, an employee
of a restaurant, might know Alice’s home address and know
that it takes 10 minutes for her to come from her home to
the restaurant. Knowing two locations of Alice (home and
restaurant) and the time window when transformations of these
locations are stored on the server, Bob might collude with the
server to try to figure out Alice’s secrets.

While defending against all such attacks based on external
information is extremely challenging, and is outside the scope
of this paper, we offer our intuitions as to why such attacks are
especially difficult against LocX. First, this attack can work
only on those users whose information is precisely known by
the attacker. The number of such users is usually very limited.
Second, our defenses against timing attacks can significantly
increase the time window the attacker has to process. And the
attacker will have to process all the points uploaded to the
system in that time window, which can be extremely large
in a system with many users. Third, even if successful, the
attacker will have to keep running this attack due to time-
varying secrets of the users. Finally, just learning a user’s
secret does not compromise her privacy. The attacker still has
to break the unlinkability of every (future) request sent by
this user (by colluding with proxies). That is, even when the
secrets of a user (θ, b) are broken, the attacker still needs to
link future requests to that user.

Map matching attacks. The attacker might attempt to connect
the points in the virtual coordinate space, to construct paths
taken by a user, and then to map them back to the paths in
the real-world map. Doing so would enable the attacker to
identify real-world paths traversed by a user. However, such
attacks are impractical for the attacker to mount due to the
following reasons. First, isolating the points that belong to a
given user is very hard. The virtual coordinate space is shared,
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Measures LocX L2D K-Anonymity
Client Processing Time (ms) 0.0045 0.0 0.0
Query Completion Time (ms) 0.009 0.0014 0.004

Data Communication Size (Bytes) 140.1 85 169

TABLE 2
Measures of Location Puts
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Fig. 3. Effect of varying the number of puts on query response
sizes in synthetic data.

and all users’ points overlap in this space. As a result, a set
of points in a region of the space can lead to an extremely
large number of total paths. Due to unlinkability of points,
the attacker would not know which path among these is the
path taken by the user. Second, due to our defenses against
timing attacks, the points in a path may not appear in the right
order at the server. So even if the user’s points are isolated by
the attacker, they will lead to a wrong path fingerprint. Finally,
mapping a path fingerprint to the right path in the world’s map
is not trivial. (Figure 9 in evaluation validates this argument.)
Denial-of-Service attacks by malicious users. To prevent DoS
attacks on the server behind the cloak of anonymity, we can
leverage existing research [51], where tokens are used to verify
that the puts (store operations) are from legitimate users and
hence rate-limit malicious puts.
Summary. To break a user’s location privacy in LocX, the
attackers need to surpass two steps: a) learn the secrets of the
user, every time she changes it, and b) correctly identify every
request sent by the user. From our analysis above, doing so is
very expensive for the attacker, and hence, LocX significantly
improves location privacy over prior work.

6 EVALUATION
Our evaluation focuses on answering the following key ques-
tions. 1) What is the overhead of a put in LocX? 2) What is
the overhead of retrieving point and nearest-neighbor queries
in LocX compared to today’s systems? And how does it vary
when more data is retrieved per query? 3) How does the
overhead vary when more noise is added to each query? 4)
How does the overhead from L2Is and I2Ds change when
larger size of data is stored per put? 5) Finally, how does
LocX perform on mobile devices?

6.1 Implementation and Setup
We implemented LocX in Java. We used AES with 128 bits
keys for encryption and decryption. The implementation of
nearest-neighbor queries was based on the R∗-tree package

from HKUST [45]. We configured each user to cache 1000
random number tags from each of her friends.

We measured LocX’s performance on both desktops and on
Motorola Droid mobile phones. The index and data servers
were run on the same Dell PowerEdge server equipped with
Quad Core Xeon L5410 2.33Ghz CPU, 24GB RAM and 64 bit
Federal Core 8 kernels. Clients were run on another machine
with the same configuration. We used the same code base for
both desktop and mobile tests. But we had to modify the code
slightly for Android OS to deal with some missing libraries.
In addition, we had to make certain optimizations to limit the
memory usage to under 16MBs for LocX process in Android.
Workload.We used both synthetic and real-world LBSA work-
load datasets for our tests. The synthetic dataset with default
parameters was created following empirical observation on
popular geo-social sites such as FourSquare: First, we parti-
tioned a two dimensional space into 100 cells, each of which
is a city. In each city, we randomly generated 100 pairs of
location coordinates. Then we assigned 1000 resident clients to
each city. Each client had 100–1000 friends following a power
law distribution with α = 1.5 [52], among whom 70% friends
were from the same city as the client and 30% were from other
cities. Each client did 20 location puts, among which 70%
puts were at locations in the client’s resident city and 30%
were at locations in other cities. Each location put message
was randomly generated consisting of maximum 140 bytes,
following the tweets in Twitter. As a result, each city had 20K
location puts on average, and the total number of location puts
was 2M. After all the puts, each client submits a point query
and a nearest-neighbor query with 70% probability of being
within the client’s resident city and 30% probability of being
in other cities. Each nearest-neighbor query requests for 10
nearest locations (we only evaluate nearest-neighbor queries,
as we found in our preliminary tests that the performance of
circular range queries to be similar to that of nearest neighbor
queries). We set noise to a fixed 10 points per query for now,
and study the impact of noise later.

We crawled www.brightkite.com for real LBSA traces. We
crawled using BrightKite’s public APIs, at a rate slower than
the rate specified in the API Terms of Use. Due to the
slow rate, we distributed the crawling tasks to 20 machines,
and crawled for about a month starting from August 20th,
2010. Starting with an initial seed of users, we crawled each
user’s profile, friends list, and check-in data. The crawled data
in total had 25,314 users, 123,438 unique GPS coordinates
with 259,775 check-ins by users. While using this data for
experiments, we treated each check-in as a location put, and
let each user query from one of her check-in locations. Since
check-in messages were not available for us to crawl, we
generated random messages of varying sizes.
Experiment setup. To evaluate the overhead that our approach
is adding to today’s LBSAs with no privacy, we compared
LocX with random tags, referred to as LocX, with an imple-
mentation of a today’s service that has social network on the
server and directly maps a location to its data, referred to
as L2D. In L2D, data is in plain-text, thus no encryption or
decryption is needed. We measured the communication costs
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Fig. 4. The various costs of running point queries, while varying the number of location puts in synthetic data.
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Fig. 5. The various costs of running nearest-neighbor queries, while varying the number of location puts in synthetic data.
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Fig. 6. Breaking down the communication overhead from L2Is and I2Ds, when the number of puts is increased.

between clients and servers, the client processing time, the
query completion time (including network latency), and the
server processing time. To evaluate the performance trade-offs
of the design choices we have discussed, we also compared
LocX with random tags against LocX with no tags, which we
call LocX-no-tag. Since these two different designs result in
differences in processing L2Is, we specifically measured the
communication cost between clients and the index server for
L2I and the communication cost between clients and the data
server for I2D.
Comparison. We also compare LocX to a recent k-
Anonymity-based system [12], where a trusted third-party
anonymizer stands between the clients and servers to
anonymize queries and to filter query responses. The
anonymizer knows the userId and the user’s friends’ informa-
tion in order to filter responses. Since the anonymizer hides a
user’s query in a larger area of k other users, we can expect
its data communication size and server time (including the
anonymizer time) to be significant, in comparison to LocX, as
shown in detailed next. We set k = 10 in all our experiments.

6.2 Experimental Results
We report results from our tests on desktop computers first,
and present experimental results on mobiles later.

Performance of a location put. We present the cost of a single
location put in synthetic dataset in Table 2. A put in today’s
system (L2D) costs no processing time on clients as there is
no crypto operation. But we can see that a put in LocX with
encryption and additional index data only slightly increases the
overhead, which is not even observable by users. The average
message size was 84.5 in L2D, but it was increased to 140
in LocX. k-Anonymity, however, has even higher size due to
the information regarding the cloaked spacial region in the
message.
Query performance with increase in the # of puts. Next
we compared the performance of LocX (with random tags),
LocX with no tags, k-Anonymity, and L2D for point queries
and kNN queries. On synthetic dataset, we varied the number
of location puts per client from 20 to 100, while fixing the
amount of noise in a query to default 10 and message size
to default maximum 140. Total number of clients was fixed
at 100K. As location puts per client increases, the total data
size increases, thus more data needs to be processed and the
sizes of query answers increase. Figure 3 shows the increase
in query answer sizes. Obviously, the response to a kNN query
contains more data than a point query (by more than 6 times).

From Figures 4(a) and 5(a), we see that processing a query
in LocX takes is comparable to that of L2D, in a LAN
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setting. However, the other two approaches – k-Anonymity
and ‘Locx-no-tag’ – perform poorly. k-Anonymity has higher
overhead as the entire cloaked spacial region is included in
the responses, which leads to increase in the query completion
time, and server processing time or load (shown in Figures 4(b)
and 5(b)). In ‘LocX-no-tag’, a client cannot differentiate
between friends’ and non-friends’ messages, so the client tries
to decrypt every single message received, which leads to costly
computation and time to completion. This problem becomes
particularly worse while processing nearest-neighbor queries,
as shown in 5(a). The server time of LocX is actually better
than L2D due to the fact that the application logic is moved
to the clients and server simply needs to do lookups. The
communication cost of LocX is no more than 3 times the
communication cost of L2D for point queries and no more than
7 times the communication cost of L2D for nearest-neighbor
queries, as shown in Figures 4(c) and 5(c) respectively.

We also measured the client processing times. LocX, as
expected, pays a slight processing cost on the client side in
decrypting indices and location messages. But we find that
this increase in overhead is actually negligible. Due to space
limitation, we leave out the graphs for synthetic data but later
present the results on real data set in Figure 10. The results
are similar in both cases.
Individual overhead from L2I and I2D. Now we look into
the overhead from L2I and I2D separately. Overhead from
L2I in the setting where no tags are attached is referred to
as ‘L2I-no-tag’. We see in Figure 6(a) that as the number
of puts increases, more data is returned as answers, and the
communication cost of I2D increases more than that of L2I
for point queries. But in the case of nearest-neighbor queries,
since a lot of data needs to be filtered in L2I phase, more data
is transmitted for L2Is. In contrast, only qualified answers are
transmitted in I2D phase. As a result, the communication cost
of L2I is more than that of I2D (see Figure 6(b)).
Varying put message sizes. We next increased the put message
size from 140 to 700, while fixing the other parameters (20
puts per client). We expected only the communication cost
of I2D to increase but the cost of L2I to remain the same
in this test. Figure 7 confirms this for point queries, and we
observed similar behavior for nearest-neighbor queries (no
graph shown due to space constraints). Clearly, as the message
size increases, larger sizes of data is transmitted as answers,
thus the cost of I2D gradually dominates that of L2I.
Varying the amount of noise in queries. We next varied the
amount of noise added per query from 10 to 50, while setting
the other parameters to default. Figure 8 shows that increasing
the noise only increases the communication overhead from
L2I, and this increase in overhead is quite small. There is
no increase in I2D overhead due to noise. Also note that
noise does not increase the computation time on client devices,
as clients can reject responses to noisy points and not even
attempt to decrypt them. The trend for kNN queries is similar,
but the graph is left out due to lack of space.
Distribution of Transformed Coordinates. Figure 9 compares
the distribution of 2 million real-world locations after user-
specific transformations to understand how the points are
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distributed. Clearly, after transformation, points are evenly
distributed in the virtual space, as can be seen from the
CDF plot, which is practically a vertical line near 0. Thus
the virtual coordinate density is negligible compared to real-
world coordinates. This is the main reason, we believe, why
reverse engineering the transformations and performing Map-
Matching attacks is hard.
Experiments with real-world BrightKite datasets. Since we
were not able to crawl the messages in check-ins, we generated
messages of size varying from 140 to 700 bytes, and then
used the check-in locations to put this data on the server.
We set the noise in the queries to default value 10. This
real-world data had a lot fewer check-ins compared to our
synthetic data, and hence the number of results returned in
query responses was also smaller. The average answer size
for a point query and a nearest-neighbor query were around
0.92 and 36.5 respectively. We learned from this test that the
performance trend of LocX with real data is similar to that on
synthetic data. Figure 10 shows that LocX does not incur too
much processing overhead on real data either. Increasing the
message size increases the processing time only slightly due
to decryption of larger sized data. Due to similar trends, we
leave out the other graphs on point and kNN queries.

We also notice that LocX with no tags consumes more
processing than LocX with tags; the majority of time here
is spent in trying different friend keys for decrypting each
L2I. This clearly shows that tags are necessary to boost the
performance of LocX, with only a slight more communication
overhead.

Next we used this real-world data to get a realistic estimate
of the amount of noise added by LocX according to Formula 7.
We set n to 7.17, the average # of friends in the BrightKite
dataset, and m to 10.95, the average # of check-ins per user.
The number of noisy points a user with this n and m has to add
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while using LocX with the increase in the number of colluding
proxies k is shown in Figure 11. The noise increases up to
a certain value of k and then remains constant, as expected
(explained in Section 5.2). In addition, we see that even the
maximum noise added (5.53) is less than the value of n. Noise
of 5.53 location coordinates translates to about 22 bytes per
query. If the average message size is 500 bytes, then this
overhead is about 4%, which we think is reasonable.
Overhead of running LocX on Motorola Droid. We ported
LocX to Android, and ran the experiments under synthetic data
on Motorola Droids. We observed similar trends in our tests as
the results reported before (in Figures 4 and 5). As a result, we
do not present new graphs. The key difference, however, was
that the client processing time is much slower on Droids due to
low resources. In the default setting with 20 location puts per
client and one point query per client (described in § 6.1), the
average client processing time on Droids was about 10 times
slower than on the Dell server. But even after this slow down,
the query completion time on Droids were below .2 seconds
for point queries, and all kNN queries were answered in below
a second. We measured the power consumption on Droids and
noticed that the phone can process about 40K point queries
before the battery was completely consumed.
Summary. We find in our evaluation that LocX can run on
today’s mobile devices with low computation and communi-
cation cost and still provide strong location privacy.

7 BUILDING APPLICATIONS USING LOCX
Here we sketch how to build LBSAs using LocX. We demon-
strate the usage of our APIs by building three applications.
In today’s systems that provide these services, the data is
entrusted to the server in plain-text, which performs the
computations in the application logic. But since we do not
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Fig. 11. Ideal amount of noise necessary to protect users in
BrightKite, with increase in the number of malicious proxies.

trust the server in LocX, the application logic that computes
on the plain-text location data is moved to the client.
Location-based reminders. This application users place re-
minders for friends at specific locations (for e.g. reminder to
buy milk near a grocery store), and when the friends are at
that location, an alert is generated on their device. To build this
application in our model, a user bundles all the details about
the reminder, such as the reminder text and time, encrypts the
whole bundle and generates a corresponding I2D. Then the
user transforms the reminder location based on the friend’s
secret and generates a corresponding L2I. These pieces are
stored on the servers with a putL2I and a putI2D calls. Each
user periodically runs a neighborhood query for data from her
friends. First the user takes her current location, transforms it
according to her secret, runs a neighborhood query, and fetches
the L2Is and I2Ds, if any, using the getL2I and getI2D calls.
Then the device decrypts and reminds the user as appropriate.
Location-based recommendations. This application aims to
recommend nearby sites (restaurants, shopping malls, etc.)
to users based on the reviews given to these sites by their
friends. In our model, this application is built as follows.
A user stores her reviews by generating a bundle containing
all the information related to the review, such as the review
text, rating, etc., encrypts the bundle using her symmetric key,
and generates a L2I and I2D using the data. The locations
of the sites are transformed, of course, while generating the
L2Is. This information is then stored on the servers using the
putL2I and putI2D calls. The application on each user’s mobile
downloads the data from her friends at the user’s current
location by running a neighborhood query. Then it decrypts the
returned data, and plots the recommended sites on a map in the
device. Thus, the application operates without even revealing
users’ location to the servers.
Friend locator. This application alerts a user whenever a friend
is in the vicinity. When this application is built on LocX, users
check-in at their current location periodically; then users check
for friends in the vicinity by running a neighborhood query
around their current location and decrypting check-ins from
friends in recent times (e.g. last ten minutes). Despite using
neighbor query, this approach to building friend locator is still
efficient. Even a hotspot (e.g. a concert) in the real coordinate
space is usually not a hotspot in the transformed coordinate
space due to user-specific location transformations, and thus
limits the amount of (irrelevant) data received and processed
by a user.
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8 CONCLUSIONS
This paper describes the design, prototype implementation,
and evaluation of LocX, a system for building location-based
social applications (LBSAs) while preserving user location
privacy. LocX provides location privacy for users without
injecting uncertainty or errors into the system, and does not
rely on any trusted servers or components.

LocX takes a novel approach to provide location privacy
while maintaining overall system efficiency, by leveraging
the social data-sharing property of the target applications. In
LocX, users efficiently transform all their locations shared
with the server and encrypt all location data stored on the
server using inexpensive symmetric keys. Only friends with
the right keys can query and decrypt a user’s data. We
introduce several mechanisms to achieve both privacy and
efficiency in this process, and analyze their privacy properties.

Using evaluation based on both synthetic and real-world
LBSA traces, we find that LocX adds little computational
and communication overhead to existing systems. Our LocX
prototype runs efficiently even on resource constrained mobile
phones. Overall, we believe that LocX takes a big step towards
making location privacy practical for a large class of emerging
geo-social applications.
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