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Secure Cloud Storage Meets with Secure
Network Coding

Fei Chen, Tao Xiang, Yuanyuan Yang, and Sherman S.M. Chow

Abstract—This paper reveals an intrinsic relationship between secure cloud storage and secure network coding for the first time.
Secure cloud storage was proposed only recently while secure network coding has been studied for more than ten years. Although the
two areas are quite different in their nature and are studied independently, we show how to construct a secure cloud storage protocol
given any secure network coding protocol. This gives rise to a systematic way to construct secure cloud storage protocols. Our
construction is secure under a definition which captures the real world usage of the cloud storage. Furthermore, we propose two
specific secure cloud storage protocols based on two recent secure network coding protocols. In particular, we obtain the first publicly
verifiable secure cloud storage protocol in the standard model. We also enhance the proposed generic construction to support user
anonymity and third-party public auditing, which both have received considerable attention recently. Finally, we prototype the newly
proposed protocol and evaluate its performance. Experimental results validate the effectiveness of the protocol.

Index Terms—Cloud storage auditing, network coding, security, user anonymity, third-party public auditing

1 INTRODUCTION

LOUD storage is being widely adopted due to the popu-

larity of cloud computing. However, recent reports [1],
[2] indicate that data loss can occur in cloud storage pro-
viders (CSPs). Thus, the problem of checking the integrity
of the data in cloud storage, which we referred to as secure
cloud storage (SCS), has attracted a lot of attention. On the
other hand, networking coding, which was proposed to
improve the network capacity, also faces the problem of
integrity checking. An intermediate router may inten-
tionally pollute codewords, which results in decoding fail-
ures at the endpoints. Checking the integrity of codewords
is referred to as the secure network coding problem. Differ-
ent researchers have studied secure cloud storage and
secure network coding independently. Solutions for the for-
mer problem, e.g., [3], [4], [5], were proposed only recently.
In contrast, the latter area has been examined for more than
ten years, e.g., [6], [7].

Secure cloud storage. This problem was first proposed by
Juels and Kaliski [3] and Ateniese et al. [4]. Two main enti-
ties are involved in these protocols: a user and a cloud stor-
age provider. A user outsources the data to the cloud who
promises to store the data. The user then confirms the data
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integrity by interacting with the cloud using a secure cloud
storage protocol. The motivation of data integrity checking
lies in several factors. First, due to the poor management of
the cloud, the user’s data could be lost due to system fail-
ures (hardware or software). To cover the accident, the
cloud may choose to lie to the user. Second, the cloud has a
huge financial incentive to discard the data which is rarely
accessed by the user. Ignoring some part of the data helps
the cloud to reduce its cost. Third, a cloud could also be
hacked and the data could be modified. Fourth, a cloud
may behave maliciously because of various possible gov-
ernment pressures. Without a secure cloud storage protocol,
the occurrence of these incidents may be hidden by the
cloud and gone unnoticed.

The main feature of a secure cloud storage protocol is
that the user can check the data integrity without possessing
the actual data. Traditional techniques based on hash, mes-
sage authentication codes (MACs), and digital signatures
however require the user to store the data locally. Some pro-
tocols (e.g., [5], [8], [9], [10]) are publicly verifiable, i.e., any-
one besides the user can verify the data integrity; other
protocols are privately verifiable since only the user with
the secret key can check the data integrity. A more detailed
survey is deferred to Section 2.

Secure network coding. This problem was first proposed by
Cai and Yeung [6] and Gkantsidis and Rodriguez [7]. Net-
work coding is a routing paradigm where a router in the
network sends out encoded data packets, which are a func-
tion of received data packets, instead of the traditional
store-and-forward approach. Encoding can increase the net-
work capacity for multicast tasks. Linear coding, in which a
router sends out a linear combination of received data
packets, is proved to be sufficient to achieve the increased
capacity [11], [12]. This is especially useful in cooperative
networks. However, this paradigm also incurs severe secu-
rity concerns. If an encoded packet is modified illegally,
this modification can quickly spread to the whole network
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because a router encodes all received packets, including the
polluted ones. This attack is also known as the pollution
attack. The pollution of the codewords could result in data
loss when data receivers attempt to decode the data. Thus,
when security is a critical concern in a network coding
enabled network, the data receivers and routers need to
check whether a data packet is polluted.

Essentially, the secure network coding problem is also a
type of data integrity checking problem. Many solutions are
adopted from traditional data integrity techniques such as
cryptographic hash functions [13], MACs [14] or digital sig-
natures [15], [16]. The basic idea is that each codeword in
the network needs to be authenticated by checking if the
codeword has been modified illegally. The challenge is that
the packets in the network are linearly combined by routers
and the new packets also need to be authenticated. All cur-
rent solutions for secure network coding rely on some
homomorphic property of the underlying cryptographic
techniques. Readers may refer to Section 2 for more detailed
related work.

Our work. In this paper, for the first time, we reveal a rela-
tionship between these two different areas, i.e., secure cloud
storage and secure network coding. Our main result is that
we can construct a publicly verifiable secure cloud storage
protocol given any publicly verifiable secure linear network
coding protocol.

The connection immediately implies that many previous
protocols for secure network coding can be transformed for
securing cloud storage. With our generic construction, we can
automatically have many secure cloud storage constructions
from existing secure network coding protocols. In contrast,
secure cloud storage protocols are currently designed in a
rather ad hoc way and there are only few successful protocols.

To demonstrate the power of our construction, we pro-
pose two enhanced secure cloud storage protocols that
can satisfy the needs of different applications. These new
protocols derived from our generic construction also
sheds insights on private-key secure cloud storage proto-
cols, although this paper mainly focuses on public-key
protocols. Notably, we design the first publicly verifiable
secure cloud storage protocol which is secure in the stan-
dard model, i.e.,, without modeling a hash function is a
random function when arguing for the security of the
protocol. Moreover, we extend our generic construction
to support advanced functionalities, in particular, user
anonymity, and third-party public auditing. These fea-
tures have received considerable attention recently.

The security of our generic construction is proved under
a security definition which modeling practical application
scenarios. We also implement and open-source a prototype
of the new publicly-verifiable secure cloud storage protocol
and further evaluate its performance. The prototype makes
a step forward for the protocol to be adopted in practice.

We hope our work can bring the wisdom behind
existing solutions of secure cloud storage to possibly con-
tribute to and provide new perspective to the network
coding community.

Organizations. The rest of the paper proceeds as follows.
We start by discussing related work in Section 2. We then
model the problems of secure cloud storage problem and
secure network coding in Sections 3 and 4 respectively. The
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security requirements of both protocols are also discussed.
Section 5 presents our generic construction with formal secu-
rity analysis. Section 6 detailed our new secure cloud storage
protocols based on two recent secure network coding proto-
cols. Section 7 shows how to enhance the generic construc-
tion to support user anonymity and third-party public
auditing. The experimental performance is reported in
Section 8. Finally, we conclude by discussing future work.

2 RELATED WORK

Proof of retrievability was proposed Juels and Kaliski [3] to
enable a client to verify if the data outsourced to the cloud
is undamaged. The basic idea is that the user embeds some
special authentication information (i.e., “sentinels” [3]) in
the data at irregular positions. Although the authentication
information is not related to the data and is generated ran-
domly, the cloud does not know the specific positions of
them. The user can carry out the auditing by asking the
cloud to send back the data at some random positions,
which either contain the special authentication data or the
user’s normal data. However, one drawback of this
approach is that the total number of the “sentinels” is finite;
thus, auditing can only be done a finite number of times.

Ateniese et al. [4] proposed the idea of provable data pos-
session which makes use of homomorphic authentication
data. Roughly, computation can be done on a group of data
blocks, such that a new authenticator can be computed from
the same computation on their authentications. The user can
then audits the cloud storage by asking the cloud to send
back some computation of the randomly chosen data blocks
and an authentication of the computed result. If the authenti-
cation is correct, the cloud stores the user’s data intact.

To make the query and response compact, two protocols
based on pseudorandom functions and a pairing-based sig-
nature respectively were proposed with formal security
proofs [8]. One of them is extended to support privacy-
preserving third-party auditing [5]. A similar protocol
which also utilizes pairing is later proposed [10]. Based on a
special commitment protocol, a protocol which aims to
reduce the communication cost is proposed [9]. There is
also some interesting work based on number-theoretic hash
functions [17]. All the above protocols are designed in an ad
hoc way. In contrast, we provide a systematic and generic
design approach.

Network coding was proposed by Ahlswede et al. [11] as
a technique to increase the throughput of a multicast net-
work, and later studied by many researchers (e.g., [18],
[19]). Regarding security, Cai and Yeung [6] considered the
positive impact, while Gkantsidis and Rodriguez [7] found
that network coding is quite weak in front of pollution
attacks. To prevent this attack, various protocols are pro-
posed, e.g., employing a hash function to protect the integ-
rity of a codeword [7], [13]. There is also some protocol
based on pairing-based signatures [16]. Recent work focuses
on designing protocols which are secure in the standard
model [20], [21].

Orthogonal to our work, another line of research employs
network coding to construct reliable and distributed storage
systems, such as how to use it to restore lost data by
employing multiple clouds [22], [23], [24]. Our work
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Fig. 1. A secure cloud storage system.

however focuses on how to detect when the outsourced
data on a single cloud is modified, via checking if a network
code is polluted. Some other works [25], [26], [27] also con-
sidered checking the integrity of each data block (i.e., code-
word) of network coding enabled cloud storage systems.
Yet, traditional data integrity techniques are incorporated to
validate the correctness of the data. Network coding does
not help to audit the user data.

3 SECURE CLOUD STORAGE

3.1 System Model, Threat Model, and Design Goals
We model a secure cloud storage system as shown in Fig. 1.
There are two entities: user and cloud. In practice, a user
could be an individual, a company, or an organization using
a PC or a mobile phone, etc.; a cloud could be any CSP, e.g.,
Amazon S3, Dropbox, Google Drive, etc. The user first out-
sources its data to the cloud. Later, the user periodically per-
forms an audit on the integrity of outsourced data. The user
can then check whether the proof returned from the cloud is
valid or not, meaning that the data remains intact, or obtain-
ing an evidence that the data has been tampered which will
possibly incur some further action (which is out of our
scope), such as legal action or data recovery.

Similar to previous work [3], [4] and as motivated earlier
in this paper, we model the cloud as potentially malicious.
We assume the communication between the user and the
cloud is authenticated, which can be done by standard tech-
niques. Thus, we can focus our attention on the user and the
cloud but not communication.

A secure cloud storage system that enables a user to
check the integrity of the outsourced data is expected to be:

e Correct. If the cloud indeed stores the whole out-
sourced data, the cloud can always prove to the user
that the data remains intact.

e Secure. If the user’s data is damaged, the user can
detect with high probability in the audit query, even
if the cloud tries to cover the event.

e Efficient. The computation, storage, and communica-
tion cost of both the user and the cloud should be as
small as possible.

3.2 High-Level Protocol Specification

Now we abstract a framework for the secure cloud storage
problem. Clearly, in order to verify whether the cloud lies
to an audit query, the user needs to have some secret infor-
mation on its side which is computed according to a certain
security level. Denote the secret information by K, the secu-
rity level by an integer ), and the user’s data by F'. The user
employs K to process F. The processed data, denoted by
F’, contains authentication information and 1is then
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outsourced to the cloud. On receiving an audit query ¢ from
the user, the cloud uses the stored data F’ to generate a
proof I showing that the data is intact. The user then checks
whether I' is valid. Denote the user’s verification result by 8.
More specifically, a secure cloud storage protocol contains
five efficient algorithms SCS = (KeyGen, Outsource, Audit,
Prove, Verify) as follows:

e KeyGen(\) — K: On input a security parameter A,
the user runs this algorithm to generate a secret key
K to enable auditing and verification.

e Outsource(F; K) — F': On input the data F' to be
outsourced, the user runs this algorithm to get the
processed data F' using the secret key K. The proc-
essed data contains some authentication information
of the data F' and is then sent to the cloud.

e Audit(K) — ¢: The user runs this algorithm to gener-
ate an audit query ¢ to be sent to the cloud.

e Prove(g, F') — I': On input an audit query ¢, the
cloud computes a proof I' using the stored data F”.

e Verify(¢q,I'; K) — 8: On input an audit query ¢ and
the cloud’s proof I', the user checks if the cloud’s
proof is valid using the secret key K. The user out-
puts § = 1 if the proof is valid, else outputs § = 0.

3.3 Understanding Security

This subsection presents a reasonable security definition of
the secure cloud storage protocol by abstracting its real-
world usage step by step. The key to understand the secu-
rity is to define the meaning of security exactly.

First, we need to understand the capability of a malicious
cloud. In practice, the cloud has the processed data F".
Besides that, the cloud can see a lot of audit queries and its
proof responses. It is also reasonable that the cloud can
know whether the user accepts a proof response or not. This
is because if the user rejects the proof, the user may sue the
cloud or follow some other remedy actions; if the user
accepts the proof, there are no such actions. Another impor-
tant issue is how many audit queries and verification results
the cloud can get. Our definition allows the malicious cloud
to see polynomially many (in security parameter) such
queries and verification results; which can cover the user’s
periodical audit in practice.

Denote a malicious cloud by A, a series of query, proof
and verification result by ¢;, I';, 8; wherei =1,2,..., poly(\)
and poly(\) is a fixed polynomial in the security parameter
A that bounds the maximal number of such audit/verifica-
tion results A can see. We say a cloud cheats if it can find a
query ¢ and for this query the cloud sends back a I',
where I'" is not computed using the whole processed
data F', and the user accepts this proof. We denote the
probability of such cheating behavior by Pr[Cheat] and
defined below:

KeyGen(\) — K A(g;, T, 8:)
Outsource(F; K) — F' outputs

Pr Audit(K) — g; : (g5, T) )
Prove(g;, ') — I; and the user
Verify(q;,I'i; K) — §; accepts it

si=1,2,...,poly(}\)
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The left hand side denotes the capability of the malicious
cloud and the right denotes the cheating behavior. The
probability is taken over the random choices of the key gen-
eration algorithm and those of the malicious cloud.

Second, we need to understand the security intuition. If a
cloud storage system is secure, then the user can confirm
itself that the data on the cloud indeed remains intact and
the user can retrieve its data. One candidate security intui-
tion is that the probability of a cheating behavior Pr[Cheat]
is small. However, this is not sufficient and not directly
related to whether the data remains intact. It is better if the
user can extract its data from the audit queries and proof
results. Denote the user by ¢/ and the probability of extract-
ing the original data by Pr[Extract]. The probability
Pr[Extract] is computed as:

KeyGen()\) — K Z/l(ql, I‘i, 81)
Outsource(F; K) — F': outputs F*
Audit(K) — ¢ and

Pr Prove(q;, F') — I, F*=F @

i =1,2,...,poly(\)

The left hand side denotes the interactions of the user with
the cloud. It is a kind of knowledge for the user. The user
can issue as many queries as it wants because it owns the
data. However, we require the total number of queries to be
bounded by a polynomial poly(\) because it is more practi-
cal and the user only has bounded size data F. Even if a
cloud can cheat, the protocol is still secure if the user can
extract its whole data with a high probability. Thus, we
require Pr[Extract] > Pr[Cheat] — negl(\) where negl()) is a
negligible function of A\. A function of A is negligible if it is
smaller than any inverse polynomial m asymptotically.

A good example for negl() is 55. The security intuition here
is that if a malicious cloud can cheat with probability
Pr[Cheat], a user can extract its data with a probability at
least roughly the same as Pr[Cheat].

Summarizing the above discussion, we define the secu-
rity of a secure cloud storage system as follows.

Definition 1. A secure cloud storage protocol SCS = (KeyGen,
Outsource, Audit, Prove, Verify) is secure if Pr[Extract] >
Pr[Cheat] — negl(\) where Pr[Extract] and Pr[Cheat| are
defined in Eqs. (2) and (1 ), respectively.

The above definition allows more protocol to be classi-
fied as secure. A stronger definition could require Pr[Cheat]
being negligible and Pr[Extract] being as perfect as approxi-
mately 1. All protocols in this paper can achieve this stron-
ger definition.

4 SEcCURE NETWORK CODING

4.1 System Model

Fig. 2 shows a typical system that employs the network cod-
ing technique. There are three types of entities: sender, router,
and receiver. A sender wants to broadcast some data to a
group of receivers. The sender divides the data into packets
and sends a linear combination of the packets via the net-
work. A router in the network also sends a linear combina-
tion of the received data packets to its next hops. When a
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Fig. 2. A secure network coding system.

receiver obtains sufficient encoded data packets, it can
decode them to recover the original data by solving a system
of linear equations. To prevent a malicious router from modi-
fying a packet, the sender attaches some authentication infor-
mation with each data packet. When a router receives a series
of packets, the router first checks their correctness, then com-
bines the received correct packets, and finally sends out the
combined packet together with the combined authentication
information. The combined authentication information is
computed according to the details of a specific protocol.

4.2 Protocol Syntax and Security Definition
We first introduce some notations. Let /' be the data to be
sent which is divided into m packets v; where i=1,
2,...,m. Each data packet is a vector over some finite field
Fy, ie, v; €F} where n is the length of the packet. Since
data packets are linearly combined during the transmission,
the coefficients also need to be attached with the packets.
Thus, each v; is attached with a unit vector e; € IE‘;” where
only the ith entry of e; is 1 and the other entries are all 0.
Denote the enhanced packet by x; = [v; ;] € F,™™. When a
router linearly combines a collection of packets, it also
updates the coefficient vector in the output packet. For
example, let X; = [zj1,...,Zjn, ¢j1, - - -, Cjm| be a packet output
by a router; then [zj1, ..., 2] = Y15 ¢k - Vi

Abstracting the model in Fig. 2, a secure network coding
(SNC) protocol contains four efficient algorithms
SNC = (KeyGen, Auth, Combine, Verify) as follows:

e KeyGen(\) — (SK, PK): On input a security param-
eter ), the sender runs this algorithm to generate a
secret key SK and a public key PK to enable packet
authentication.

e Auth(x;; SK) — (x;,1;): On input a packet x; € F;*"™
to be sent out in the network, the sender computes
an authentication information ¢; and then sends out
(Xi7 t,)

____ o)) = (Wot): On
receiving a group of packets u; € Fj*"™ and their
authentication information ¢;’s, a router runs this
algorithm to generate a combined packet w € F,*™
with coefficients {cj,...,¢} and the combined
authentication information ¢.

e Verify(w,t) — & On input a packet w € F;™"" ant its
authentication information ¢, a receiver or a router
runs this algorithm to check whether a packet is
modified maliciously. If the packet is correct, it out-
puts 8 = 1, else outputs § = 0.
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Defining security requires understanding the capability
of a malicious router, which allows it to observe a lot of
packets and their authentication information. A secure net-
work coding protocol should prevent a malicious router
from modifying a packet illegally. If a router can find a forg-
ery packet/authentication pair (u* = [uj1,..., U, ¢, ..,
cjm), t*) such that [u;i, ..., uj) # > ey cji - Vi and the Verify
algorithm accepts this pair, the protocol is insecure. Let A
be a malicious router and Adv[\] be the probability of find-
ing a forgery packet/authentication pair. Adv[A] can be
defined as:

[KeyGen()\) — (SK, PK) ]
AUth(Xi; SK) d (Xi7 ti) .A(Wj7 tj, 3/)
1=1,2,...,m outputs

Pr | Combine({ul’,;},_, .: (u*, %)
{7 ) = (wjty) and Verify
Verify(w;,t;) — §; accepts it

|j=1,2,...,poly(A) |

The left hand side shows the information (w;, ¢;,8;).A could
get in the network and the right hand side denotes the mali-
cious behavior of a router A. The security of a secure net-
work coding protocol is defined as follows:

Definition 2. A secure network coding protocol is said to be
secure if Adv[)\] is negligible.

There are many protocols (e.g., [13], [16], [21]) in the liter-
ature that employ the same semantics in the form
SNC = (KeyGen, Auth, Combine, Verify). So we only focus
on the high-level specification of a secure network coding
protocol in the following discussion.

5 OUR GENERIC CONSTRUCTION

Our goal is to construct a secure cloud storage protocol
SCS = (KeyGen, Outsource, Audit, Prove, Verify) given a
well-designed secure network coding protocol SNC =
(KeyGen, Auth, Combine, Verify).

The basic idea lying behind the generic construction is
very intuitive. We can treat the user as a sender who wants
to send the data to some receivers; we also treat the user as
a data receiver in the network; the cloud is treated as a
router in the network. When the user outsources the data, it
first divides the data into packets which can be considered
as a vector over some finite fields. Then, the user authenti-
cates the data packets by attaching some authentication
information. The authenticated data is outsourced to the
cloud. When the user sends an audit query to the cloud, we
treat the cloud as a router that receives some data packets in
the network and outputs a linearly encoded packet. The
indices of the data packets and the coefficients of the encod-
ing are sent by the user as an audit query. The encoded
packet and its authentication information is then sent back
to the user as a proof. In this case, the user behaves like a
data receiver. By checking whether the returned data packet
is valid, the user can judge whether the cloud keeps the out-
sourced data undamaged.

A naive construction. To implement the above idea, we
divide the data F' into packets v; € ) which is also attached
with a coefficient vector e;. Then, we take the data F as a
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collection of packets x; = [v;e;] € IF;*””. To outsource the

data, the user generates the authentication information
using SNC.Auth and then outsources the processed data

cloud to output a combined data packet and its authentica-
tion information. The user sends a collection of indices and
coefficients {4, ¢;},_; ; where [ is the number of packets a
router receives. For efficiency, we may set I as a constant,
which does not depend on m. The cloud returns the
combined data packet (w,¢) which is output by

..... ...,¢}) where u; = x;;. To
verify if the cloud cheats, the user can check the authentica-
tor ¢ of w using SNC.Verify(w, t).

5.1 An Optimized Construction
We observe that the cloud does not need to store the coeffi-
cient vectors as in the network coding case. The user knows
the coefficients because they are chosen by itself. Thus, con-
siderable storage cost can be saved.

We now summarize our generic secure cloud storage
protocol  SCS = (KeyGen, Outsource, Audit, Prove, Verify)
as follows, which is also shown pictorially in Fig. 3.

e KeyGen(\) — K: The user determines the finite field
F, where the network coding works over. The user
also determines the packet size n and the total num-
ber of packets m. Then the user runs SNC.KeyGen
(A) — (SK, PK). The key is K = (SK, PK).

e Outsource(F; K) — F": On input the data F' to be
outsourced, the user takes F' as a collection of vectors
{vi}i.1__ in Fj. Take each v; as a codeword and
then attach it with a coefficient vector e; to get
x; = [v; ] € Fg*m. The wuser runs SNC.Auth(x;
SK) — (x;,t;) to get the authentication information.
The user then outsources the processed data [’ =
{vi,t;},_,__,, together with the public key PK to the
cloud. Only the v,’s are outsourced but not the x;’s.

e Audit(K) — ¢: The user runs this algorithm to gener-
ate a collection of uniformly random numbers
sends the query ¢ = {i;,¢;},_; ; to the cloud. To
achieve a good security level, the user sends multiple
independent audit queries during one audit process.

e Prove(q, F') = I': On receiving an audit query
q={4j,¢;j};_1_, where [ is the length of the query,
the cloud augments v;; with the unit coefficient vec-
tor e;; to geta codeword Xi; for all j. The cloud runs
SNC.Combine({ui, ti}i:l ..... I {01, e Cl}) — (W7 t)
where u; = x;;. The cloud extracts the first n entries
of w as a vector y € F). The cloud sends back (y, )
as a proof of the corresponding query. The equation
y = 23:1 ¢j - vi; holds.

o Verify(¢,I;K) — 68 On input an audit query
q={ij,¢j};—1_ the cloud’s proof I' = (y, t), the user

constructs a vector w € IFZ*'” such that the first n
entries of w are the same as y, the (n + ¢;)-entry is ¢;,
and all other entries are 0. The user runs
SNC.Verify(w,t) — § to get an answer 8. If § = 1, the
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USER CLOUD
SNC.KeyGen()\) — (SK, PK)
KeyGen()\) — (SK, PK) (SK, PK) PK
PK

Outsource(F; K) — F’ ] F' ={vi,t;i}i=1,..m
SNC.AUth(Xi; SK) — (Xi7 ti)
F, = (V,L'7 tl)
Audit(K) — ¢ q={ij,¢cj}j=1,..1 q
SNC.Combine({u;, t; }i=1,...1,{c1,...,c}) = (w,1)
r Extract the first n entries of w as y Prove(q, F') = T
['=(y,t)

Verify(¢,T; K) — ¢

Invoke SNC.Verify(w,t) — §

Fig. 3. A generic secure cloud storage protocol based on any secure network coding protocol.

outsourced data remains intact and output 1; else,
the outsourced data is damaged and output 0.

5.2 Security Analysis
We show our generic construction is secure under Defini-
tion 1 if the protocol is secure with respect to Definition 2.
We first present a lemma.

Proposition 3. Let r > 0 be an (arbitrary but fixed) integer,
a,...,a, €F, and a; #0. Pry . [> a2 =0] :%
where x; is uniformly and independently chosen from F,,.

Proof. We prove by using conditional probability. Fix the
value of zy, ..., z,. Let cs,. .., ¢, € F) be constants. Then,

1 ! 1
=Pr|z; =— —Zai-ci |z =coy..yxr =¢ | =—.
“ ar\ = p

Now it holds that

,
Pr a; -x; =0

.
Pr{ ai-xi—0|w2—02,...,:cr—cr}
ES

=1

Pro, alze=coy... 2 = ¢ %

9,....crEFp |:PriF1«,~<»~,-Tr [Z::l a;-xi =0 | Ty = C25. ..

,,,,,

wr:ch

=Zx Pr [z =cy,..., 2 = ¢]
b 02,.;,5]1;[)1 ..... Zp
! 1

—-xl==.
p P

The detailed security analysis of the generic construction
is accomplished in two parts. In Part I, we show a malicious
cloud cannot cheat with a high probability, i.e., Pr[Cheat] as
defined in Eq. (1) is small. Part I is fairly easy. Part Il shows
the original data can be extracted by the user with a high
probability, and further Pr[Extract] > Pr[Cheat] — negl(\).
Part II deals with some combinatorial and probabilistic
argument on the rank of certain random matrix. We will
use Proposition 3.

Theorem 4. The generic construction of SCS is secure if the
underlying construction component SNC is secure.

Proof. Part I. Pr[CHEAT] in Eq. (1) is negligible, which fol-
lows directly from the security of SNC. Otherwise, we
can easily transform the malicious cloud to break the
security of the secure network coding protocol.

Part II. We construct an algorithm that a user can
employ to extract the outsourced data. Denote the user’s
data by F={v;}, , , where v; €F}. Algorithm 1
describes the detailed data extraction process.

The correctness of Algorithm Extract(-) is straight-
forward. Now we show this algorithm is efficient (runs
in polynomial time). Suppose Extract(-) runs & times
before halting. The task is to bound k. (y,t) is correct
with probability 1 — Pr[CHEAT] and Pr[CHEAT] is neg-
ligible. So, with probability 1 — kPr[CHEAT], C,; is a
special matrix of dimension m x k. Besides, all col-
umns of C; are random vectors with only ! non-zero
elements, and C| is a k x m matrix. We want to com-
pute Prc,[rank(C]) =m] as in this case [vi,..., V]
C =Y has an unique solution and the data can be
extracted. We have
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fc’r[mnk(ClT) =m|=1- fc’r[rank:(Cf) < m]
1 1
=1-Pr[3x#0st. Cl'x =0
1

>1- ch’lr[ClTx =0
x#0

Now we bound Pr[CIx = 0] for an arbitrary but fixed
x # 0. Without loss of generality, we focus on the first
entry of the vector C] x. Let E; be the event that the first
entry is 0. Then, Pr[CI'x = 0] = (Pr[E}])". Let E; be the
event that the non-zero positions of the first row of C|
have no collision with the non-zero positions of x. Sup-
pose x has ¢ > 1 non-zero positions. Then

PI‘[EQ] =

m —1

Let E3 be the event that the non-zero positions of the first
row of C! has some collisions with all the non-zero posi-
tions of x. Then, Pr[E3] = 1 — Pr[Ej]. According to Propo-
sition 3, Pr[E) | 3] = 11—) Also we have Pr[F; | E»] = 1 and
1+ 2 < ¢" for any . Then,

PI‘[El] = PI‘[EQ} PI‘[EI | Eg] + PI‘[E3] PI‘[E1 | Eg]
< Pr[Ey] + (1 - Pr[Eg])%
1

=+ (1) pem

g1—(1—1>i
p)m

and thus Prc, [CIx=10] < o~
Therefore, we have

Prlrank(CTy =m| > 1 — Pr[Cfx =0
Brfrank(CT) = m] > 1= S Pricx =
>1-— pm . 67(17%)%

-1 e—(l—%)%erlnp.

When k= O(m?), Prc,[rank(C])=m] is approxi-
mately equal to 1, which means that we can recover the
user’s data successfully. The running time of Extract(-) is
O(m?); it is an efficient algorithm. Thus,

Pr[EXTRACT] = (1 — ¢ 9™) . (1 — kPr[CHEAT])
=1 —negl(\)
> Pr[CHEAT].

Combining Parts I and II, the proof is completed. O
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We think our technique to extract data and its proof is
more intuitive and simpler than the existing one [8].

Algorithm 1. Extract(-) - Restore the Outsourced Data

1: The user initializes matrices C, C,;, and Y with m rows, and
indicator variables count = 1, count’ = 1.
2: Repeat

3: The user sends a uniformly random audit query
q = {ij,c;};_; _; to the cloud.
4: The cloud answers with a proof (y, ¢).
5: If (y, t) passes user’s verification Then
6: Let u be a vector s.t. the i;-entry is set to ¢; and all
other entries are set to 0.
7 Set the count’-column vector of C; to u.
8: If u is linearly independent with all the count — 1
columns of C Then
9: Set the count-column vector of C to u.
10: Set the count-column vector of Y to 'y
11: Increment count and count’ by 1.
12: End If
13: End If

14: Until The rank of C reaches m.

15: Solve the linear equation [vi,..
F= {V,‘}

16: Return F'

V] C=Y to recover

i=1,...m"

5.3 Further Discussion

Design choices. First, when network coding is applied in
practice, the data could be divided into multiple generations
and each generation is transmitted using the network cod-
ing technique. However, the generic construction of the
secure cloud storage protocol decides to treat the whole
data as only one generation. This is because that we want to
audit the whole data. If multiple generations are adopted,
we need to audit each generation to ensure that the user’s
data remain intact. Second, in network coding enabled sys-
tems, the packet size is much larger than the total number
of packets, i.e., n > m. This helps reducing the additional
cost to transmit the coefficients in the network. However, in
the secure cloud storage protocol, it is required that n < m
since we want the communication between the user and the
cloud as little as possible. Let [ be the length of an audit
query and k be the total number of audit queries during one
audit process. Then, the protocol cannot find the cheating
behavior if the data is changed with probability at most

(1- #)k’, which is exponentially small with respect to k. In
practice, we can set the length of the audit query [ as a con-
stant, e.g., 50 or 100. Then, the total number of audit queries
can be set accordingly.

Other research issues. It is also interesting to investigate if a
secure network coding protocol can be constructed in gen-
eral from any secure cloud storage protocol. Yet, there is a
mismatch. For example, we can use a keyed cryptographic
hash function to compute multiple digests of the outsourced
data under different keys; in the audit phase, we can ask the
cloud to return a digest under a secret key. This protocol
cannot be easily adopted to be a secure network coding pro-
tocol. The intrinsic reason is that a secure network coding
protocol requires to support authentication of linearly com-
bined packets while it may not be the case for secure cloud
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storage. However, there do exist some secure cloud storage
protocols that can be converted to secure network coding
protocols [8].

6 CONCRETE INSTANTIATIONS

6.1 Our First Instantiation
Agrawal and Boneh [14] proposed a secure network coding
protocol SNC reviewed as follows.

e KeyGen()\) — (SK, PK): On input a security param-
eter )\, the sender runs this algorithm to generate a
key K, for a pseudorandom generator G with range
F,*™, and a key K, for a pseudorandom function F’
with range F,. The private key is (K, K,) and the
public key is null. The sender also shares the private
key with the receiver.

o Auth(x;; SK) — (x;,t;): On input the ith packet
x; =[v; ] € IE‘Z*"” to be sent out in the network, the
sender computes an authentication information as
follows. First, compute s = G(K;) € IF'Z*'” and b= F
(i; K2). Then the authentication information is
t; = (x;,8) + band (x;,t;) is sent out.

_____ b)) — (wyt): On
receiving a group of packets u; € F,*™ and their
authentication information ¢;’s, a router runs this
algorithm to generate a combined packet w = Zé‘:l

cju; € F)*™. A router also computes the combined
authentication information ¢ = Z;Zl cjtj. The router
sends out (w, ).

e Verify(w,t) — §: On input a packet w € F, """ and its
authentication information ¢, the receiver first com-
putes s=G(Ki)€eF,™ and b= W,
F(j; K5). If (w,s) 4+ b =1, the packet is a correct one
and it outputs § = 1, else outputs § = 0.

Now we transform this into a secure cloud storage proto-

col according to our generic construction:

e KeyGen(\) — K: Similar to SNC.KeyGen, the user
generates K for a pseudorandom generator G and a
key K, for a pseudorandom function F'. The secret
key is (KI, Kg)

e Outsource(F; K) — F': On input the data F' to be
outsourced, the user divides I into a collection of
vectors {v; = [vi1,...,Vin|};y_,, in Fy. For the ith
data block v;, compute its authentication information
as follows. First, compute x; = [v; ¢;] € ]FZ*’”’ where
the ith entry of e; is 1 and the other entries are all
zero, s = G(K;) € F;*" and b = F(i; Ky). Then the
user generates the authentication information as
t; = (x;,8) + b. Finally, the user outsources the proc-
essed data I = {v;,t;},_, _,, tothe cloud.

e Audit(K) — ¢: The user runs this algorithm to gener-
ate a collection of numbers {i;,c;},_, ;, where 1 <

i;<m and c¢; € F,. The user sends the query
q={ij,¢j};_ . to the cloud.

e Prove(q, F') = I': On receiving an audit query
q={ij,¢;j};_1_, where [ is the length of the query,

the cloud first finds the authentication information

1943

t;; for each queried data blocks. The cloud then
computes v:z‘ljz1 ¢;vi; and t:Z;:l ¢;si;. The
cloud sends back I'=(v,t) as a proof of the
corresponding query.

e Verify(¢,I'; K) — & On input an audit query ¢=
{ij, ¢} -1 1 the cloud’s proof I = (v, ?), the user con-

structs a vector w € F;™™ such that the first n entries
of w are the same as v, the (n + i;)-entry is ¢;, and all
other entries are 0. The user first computes s = G
(K1) € Fp™™ and b= 37" Wy, - F(i; K) and then
checks whether (w,s) + b = t. If they are equal, out-
put s = 1; else, the data is damaged and output § = 0.

6.2 Instantiation in the Standard Model

Now we provide another instantiation based on a secure
network coding protocol of Catalano et al. [21]. Compared
with previous protocols, this protocol is the first publicly
verifiable secure cloud storage protocol which is secure in
the standard model. Since this protocol is more prominent,
we also evaluate its theoretical/experimental performance
and compare it with some recent secure cloud storage
protocols, to be detailed in Section 8.

6.2.1 Protocol Detail

We specify the new protocol by filling all the semantics of a
secure cloud storage protocol SCS = (KeyGen, Outsource,
Audit, Prove, Verify) as follows:

e KeyGen(\) — K: The user generates two random
primes p, ¢ and sets N = pq. The user then generates
a prime e with length larger than the message length
by 1 bit. The network coding is done over the finite
field Z.. Then the user determines the packet size n
and the total number of packets m. The user also
generates g, gi,...,8n,h1,...,hy, which are coprime
with N. The secret key is SK = (p, ¢) and the public
key is PK = (N,e,9,91,---:9n, ;... hy). The key
pair is denoted by K = (SK, PK).

e Outsource(F; K) — F': On input the data F' to be
outsourced, the user divides I’ into a collection of
vectors {v; = [vj1, ..., ]}y, in Z]. For each v;,
compute its authentication information as follows.
First, generate a random integer s € Z. uniformly.
Find an z € Zy such that z°=g*- (H;’Zlgy) < h;
modN. Then the authentication information for v; is
t; = (s,x). The user then outsources the processed

,,,,,

1<i;<m and c¢; € Z.. The user sends the query
q={4j,¢},,_; to the cloud.

e Prove(q, F') = I': On receiving an audit query
q = {4j,¢;},_,_, wherelis the length of the query, the
cloud first finds the authentication information
(si;» ;) for each queried data block. The cloud then

computes s = Zi: ¢jsimode and s = (Ziz

s)/e. The cloud augments v;; with the unit coefficient
vector e;; to get a codeword u;; for all j. The cloud

CjSiJ —



1944 IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016
TABLE 1
Performance Comparison of the New Protocol with Recent Protocols: ‘ROM’ Denotes the
Random Oracle Model; ‘crypto’ Denotes Cryptographic Operations
User Cloud

Protocols Computation ~ Storage Communication Computation Storage =~ Communication Security models
This Work O(m-n-crypto)  O(}N) o(l) O(l - n - crypto) O(|F| + \Ti\) O(n+X) Standard
Yang and Jia [10] O(m-n-crypto)  O()\) o(l) O(l-n - crypto) O(|F| + %) O(n+\) ROM
Xuand Chang [9] O(m -n-crypto)  O(N) o(l) O(l-n-crypto+ ) O(|F| + \TZ\) O(1+ ) Standard
Wang et al. [5] O(|F| - crypto) O(\) o(l) O(l-n - crypto) O(2-|F)) O(1+ ) ROM

l

computes w = Zézl cjujmodeand w' = (37, cju;—
w)/e. Then, the cloud computes

T
Hj:l‘ri;

Tr = w W .
s n iTym n+j
g Hj:lgj Hj:lhj

The cloud extracts the first n entries of w as a vector
y € Z} and the authentication information of it is
t = (s,z). The cloud sends back I' = (y, t) as a proof
for the corresponding query.

e Verify(¢,I';K) — & On input an audit query
q={ij,¢j};_1_ the cloud’s proof I = (y, t), the user
constructs a vector w € F;™™ such that the first n
entries of w are the same as y, the (n + ¢;)-entry is ¢;,
and all other entries are 0. The user checks whether
¢ =g - (H;l:lg‘lﬂj) . (H;’;lh;’””)mod N. If they are
equal, the outsourced data remains intact and output
8 = 1; else, the data is damaged and output § = 0.

6.2.2 Data Dynamics

For support dynamic data, two approaches can be
employed: one is based on the hash tree authentication [5];
the other is based on the hash index table [28]. Since these
techniques are standard, we do not elaborate it here.
Instead, we give an example here for choosing parameters
of the new protocol to better understand it. In practice,
we can set e = 257, n = 1,024 and p, ¢ as 1,024-bit primes.
Then, a data block is composed of 1,024 sub-blocks, each
with 8-bit data; thus the data block is 1 KB. Then, the total
||

number of blocks is m = 5

6.2.3 Analysis

Security of this protocol follows from Theorem 4 and the
security of the underlying secure network coding proto-
col [21]. The performance of the new protocol is summa-
rized in Table 1. We also compare the performance of the
new protocol with some recent secure cloud storage proto-
cols [5], [9], [10]. We focus on asymptotic performance of
these protocols with respect to data size |F'|, block size |n|,
total number of blocks |m/, length of the audit query [, and
security parameter \. Since these protocols are very differ-
ent in the construction details, we omit many technical
details and only focus on the key influential factors.
Compared with the protocol of Yang and Jia [10], the
main difference lies in the security foundation. Our protocol
is secure in the standard model while theirs is secure in the

random oracle model. The protocol proposed by Xu and
Chang [9] is better in the communication cost; but the com-
putation cost for the cloud is higher. The protocol proposed
by Wang et al. [5] performs better in the communication
cost; but it takes more storage cost, and is only secure in the
random oracle model. To conclude, these protocols have
different strengths and weaknesses, and they fit with differ-
ent applications.

7 EXTENSIONS

Now we enhance our generic construction to support addi-
tional features.

7.1 Anonymity via Security Mediator
7.1.1  Overview

It is more realistic to consider a multi users environment,
e.g., in an enterprise setting. However, which user is access-
ing the cloud may have implication. Recently, Wang et al.
proposed to achieve user anonymity through a security
mediator [29]. The novelty of such a protocol is that the
identity of a user can be hidden from the cloud, thus pre-
serving user anonymity.

The system setup is shown in Fig. 4. A group of users in
an organization outsource their data to the cloud through a
gateway called security-mediator. The security-mediator
serves as a separate entity that can help generating authenti-
cation information of the data for the users. However, the
users desire to keep their data secret from the security-
mediator. When one user wants to outsource some data to
the cloud, the user first blinds the data in some secret way,
and then sends the blinded data to the security-mediator.
On receiving the blinded data, the security-mediator
authenticates the blinded data and sends the authentication

data authenticate

outsource

audit

prove

security mediator

Fig. 4. Security-mediated anonymous cloud storage.
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back, from which the data user recovers the real authentica-
tion information. Since the authentication information of
the outsourced data for every user is generated with the
help of the same security-mediator, the cloud cannot differ-
entiate between different users from the outsourced data. In
this way, the user anonymity is preserved.

Later, the user sends the data and its authentication
information to the cloud via an anonymous channel. In case
authentication is needed, this can be done by existing mech-
anism (e.g., [30]). To ensure the integrity of the outsourced
data, one user sends audit queries to the cloud. On receiving
an audit query, the cloud answers the query according to
the protocol with a proof. Finally, the data user verifies the
result returned from the cloud.

We can extend our generic construction using the idea of
Wang et al. [29] into a security-mediated secure cloud stor-
age protocol (SM-SCS). Again, we note that the only exist-
ing proposal only has a security proof in the random oracle
model [29]. We thus obtain an SM-SCS in the standard
model if the underlying secure network coding protocol
does not need it. It is worth noting that the our construction
shows a generic way to design anonymous secure cloud
storage protocols for the first time.

7.1.2 Details of Construction

Syntactically, a security-mediated secure cloud storage pro-
tocol (SM-SCS) contains seven efficient algorithms
(KeyGen, Blind, Unblind, Outsource, Audit, Prove, Verify).

Now we show how to construct a generic security-
mediated secure cloud storage protocol SM-SCS =
(KeyGen, Blind, Unblind, Outsource, Audit, Prove, Verify)
given any secure network coding protocol SNC =
(KeyGen, Auth, Combine, Verify). The key is to blind the
data which is later authenticated by the security-mediator
via a randomization technique. Details are as follows.

e KeyGen()\) — K: The security-mediator runs this
algorithm. SCS.KeyGen employs SNC.KeyGen to
generate the key. The security-mediator keeps the
secret key only known by itself and shares the public
key with both the users and cloud.

e Blind(w) — {w;},_, ;; To get the authentication
information for a data block w in IF;*'”, the user gen-

erates [ random vectors w; such that w = 22:1 CW;
for some secret coefficients ¢;’s. The user asks the
security-mediator to return the authentication infor-
mation t; for w; using SNC.Auth.

e Unblind({w,,t;,¢;}) — t: The authentication informa-
tion has some linear homomorphism as shown in
SCS.Prove which is used by cloud to compute the
authentication of some linearly combined data
blocks. The user thus can also use this linear homo-
morphism to compute the authentication informa-
tion for w in the same way as SCS.Prove. Thus, the
authentication information for the unmasked data
block w = 22:1 ¢;W; can be obtained.

e Outsource(F; K) — F': The user first blinds the data
to be outsourced as in the SM-SCS.BIlind algorithm
and then obtains the real authentication of the data
as in SM-SCS.Unblind. Later, the user sends the data
and its authentication information to the cloud.
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Fig. 5. Third-party auditable secure cloud storage.

e Audit(K) — ¢: The user runs this algorithm and the
detailed process is the same as SCS.Audit.

e Prove(q, F') — I': The cloud runs this algorithm and
the detailed process is the same as SCS.Prove.

o Verify(¢,I'; K) — &: The user runs this algorithm as
same as SCS.Verify, i.e. the user only needs to check
if the authentication of the returned result is correct.

7.2 Third-Party Public Auditing
7.2.1  Overview

For a complete outsourcing solution, it is desirable to have the
auditing also outsourced to a third-party. This enhancement
can reduce the burden of the user by shifting the auditing
responsibility to the third-party public auditor. This para-
digm is reasonable since the third-party auditor could have
more experience and knowledge than the user, and thus the
auditing is more convincing and neutral to both parties.

However, the fact that the auditing does not require the
original data does not mean that the auditing does not
leak the original data. This problem is identified by
Wang et al. [5]. Their solution is a zero-knowledge secure
cloud storage protocol.

The setup is shown in Fig. 5. The data user generates the
key and then outsources the data to the cloud. Any third-
party auditor can audit the data by only using the public
key. To check if the outsourced data remains intact in the
cloud, the auditor sends a series of audit queries to the
cloud, and the cloud responds to the queries by returning
the proofs. The auditor then can check the proof to see if the
data is still intact.

We show how to enhance the generic protocol to support
third-party auditing.

7.2.2 Details of Construction

Syntactically, a third-party audit able secure cloud storage
protocol (TP-SCS) contains five efficient algorithms
TP-SCS = (KeyGen, Outsource, Audit, Prove, Verify) which
is as same as the SCS protocol. However, the semantics
is improved to incorporate the third-party auditor, as dis-
cussed in the system setup. Now the third-party auditor
challenges the cloud to check whether the data remains
intact instead of the user. To design such an enhanced
protocol, the challenge is that the third-party auditor
should not understand the user’s data due to privacy con-
cerns, but at the same time the third-party auditor can



1946
TABLE 2
Wikipedia Data Set
Benchmark File Name! File Size
#1 *-oldimage.sql.gz 2.27 KB
#2 *-pages-articles-multistream-index. 1.45 MB
txt.bz2
#3 *-stub-meta-current.xml.gz 23.5 MB
#4 *-pages-meta-current.xml.bz2 121 MB
#5 *-pages-meta-history.xml.7z 432 MB
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TABLE 3
Additional Storage and Communication Cost: n Denotes the
Block Size and m Denotes the Total Number of Blocks

Benchmark n m Storage Communication
#1 1 KB 3 0.8 KB 376 B
#2 1KB 1,488 0.54 MB 376 B
#3 1 KB 24,089 8.68 MB 376 B
#4 1 MB 122 0.04 MB 376 B
#5 1 MB 433 0.16 MB 376 B

indeed verify the integrity of the user’s data which is out-
sourced to the cloud.

We now show how to enhance our generic protocol to
support third-party auditing. Only the algorithms SCS.
Outsource and SCS.Prove in our original protocol SCS =
(KeyGen, Outsource, Audit, Prove, Verify) need to be
enhanced. The key idea hiding the user’s data from the
third-party auditor is again to blind the data. Given any
secure network coding protocol SNC = (KeyGen, Auth,
Combine, Verify), we propose a third-party publicly audit-
able secure cloud storage protocol TP-SCS = (KeyGen,
Outsource, Audit, Prove, Verify) as follows:

o KeyGen(\) — K: Everything is the same as
SCS.KeyGen as in Section 5. Besides, the user shares
the public key with both the third-party auditor and
the cloud.

e Outsource(F;K) — F':  The wuser first runs
SCS.Outsource as in Section 5. Later, the user also
sends some random data blocks w; in ]F;*’" with
coefficients set to 0 together with their authentica-
tions using SNC.Auth.

e Audit(K) — ¢ The third-party auditor runs this algo-
rithm to generate a collection of uniformly random

The third-party auditor sends the query g¢=
{ij, ¢} ;1. to the cloud. To achieve a good security

level, the third-party auditor sends multiple inde-
pendent audit queries during one auditing process.
This process is the same as SCS.Audit.

e Prove(q, F') — I': When receiving a challenge query
from the third-party auditor, the cloud computes
the result and proof I' in the same way as in
SCS.Prove to obtain (y,t). Then the cloud uses the
w;’s to randomize I' by adding y with some ran-
dom linear combination of w;’s. Since the authenti-
cation of y and w;’s are known to the cloud, this
randomization step is quite easy using the linear
homomorphism property of the authentication
algorithm as in the original SCS.Prove. The ran-
domization can mask the data and thus the third-
party auditor cannot get non-trivial knowledge
about the user’s data from cloud’s response. The
returned proof still holds in this case and thus the
third-party auditor can indeed check the integrity
of the user’s data.

o Verify(¢,I'; K) — &: The third-party auditor runs this
algorithm as same as SCS.Verify, i.e. the third-party
auditor only needs to check whether the authentica-
tion of the returned result is correct.

With the enhanced Outsource and Prove algorithms,
we have constructed the first generic third-party public
auditing protocol.

8 PERFORMANCE EVALUATION

8.1 Evaluation Methodology

The setup of the evaluation experiments are as follows.
We built a prototype of our newly constructed, the first
publicly verifiable secure cloud storage protocol in
Section 6.2 using Java 7.0. The prototype simulates a
cloud and a client. For performance indicators, we con-
sider storage cost, communication cost, and computation
cost for both the user and the cloud. The experiments are
done on a PC with an Intel i3 3.1G CPU and 4 GB mem-
ory. We run the protocol multiple times and average the
performance indicators to obtain stable results.

To make all experimental results reproducible, we use
the snapshots of the Wikipedia database as our public test
data sets [31]. These data are generated by the Wikimedia
dump service and could be downloaded online. Besides, we
open-source our prototype [32].

8.2 Experimental Results

The data set information is shown in Table 2. To authenti-
cate the outsourced data, we choose p and ¢ to be a 1,024-bit
large prime in the protocol.

Storage cost. For the user, it only needs to store the secret
key; thus, the storage cost is two long integers p and ¢. For
the cloud, it needs to store both the data and the authentica-
tion information. The additional storage cost of our protocol
is for the authentication information. The experimental
result is shown in Table 3. We can see that the storage cost
linearly depends on the total number of blocks m. Thus, it is
reasonable that we should increase the block size n to
increase the data size. The storage cost can be very small if
the block size is well chosen. For example, the additional
storage cost of Test 5 is only 0.04 percent compared with the
original data size. However, block size n cannot be too large
in practice since this can result in high communication cost,
which depends mainly on the block size. Thus, we need to
have a trade-off between storage and communication.

Communication cost. For the user, the communication cost
depends on the length of the audit query, which is a con-
stant and thus trivial. For the cloud, the communication cost
consists of two parts: one is the linear combination of the
queried data blocks and the other is the authentication
information. The former is the same as the block size; the
latter depends on the size of authentication information.
The experimental result is also shown in Table 3, which
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TABLE 4
Computation Cost: The Time Cost Is Measured in Milliseconds
Benchmark n m Outsource  Audit Prove  Verify
#1 1KB 3 832 0.03 828 726
#2 1KB 1488  1,119599  0.04 927 732
#3 1KB 24,089 18,409,614  2.00 1,009 768
#4 1MB 122 87,137,897 038 970,688 738411
#5 1MB 433 325,039,357 420 976,570 741,242

only focuses on the additional authentication cost since the
block size is fixed. From Table 3, the additional communica-
tion cost is small, which is due to the short size of the
aggregated authentication information. The size of the
authentication information equals the length of two long
integers, which only depends on the security level of the
protocol, but not the file size.

Computation cost. For the user and the cloud, the compu-
tation cost is composed of four parts, namely, the time for
outsourcing, auditing, proving, and verifying the data. The
experimental result is shown in Table 4. Outsourcing
the data takes much longer time than other operations. The
time cost grows higher when the data size becomes larger.
In theory, it depends on the data size, the block size, and the
total number of blocks. The maximal time is 90.3 hours for
Data Set 5 of 432 MB. This is very slow; however, this cost is
one-time and it can be amortized in subsequent audit
queries. To audit the data, it is pretty fast. It is simply the
time to generate the random indices and their linear coeffi-
cients for the audit query. The time for proving data posses-
sion is much shorter than that of outsourcing. It depends on
the block size, the length of the audit query, and the time to
generate the aggregated authentication information. The
maximal time is roughly 16 minutes for Test 5, which is as
expected. For verifying a proof, it takes shorter time than
the proving process. The maximal time cost is about
12 minutes for Test 5. It can also be found that the verifica-
tion time is tightly related to the block size and the total
number of blocks.

The experiments have shown that the protocol is usable
in practice; but we remark that the efficiency could be fur-
ther optimized.

9 CONCLUSION

We reveal a relationship between secure cloud storage and
secure network coding for the first time. Based on the rela-
tionship, we propose a systematic way to construct a
generic secure cloud storage protocol based on any secure
network coding protocol. As a result, we obtain the first
publicly verifiable secure cloud storage protocol which is
secure without using the random oracle heuristic. Further,
we enhance our generic construction to support user ano-
nymity and third-party public auditing. We hope our open-
sourced prototype can make a step towards practical use of
secure cloud storage protocols. For future work, it is inter-
esting to design new and efficient secure cloud storage pro-
tocols based on our generic construction and existing/
future researches on secure network coding protocols. It is
also interesting to study the reverse direction, i.e., under
what conditions a secure network coding protocol can be
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constructed from a secure cloud storage protocol. This pos-
sibly requires the latter to have some additional properties.
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