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Privacy-Preserving Data Aggregation
in Mobile Phone Sensing

Yuan Zhang, Qingjun Chen, and Sheng Zhong

Abstract— Mobile phone sensing provides a promising
paradigm for collecting sensing data and has been receiving
increasing attention in recent years. Different from most existing
works, which protect participants’ privacy by hiding the content
of their data and allow the aggregator to compute some simple
aggregation functions, we propose a new approach to protect
participants’ privacy by delinking data from its sources. This
approach allows the aggregator to get the exact distribution of
the data aggregation and, therefore, enables the aggregator to
efficiently compute arbitrary/complicated aggregation functions.
In particular, we first present an efficient protocol that allows
an untrusted data aggregator to periodically collect sensed data
from a group of mobile phone users without knowing which data
belong to which user. Assume there are n users in the group.
Our protocol achieves n-source anonymity in the sense that the
aggregator only learns that the source of a piece of data is one of
the n users. Then, we consider a practical scenario where users
may have different source anonymity requirements and provide
a solution based on dividing users into groups. This solution
optimizes the efficiency of data aggregation and meets all users’
requirements at the same time.

Index Terms—Privacy, data aggregation, cloud computing,
security, mobile sensing.

I. INTRODUCTION

OBILE phone sensing provides a new paradigm for

people to efficiently perform sensing tasks. In a typical
mobile phone sensing application, a data aggregator recruits
a group of mobile phone users to perform sensing tasks.
With various kinds of sensors embedded in their mobile
phones, these users perform the sensing task and then send the
data back to the data aggregator through the communication
network. Due to the outstanding sensing ability of mobile
phones in recent years smartphones and the ubiquitousness
of mobile phone users, mobile phone sensing is gaining
increasing attention from both industry and academia. A num-
ber of mobile phone sensing based applications have been
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developed across areas such as healthcare [12], [34], transport-
ation [31], [42], environment monitoring [28], [32], etc.

In these applications, data collected by the aggregator often
contains users’ private information. For example, most appli-
cations for traffic or environment monitoring collect the user’s
physical location in addition to their direct POI (points of
interest) e.g. the traffic congestion level or the noise level; most
healthcare applications collect information relating to a users
health such as weight and blood pressure. Concerned about
their privacy, mobile phone users may refuse to participate
in the sensing especially when the aggregator is untrusted.
Thus, protecting participants’ privacy is extremely important
to mobile phone sensing applications.

Realizing the importance of privacy protection, researchers
began to investigate privacy issues in mobile phone sensing
and a few works [22], [23], [26], [36], [38], [39] on protecting
participants’ privacy have been carried out in recent years.
Take [22] for an example, an efficient secure protocol is
designed for an untrusted aggregator to compute the sum
of all participants’ time-series data. Before sending its data
to the aggregator, each mobile phone user encrypts it using
an additively homomorphic cipher. The encryption keeps
the content of a user’s data private from the aggregator
and other users. Different cryptographic schemes are used
in [36], [38], and [39] to implement the same summation func-
tionality of the aggregator. Based on the secure summation, a
few functions on the data aggregation other than the sum, such
as the average, the Max/Min etc. can also be computed without
knowing each user’s data.

We notice that all works above choose to protect users’
privacy by “hiding” their data’s contents. Protocols proposed
in these works are specifically designed to compute a certain
aggregation function without revealing each data’s value. If we
want to compute more than one different aggregation function,
we often need to apply one specific protocol for each function,
which is very inefficient. Furthermore, most aggregation func-
tions studied in these works are simple functions such as sum,
average, Max/Min etc. Non-linear functions such as variance,
z-test function, F-test function etc. are rarely studied.

Unlike these works, in this paper, we protect users’ privacy
by delinking data from its sources. In particular, we aim to
design protocols that allow the data aggregator to periodically
collect a random permutation of all users’ data without being
able to identify the source of any particular piece of data. This
approach allows the aggregator to get the exact distribution
of the data aggregation, and therefore enables the aggrega-
tor to efficiently perform complicated statistic analyses that
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are difficult to perform using protocols that hide the data’s
contents. In addition, letting the aggregator know the data’s
contents (rather than keeping it private) is necessary for some
mobile sensing applications. One possible example would be
the users’ location data in transportation sensing applications.
Users’ location data is often required to be made available in
order to enable accurate analysis results.

In practice, delinking data from its sources also provides
satisfactory privacy protection for participants in many mobile
sensing applications. For example, consider a mobile sens-
ing application that monitors the trend of an epidemic
(e.g. avian flu) in a city. The aggregator may want to collect
citizens’ body temperatures. Disguising every citizen’s body
temperature value protects citizens’ privacy, as does disguising
the connection of a citizen to their body temperature value.
Consider an application that guarantees the source of data is
hidden amongst all citizens in a city. If all citizens send their
body temperatures using this application to the aggregator, the
aggregator only knows a random permutation of all citizen’s
body temperatures. Although it can easily spot abnormal body
temperatures that indicate some citizens are likely infected, it
cannot know which particular citizens are infected, nor the
body temperature of a particular citizen. Such an application
protects all participants’ privacy well. Even an infected citizen
would not refuse to send its abnormal body temperature in
such an application.

Our paper consists mainly of two parts. In the first part, we
study how to delink the data from its sources in a general
mobile sensing application. Suppose there are n users and
one untrusted aggregator. We propose an anonymous data
aggregation protocol that allows the aggregator to collect all
users’ data. Our protocol achieves “n-source anonymity” in
the sense that the aggregator only learns that the source of any
particular piece of data is one of the n users. In the second part
of this paper, we consider the situation where n is very large
and different users may have different privacy requirements.
In order to improve the efficiency, we propose dividing
users into groups according to their privacy requirements and
allowing users in each group to execute the anonymous data
aggregation protocol together. We provide an optimal grouping
algorithm which finds an optimal grouping that meets all users’
privacy requirements and minimizes the total amount of data
received by the aggregator at the same time.

Our contribution can be summarized as:

« Proposing a new privacy-preserving approach for mobile
phone sensing data aggregation that can be applied to
arbitrary aggregation functions. Our approach does not
assume that this aggregator is trusted and does not require
data transmissions among sensor nodes.

« Presenting an anonymous data aggregation protocol that
allows the data aggregator to recieve a random permuta-
tion of all users’ data without knowing the source of any
particular piece of data.

« Formally proving the anonymous data aggregation proto-
col is n-source anonymous when there are n honest users
in the application.

« When the total number of users is large and users have
different minimal privacy level requirements, proposing

a grouping algorithm that can be used to find an optimal
grouping. Grouping users this way and allowing users
within each group to execute our anonymous data aggre-
gation protocol together would satisfy all users’ privacy
requirements and optimize the entire data aggregation’s
efficiency at the same time.

o Performing experiments to show the efficiency of our

protocols.

The rest of this paper is organized as follows. In Section II,
we review the related work. After introducing the pre-
liminary knowledge of our problem and solutions in
Section III, we present our anonymous data aggregation pro-
tocol in Section IV. In Section V, we show how to deal with
an extreme scenario in which the total number of users is very
large. We evaluate our solutions’ performance in Section VI
and then discuss possible extensions of our protocols in
Section VII. Finally, we conclude our paper in Section VIII.

II. RELATED WORK

Many previous works (e.g., [5], [6], [11], [15], [25], [46])
on privacy-preserving data aggregation assume a trusted aggre-
gator, which is different from our scenario. For example,
in [11], a trusted “Report Service” anonymizes all users’ data
and then sends the anonymized data for end use.

There have been a few works [22], [23], [26], [36],
[38], [39] which investigate privacy issues in mobile phone
sensing applications with an untrusted aggregator. However,
all of these works aim to allow the aggregator to compute
some specific functions (e.g., sum, Min/Max, etc.) on data
aggregation and protect participants’ data content from the
aggregator at the same time. For example, Li et al. [22], [26]
propose an excellent sum aggregation protocol based on
an additively homomorphic encryption, and also construct a
highly efficient Min computation protocol based on their sum
aggregation protocol. Besides the good efficiency and smart
protocol designs, Li et al.’s protocols adopt a very delicate
key system so that their protocols can thwart collusion attacks
and are able to efficiently handle users’ dynamic joining and
leaving. Different from these works, we aim to let the aggre-
gator know the data content and delink data from its sources
instead to protect users’ privacy. Furthermore, our work allows
the aggregator to recieve a random permutation of the data
aggregation and thus allowing the aggregator to efficiently
compute any aggregation function. We note that theoretically
the secure sum computation protocol implemented in these
works could be extended to achieve our goal using an idea
from [22], but the extension would need to traverse the space
of users’ data and run the secure sum computation protocol
once for every possible data value, and so it would not be
efficient for an application with large data space.

In addition, we notice that there are a number of
works [10], [19], [20], [37], [45], [47] that study similar
data aggregation problems in wireless sensor networks. For
example, in [19], Groat et al. propose a secure data aggregation
protocol that can be used to compute the sum/Max/Min
function of all senor nodes’ data in a tree-structured sen-
sor network, and meanwhile guarantees that each sensor
node’s data achieves a similar k-indistinguishability security.
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Their solution is constructed by cleverly selecting the fake data
that is used to disguise the real one and fake data’s injecting
positions, instead of utilizing any homomorphic encryptions.
In [45], Yang et al. first propose a method to enable each pair
of neighbouring nodes to secretly share a key, and then let
each node encrypt its data with an additively homomorphic
cipher that is established on the shared keys. Yang et al.’s
protocol is able to compute the sum/average function, and is
robust against collusion and data loss. Despite the difference
in the ways how their security guarantees and aggregation
goals are achieved, these works’ solutions [10], [19], [20],
[37], [45], [47] have one thing in common. All these solutions
require sensor nodes to communicate with other and to help
each other in the secure aggregation process (e.g. to establish
key pairs, to encrypt/disguise the data, and/or to pass on the
data). This is quite different from our scenario in which mobile
phone users in a data aggregation seldom communicate with
each other directly.

Besides above works which study privacy-preserving data
aggregations, there are a few works which specifically focus
on protecting source privacy in mobile environment. Most of
these works assume there is a multi-hop path between the
source node and destination node, while our paper does not
make such an assumption. For example, in [27], Li and Ren
study how to hide the source location information from the
destination node in a wireless sensor network, and propose
a solution based on randomly selecting intermediate nodes to
forward the message for the source node. In [21], Huang et al.
propose a pseudo normal distribution-based phantom routing
protocol to protect the privacy of the source. Their solution
adds phantom nodes into the communication path and per-
forms random walks within it. In [2], Abuzneid et al. propose
a new communication protocol for wireless sensor networks
that uses disposable IDs to identify sensor nodes and protect
their location privacy. In particular, Conti et al. [9] provide
an excellent survey on source location privacy protection
in wireless sensor networks. In their comprehensive survey,
authors summarize key concepts in source location privacy
protection, and give a complete overview on the existing
solutions and their corresponding adversary settings. Among
all solution categories listed in the survey, our solution is
similar to those using dummy data sources. As commented
by the authors in [9], a few dummy-source-based solutions
(e.g. [29]) cannot deal with an adversary that has global traffic
knowledge. Different from these solutions, our solution can
deal with global adversaries. Others that can deal with global
adversaries (e.g. [4], [30], [41]) mostly focus on making the
generation of dummy data appear real, thus assuming the
distribution of real events is known or can be approached with
the help of neighboring nodes. In this paper, we do not make
such assumptions.

Our anonymous data aggregation protocol follows the idea
of Chaum’s DC-Net [8] which provides an anonymous broad-
cast protocol. In DC-Net, every two users share a secret
key and there are n(n — 1)/2 keys in a n-user system.
In this paper, we choose a simplified keying mechanism
which only requires n keys. Most follow-up works on
DC-Net [18], [43], [44] aim to efficiently add fault-tolerance

or cheating-tolerance properties to the original DC-net, which
differs from our objective.

There are a few other protocols that also provide
anonymizing communication functionality —such as
Mix-Net [7], Crowds [35], and CliqueNet [40]. Systems
built on these protocols (e.g. [24]) can also get the exact data
distribution and thus are able to obtain arbitrary aggregation
functions. However, these protocols require that bidirectional
communication channels exist among sensor nodes, which is
usually not the case in a mobile sensing scenario as nodes
(smartphone users) participating in the sensing may not know
each other in advance.

ITI. PRELIMINARIES
A. System Model and Problem Setup

1) System Model: We consider a general mobile sensing
system that consists of one aggregator and n mobile phone
users. Let U = {uy,...,u,} be the entire user group.
We assume that there is a communication channel between
each user and the aggregator. The communication channel
could be 3G/4G, wifi or other kinds of channels which are
supported by the mobile phones and the aggregator. Also,
we assume that the communication channel is secured by
both the aggregator and mobile phone users using public-
key infrastructure (PKI) such as [14], [33], and [48], so that
messages’ integrity and authenticity are protected. In addition,
we assume the job owner notifies every participating user
of the job description and the total number of participating
users in the aggregation via a bulletin-board or a broadcast.
Note that we do not allow the total number of participants
to increase during the aggregation process or after the process
starts. Furthermore, we assume that there is a trusted authority
which can help all mobile users to establish the key system
for once and similar secure communication channel exists
between the authority and every mobile phone. The authority
should NOT be selected by the aggregator. In practice, one
possible authority could be the underlying communication
service provider or some independent auditing company.

A user performs the sensing task periodically and sends
time-series data to the aggregator through the secured channel.
The aggregator collects all user data and performs further
analysis on the data aggregation.

2) Privacy Definition: We define our privacy requirement in
a standard adversary model called the semi-honest model [17].
In particular, the semi-honest model assumes that all involved
parties will follow the protocol, but may attempt to derive
extra knowledge about other parties’ private inputs. A user’s
privacy is defined or evaluated as the anonymity level of its
data. Specifically, if the best an adversary can learn is that
the source of its data is one of k users (k € {1,...,n}), we
say this user’s data has k-source anonymity or this user has a
privacy level of k. Naturally, the larger k’s value is, the better
the corresponding privacy is.

If all users’ data has k-source anonymity in the data
aggregation process/protocol, we say the process has k-source
anonymity.

Formally, we use computational indistinguishability [17]
from cryptography to model the anonymity of messages’
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TABLE I
NOTATIONS
Symbol Description
U the entire user group
Ui the 7th user
Eg the ciper system
23] the bit-wise XOR operation
the message space
P the data aggregators view

(i.e. the messages she receives, her coin flips and her input)
< computationally indistinguishability of
B two random variable ensembles

a pseudo-random function family

Faimoo Himo = {hs 2 {0,117 = {0.1)'} e 0.0
hs(t) a function indexed by s in H; 1, 0
a; user 4’s minimal privacy level requirement
g a feasible grouping solution
G a set that contains the index of all users in group G
c(9) the cost of grouping solution G
N a feasible grouping solution
g*(@) with the minimal cost when user group is 1,...,x
f(x) the cost of G*(z)

the smallest index contained in the group
that has user z inside in G*(z)

n the total user number

l the data length (the bit number of data)

q users’ maximum privacy level

sources and define our privacy as follows. Informally speaking,
the definition states that if we switch any two users’ data
and the aggregator cannot efficiently notice any difference,
the aggregation protocol with k-users is k-source anonymous.

Definition 1: A data aggregation process or a protocol is
k-source anonymous if for any user group U that contains
k users, any two users u; and u; in it, and for any data
aggregation sample {d', ..., d*} e (MK,

P(.,ui(d),...,uj@d),...)
P(.,ui@), ... u;@d),...),

Ik

where M denotes the message space, P(...,u;(x;),...)
denotes the data aggregator’s view (i.e. the messages she
receives, her coin flips and her input) when running protocol
with x; (x; € {d',...,d*}) as u;’s input ( = 1,...,k) and
= denotes computationally indistinguishability of two random
variable ensembles.

Our goal is to design efficient data aggregation protocols
that can be used by an untrusted aggregator to collect all users’
data in a source-anonymous manner.

B. A Bitwise-XOR Homomorphic Cipher

Our protocols are based on a cipher system that has the
bitwise XOR homomorphic property. Given the ciphertexts of
a group of plaintexts, the bitwise XOR of these plaintexts can
be efficiently computed without decryption.

Below we describe a cipher system which has the bitwise
XOR homomorphic property. After all users use their private
keys to encrypt their data, the aggregator can get the bitwise
XOR of all users’ data simply by computing the bitwise
XOR of all users’ ciphertexts. The underlying idea of this
cipher system is very similar to that of a stream cipher or an
additively homomorphic cipher proposed in [6]. Specifically,
every user uses their private key to generate a random bit string

of the same length as its plaintext. Then, the encryption is done
by performing a bit-wise XOR operation on the plaintext with
the random bit string. All users’ private keys are specifically
designed so that the bitwise XOR of all random bit strings
is equal to the bit string of zero. It is easy to verify that the
bitwise XOR of all users’ ciphertexts equals the bitwise XOR
of their plaintexts.

Assume every user’s data can be represented by an
[-bit string and the nonce information that specifies the time
period ¢ can be represented by a m-bit string. Denote by
hg(t) a function indexed by s in a pseudo-random function
family Hymo = {hs: {0, 1} — {0, 1}'}5ci0,10. A possible
efficient implementation of H;,, , and hs(¢) can be found
in [6].

Denote by Eg the cipher and by @ the bit-wise XOR oper-
ation. Eg generates keys, encrypts, and decrypts as follows.

Key Generation and Distribution: we assume there is a
trusted authority T A who helps the users to establish the key
system. T A first picks Sp, ..., Sy—1 € {0, l}l uniformly and
independently. For each user i (i = 1,...,n), TA computes
sé =381 al_ld sli = S(i mod n) and sends them to user i. User i
keeps (s, s;) private and uses it as its private key.

Encryption: to encrypt a bit-string x; € {0,1} in time
period ¢, user i chooses pseudo-random functions hsé and h
from H; 1, generates a random bit string k;(z) that equals
hsé ((X) hsl,; (t), and then computes the ciphertext as

Xi =xi ®ki(t).

Decryption: the aggregator decrypts the bitwise XOR of all
users’ data by computing

XI®...8x,.

IV. THE ANONYMOUS DATA AGGREGATION PROTOCOL

In this section, we present our anonymous data aggregation
protocol. Our protocol achieves n-source anonymity in the
sense that for any particular piece of data the aggregator only
learns that the source is one of the n users.

Denote our protocol by Pgy. Pgg consists of only one
round. In this round, every user reports an encrypted nl-bit
string to the aggregator. And the aggregator can easily compute
all user’s data based on all ciphertexts it receives.

We assume that every user holds an unique sequence
number before the protocol starts.! A user’s sequence number
determines the positions of its real data in the encrypted bit
string. Denote by Seq (i) € [1, n] the sequence number of user
i (i=1,...,n). Note that Seq(i) (i =1,...,n) is actually a
permutation of {1,2,...,n}.

First, each user i encrypts the bit string of its data d'
using Eg to get a nl-bit string and sends it to the aggregator.
Specifically, user i chooses pseudo-random functions /g and
hsl,; from Hy m-+110g, n7,1> and generates n random [-bit sgrings

IThe unique sequence numbers could be assigned by a trusted authority
or be a result of the users’ communications. Note that when the sequence
numbers are determined through users’ communications, users have to know
each other in advance. Thus, this method can only be applied in cases that
users are able and willing to communicate with each other.
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1100, 1101, 1011

1011,=11: 1100:=1210 1101,=134
Fig. 1. An example of our protocol when Seq = {3,1,2} and
userdata = {11, 12, 13}.
k;.(j =1,...,n) using

K= hyy (1)) @ hy (1) (1)

where f|j is the concatenation of ¢ and j. After all k;
(j =1,...,n) are constructed, user i uses kéeq(l.) to encrypt
its real data d’ and uses k;. (j # Seq(i)) to encrypt dummy
data 0. Obviously, user i gets n encrypted [-bit strings:
OV ek, ..., {O}I@k’seq(i)_l, d' ®K,, i), {O}IGBk’Seq(i)H, e
{0}/ eakj;. To get the encrypted nl-bit string, user i concatenates
the n encrypted [/-bit strings one by one.

Second, the aggregator computes all users’ data based on
all ciphertexts it receives. Regard the received nl-bit string
as n parts and each part [-bit. Every part inside user i’s
ciphertext is an encryption of the bit string {0}/ except that
the Seq(i)-th part is the encryption of user i’s real data d'.
Since Seq(i) (i = 1,...,n) is a permutation of {1, 2, ..., n}
and Eg is bitwise XOR homomorphic, it is easy to see that
the bitwise XOR of all bit strings encrypted by all users
equals the concatenation of all users’ real data. Denote the
bit string received from user i by e’. The aggregator performs
the decryption by computing m = e! @...® e". As we have
mentioned, m is the concatenated bit string of all users’ real
data. So the aggregator can get all users’ data by breaking m
into n parts with equal length.

Figure 1 illustrates the main aggregation procedure (in one
time period) using a simple diagram. In this example, the
bit strings that users send and that the aggregation receives
consists of 3 parts as there are 3 users. For each user, it fills
one part of the bit string with their real data while filling the
other two with dummy data. For instance, for user 1, as its
sequence number is 3, the 3rd part of its bit string should be
filled with encrypted real data 11, while the other two parts
should be filled with encrypted dummy data 0. Then, all users
send their ciphertexts to the aggregator. After the aggregator
receives all three ciphertexts, it performs the decryption by
XORing three ciphertexts and gets all users’ data by breaking
the decrypted bit string into 3 parts with equal length, where
each part stands for the real data of one user. In this example,
the decrypted bit string is 110011011011 and the aggregator
can get 11002 = 121(), 11012 = 131() and 10112 = 111() which
are the real data of all users.

We summarize our protocol in Algorithm 1.

Algorithm 1 Anonymous Data Aggregation Protocol

Input:
a group of n users and an aggregator;
user i (i = 1,...,n) has an unique sequence number
Seq(i) € [1,n] and a private key (s, sl’;);
in each time period ¢, user i (i = 1,...,n) has an [-bit
string d'.

In the protocol, x|y is the concatenation of x and y.
Output:

the aggregator outputs D, the set of all users’ bit strings;
1: the aggregator sets D to the empty set @.
2:useri (i =1,...,n) chooses pseudo-random functions hsé

and h st from Hy i+ 110g, n1,1, and generates n random [-bit

string k;(j =1,...,n) using
kj = hy (1)) ® hy (t1))
3useri (i =1,...,n) encrypts di as
e = (10 @)1 | (10 @Ky )
| (di ® kéeq(i))
| ({0}1 ® ka‘eq(i)Jrl) [ ({0}1 @ ki,)

and sends the ciphertext el to the aggregator.
4: the aggregator computes m = el @...® e" and set the
result set as

D={m[1,[],m[l+1,2],...,m[(n — DI + 1, nl]}

where m[x, y] stands for bits of m from x-th bit to y-th
bit.
5: return the set of all users’ data numbers D;

Complexity Analysis: Our protocol has very good compu-
tational efficiency: Once the keys have been established, on
average each user mainly needs 2n [-bit XOR operations, 2n
hashing operations during each time period; the aggregator
mainly needs n — 1 nl/-bit XOR operations during each time
period.

In terms of communication efficiency, our protocol requires
each user to send nl/ bits on average during each time period.
Meanwhile, the aggregator needs to receive n?l bits.

Security Analysis: Regarding the security of our anonymous
data aggregation protocol, we have the following result.

Theorem 2: The anonymous data aggregation protocol is
n-source anonymous in the semi-honest model.

Proof: Let M = {0, 1}!. Given a set of semi-honest users,
I = {1,...,n}, a sequence of inputs D = (dl, .,dN e M,
the view of the aggregator in the anonymous data aggregation
protocol is a sequence of random variables:

ol 0 o a
E=(ef,....el,e5,....65,...,el,.

e,
where e; € {0, 1} (i, j € I) is the ciphertext sent by user i in
the jth round.

For V(i, j) € I x I where i < j, suppose user i and j

switch their data, the sequence of inputs changes to

D' =@, ....d"7 " dl,at, . . a7 dl ddtt, L dm,
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and the view of the aggregator in the anonymous data
aggregation protocol becomes

1 J i+l Jj—1

VAR

E’(i,j):(g,...,e’i_,e1 e el el el
g,...,eé_l,eé,eéﬁ...,eéfl,g,eéjrl...,g,

n R - -
e_}l,...,ef,_l,e,]; el .,e,],-_l,a,e,ﬁlﬂ...,ﬁ).

According to Definition 1, to prove P is n-source anonymous,
it is equivalent to prove

C

E=E'())
holds for ¥(i, j) € I x I, and YD € M'.

_To show this, we construct a simulator S that takes
{d}i=1,...n as inputs and outputs a view that is computation-
ally indistinguishable to both E and E'(i, j). Let

D, = (d;,dg,...,dg),where for each idé = e’i EB...GB%.

In particular, given the received (d!,...,d") as input, S
generates a view E” as follows.

First, S generates a random permutation function z
[1,n] — [1, n], and runs the same aggregation protocol with
user i’s data being d;; @ Let E” be the view of the aggregator
at this time. Let

D, =@M, dr®, .. dr")

We know E = E”, otherwise we can distinguish D with
its pseudo-random permutation D), in polynomial time which
is impossible. Also we know E’(i, j) = E”, otherwise we
can distinguish D" with its pseudo-random permutation D/, in
polynomial time which is impossible also.

Therefore, we have

c

E=E'G,J)

O

V. PROTECTING PRIVACY WHEN USER NUMBER IS LARGE

In some scenarios, the total number of the participants
could be very large, e.g. an epidemic monitoring application
collecting body temperature of citizens in a big city. Allowing
all users to execute our anonymous data aggregation protocol
together may put a heavy burden to the aggregator, as the
complexity of our protocol is O (n?) for the aggregator. In this
section, we study how to optimize the efficiency of the secure
data aggregation process in a scenario where the total number
of users is large. In particular, we let the aggregator divide
users into groups according to users’ privacy requirements
before it runs our anonymous data aggregation protocol within
each user group. With the optimal grouping solution, the effi-
ciency of the entire data aggregation process can be optimized.

A. Dividing Users Into Groups

When n is large, the bottleneck of the data aggregation
process’s efficiency is on the aggregator’s side. Since the
total number of bit strings received by the aggregator directly
affects the time taken by the aggregator in receiving and

decrypting data, here we optimize the aggregation efficiency
by minimizing the total number of bit strings received by the
aggregator.

Notice that all n users achieve a privacy level of n when they
form one big group to run this anonymous data aggregation
protocol together. This is achieved by allowing all n—1 users to
send a “dummy” bit string every time a user sends its bit string.
To receive n “true” bit strings, the aggregator needs to receive
n(n — 1) dummy bit strings also. If we divide n users into
several groups, and allow users inside each group to execute
our protocol together, then every time a users sends its bit
string, only the other users in the same group need to send
a dummy string. This can lead to the aggregator receiving
significant fewer bit strings.

When applying our protocol on users inside a group, every
user in the group has the same privacy level, which is equal
to the size of the group. In practice, users may have different
privacy level requirements. Making all groups’ sizes equal to
the lowest privacy requirement apparently will not satisfy users
who have higher privacy requirements. Nevertheless, making
all groups’ sizes equal to the highest privacy level require-
ments of the users could lead to a relatively low efficiency.
In the next section, we show how to find an optimal grouping
which satisfies all users’ privacy requirements and meanwhile
optimize the efficiency of the data aggregation process.

B. Optimal Grouping

Assume users have different minimal privacy level require-
ments. Denote by a; user i’s minimal privacy level requirement
(i € [1,n]). This means user i can only be put into a group
of a size that is no less than ag;. Since the best privacy level
in a n-user scenario is n, we only consider the case that all a;
is less than or equal to n. Note that this means that there
is at least one grouping solution (e.g., putting all users in
one group) that satisfies all users’ privacy requirements. Also,
assume users are sorted in a non-decreasing order according
to their minimal privacy level requirements. Thus, we have

l<ai<ax=<...Z<a, <n. (2)

We are interested in finding an optimal grouping which
satisfies all users’ privacy level requirements and minimizes
the total bit strings sent to the aggregator at the same time.

Denote by G = {G,};—1,. g a grouping solution where
G is a set that contains the index of all users in group G;.
We refer to a grouping solution which satisfies all users’
privacy level requirement as a feasible grouping solution, and
the total number of bit strings sent to the aggregator when
this solution is adopted as the grouping solution’s cost C. It is
straightforward to see that our problem is equivalent to finding
a grouping solution which is of minimal cost to all feasible
grouping solutions.

Specifically, if for any user i and any group G; in G,

i€Gj=|Gj|=a, 3)
we say G is feasible. And it is easy to verify that G’s cost

C(@) = Zj=1..10(G;D> 4)
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@ (=1, @ (2=2), @ (6 =3) , @ (2 =3)
Grouping 1: {0 W)} Grouping 2: {(W)} {©Ww)}

¢ = {{1,2,3,4}} g = {{1},{2,3.4}}
CG)=42=16 CG") =12+32=10

Fig. 2. Two feasible grouping solutions and their corresponding costs in an
example of 4 users.

Figure 2 shows a 4-user example which has only two feasible
grouping solutions.

If a group contains only users with consecutive indexes,
we say this group is consecutive. For example, G = {1, 2, 3}
is consecutive and G’ = {1, 3} is not. If all groups inside
a grouping solution are consecutive, we say this solution is
a consecutive grouping solution. The following proposition
allows us to narrow down our searching space from all
feasible grouping solutions to all feasible consecutive grouping
solutions.

Proposition 3: For every feasible grouping solution G, there
exists a feasible consecutive grouping solution G¢ which has
the same cost.

Proof: Without loss of generality let G = {G1, Go, ...,
Gig|}, where |G| < |Ga| < ... < |Gp||. We can prove the
proposition by constructing a valid G¢ as follows.

1) Generate |G| “empty” groups GY,GS5,..., ICQI'
The size of group G¢ is the same as size of G;
(j=1,....1GD.

2) Putuser 1,2, ..., n one by one into group G¢, and then
into G after G is full, ..., and finally into G‘Cg‘.

3) Let G =({G{,G5, ..., GICQI}'

It is straightforward to see that G¢ is consecutive and G¢’s cost
is equal to G’s cost. We only need to prove that G¢ is feasible
or the size of every group in G¢ is no less than the highest
privacy levels of all users inside this group.

Consider an arbitrary group G? (G =1,...,1G)). According
to inequality (2), the user who has the highest privacy level
requirement inside Gj. is the last user put into this group.
Denote by i this user’s index (i = |G{| + ...+ |Gj]). Thus,
proving |G§| > g; would validate G;’s feasibility.

Let Gy be the group that contains user i in solution G.
Since G is feasible, we know |Gk| > a; according to condi-
tion (3).

o If k = j, we know |G;| =G| =G| = a;.

o If k < j, we know |G;| =1Gj| = |Gkl = a;.

o If k > j, this means in solution G user i is not in any
group among G, ..., Gj. Now assume Gy, ..., G; only
contain users whose index is smaller than i. There are
i — 1 users whose index is smaller than i. However,
Gi,...,Gj contains |Gi| + ... + |Gj| = i users.
Therefore we know that the assumption cannot be true
and that there is at least one user i’ whose index i’ is

greater than i contained in one group among G1, ..., G;.
Since G; has the largest size among Gi,...,Gj, we
know |G§| =1Gj| = ay > a;.

Therefore, G¢ = {Gj.} is feasible. O

By Proposition 3, we can find an optimal grouping
solution G* by searching the solution that has the minimal cost
in all feasible consecutive grouping solutions only. In the rest

of this section, we discuss only consecutive grouping solutions.
For ease of presentation, we omit “consecutive” and refer to
them simply as grouping solutions.

To find a feasible grouping solution that groups
users 1,...,n with minimal cost, we use the dynamic pro-
gramming method. The main idea is to divide the original
problem of grouping users 1, ..., n into smaller sub-problems.
The original problem’s solution can be found based on the
sub-problems’ solutions.

Specifically, the sub-problem is to find a feasible grouping
solution G*(x) that groups user 1,...,x (x = 1,2,...,n)
with minimal cost. (G* = G*(n).)

Define two functions:

fx):[0,n] = R 5)

and

(6)

g(x) = [1,n] > [1,n]
g(x) = x '

Function f(x) returns the G*(x)’s cost,> and g(x) returns the
smallest index contained in the group that has user x inside
in grouping solution G*(x).

Consider the sub-problem of finding G*(x) that groups
user 1 to x. Recall G*(x) groups users g(x), g(x)+1,...,x
in one group. G*(x)’s cost is equal to (x — g(x) + 1)? adds
the quadratic sum of the remaining groups’ sizes according
to equation (4). To minimize G*(x)’s cost, the quadratic sum
of the remaining groups’ sizes has to be minimal. Notice that
the remaining groups form a grouping solution that groups
users 1, ..., g(x)—1, the quadratic sum of these groups’ sizes
is the cost of the grouping solution. Since the minimal cost
of a grouping solution that groups users 1,...,g(x) — 1 is
f(g(x)—1), the cost of G*(g(x) — 1), we know G*(x) can be
constructed using its sub-problem’s solution G*(g(x) — 1) as
follows.

G*(x) = G*(g(x) — D [ Jllg@), ..., x}), @)
and

fQ)=fE0 =D+ —gh)+ D% ®)
Based on these two equations, the Dynamic

Programming (DP) solves the problem in a bottom-
up way. Specifically, the DP solves (G*(1), g(1), f(1))
first, and then (G*(2), g(2), f(2)), and then ... and
finally (G*(n), g(n), f(n)). When (G*(1), g(1), f(1)) to
(G*(x — 1), g(x — 1), f(x — 1)) are known, to determine
(G*(x), gx), f(x)) we only need to know g(x)’s value.
(G*(x) and f (x) can be computed using equations (7) and (8).)

In particular, g(x)’s value can be determined by traversing
all possible values and finding the value that minimizes the
corresponding f(x) as follows. Let i = g(x). Since G*(x)
puts user i,i + 1,...,x in one group and G*(x) is feasible,
the group’s size must be no less than the maximum privacy
level requirement of users inside this group, i.e. i < x —ay+1.

21f there is no feasible solution to group user 1 to x, f(x) returns infinity.
When x = 0, there is no user to group, thus let the cost f(0) = 0 and
g*(0) = 4.
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TABLE II

A WALK-THROUGH EXAMPLE OF USING DYNAMIC PROGRAMMING
TO FIND THE OPTIMAL GROUPING IN FIGURE 2’S EXAMPLE

89 £(x) G (@)
x=0 0 ) 0
x=1 | 1 1 {ayp
x=2 | 1 4 {123}
x=3 | 1 9 {{1,2.3}}
x=4 | 2 | f@-D+(4—2+1)2=10 | ¢*(1) U{{2,3,4}} = {{1},{2,3,4}}

Algorithm 2 Optimal Packing Algorithm

Input:
a group of n users (already sorted in an increasing order
according to their privacy requirements;
user i (i = 1,...,n)’s minimal privacy level requirement
is a;.

Qutput:
an optimal grouping G*;

1: sets f(0) to O.

2:sets f(i)(i=1,...,n) to oco.

3sets g(i) i =1,...,n) to 0.
4:fori=1,...,n do

5. if a; > i then

6: continue;

7. end if

8: for j=1,...,i+1—aq; do

9. if fG@)> f(G—1)+ (@G —j+1)* then
10 fO=FG-D+G-j+D
11: gi)y=7.

12 end if

13:  end for

14: end for

15: set k to n.

16: set G* to the empty set.

17: repeat

18 G« G U {{etk), gtk) +1,...,k}}
190 k<« gk)—1

20: until g(k) =1

21: return G*;

By traversing i in [1, x —a, + 1], we can get the value of g(x)
as follows.
glx)y=arg min  fG-D+G@—i+D% (9
ie[l,x—ax+1]

Table II shows the corresponding (G*(x), g(x), f(x)) values
in the Figure 2’s example. We formally present our optimal
grouping algorithm as Algorithm 2.

By our earlier derivations, we can easily get the following
result.

Theorem 4: The optimal grouping algorithm returns an
optimal grouping for all users.

Complexity Analysis: Our optimal grouping algorithm needs
to sort n users according to their minimal privacy require-
ments first, and then traverse all possible values of j to

compute (g(1), f(1)),...,(g(n), f(n)). The sorting can be
done using an O (n log n) sorting algorithm such as merge sort.

3If x —ax 4+ 1 < 1, user x’s minimal privacy level is too large and there is
no feasible grouping solution. In this case, we let f(x) = oo and g(x) = 0.

To compute (g(i), f(i)), at most i possible values need to be
traversed. Thus the complexity for computing (g(n), f(n)) is
O(1 +2+...4n) which is O(n?). Overall, the computation
complexity is O(n?).

One might wonder why we want to spend O(n*) grouping
users just in order to expedite another algorithm (our
anonymous data aggregation protocol) with computation com-
plexity O (n?) (per time period). Note that this is worthwhile,
because: 1) The grouping algorithm is much more efficient
compared with the aggregation protocol, despite both of them
having a computation complexity of O(n?). This is due
to the data aggregation process involving encryptions and
decryptions which are relatively time-consuming, while the
grouping algorithm involves only simple arithmetic compu-
tations. (For example, according to our evaluation results
(see Tables V, VI, and VII), the efficiency of the grouping algo-
rithm is approximately 100 times of the efficiency of the aggre-
gation process when the sensing data is only 10-bits long.)
2) In a static environment, we only need to perform group-
ing once, after which we can run the anonymous data
aggregation protocol many times. In addition, a mobile
sensing application for aggregating time-series data gener-
ally needs to run the aggregation protocol for many time
periods.

VI. PERFORMANCE EVALUATION

In this section, we perform theoretical analysis and
experiments to evaluate the performance of our anony-
mous data aggregation protocol and the optimal grouping
algorithm.

We implement our algorithms using Microsoft Visual Studio
2012 and the Crypto++ library [13]. As suggested in [6], we
use HMAC <SHAS512> as our pseudo-random function family
and adopt the length-matching hash functions construction
in [6]. In particular, HMAC <SHAS512> generates a 512-bit
output. In case we need a shorter output of length /, we
truncate the output into short bit strings of length / and then
use the exclusive-OR of all these strings as the final output.
In the case that [ is greater than 512, we first break the input
message into several 512-bit strings and one string of length
I (I < 512), then generate several 512-bit output strings
and one [’-bit output string, and finally use the concatenation
of these output strings as the final output. All experiments
are performed on a laptop running the 64-bit Windows 7
Professional operating system with Intel Core i7 3520M CPU
and 8GB memory.

Users’ data is uniformly sampled from their data space
[0,2! — 1]. Users’ minimal privacy level requirements are
randomly chosen from [1, ¢] according to a modified normal
distribution* with a mean of 0.1¢ and a variance of 0.05¢,
where g denotes the maximum privacy level requirement.
Results of experiments on our anonymous data aggregation
protocol are averaged by 10 runs, and results of experiments
on our optimal grouping algorithm are averaged by 1000 runs.

4Since users’ privacy level requirements are integers in [1, g], we adopt
a modified normal distribution which uses a regular normal distribution to
generate samples, and then discretizes samples to their nearest integers in
[1.ql.
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TABLE III
TRANSMISSION OVERHEADS COMPARISON

to compute sum to compute max/min
[39] nn'l +nl nl? + (nn’ + n)[log(n + 1)]
[26] nl n2!log(n + 1)]
Our protocol n?l n?l

A. Efficiency Comparisons With Previous
Content-Hiding-Based Protocols

Since our protocol requires users to send fake data to
make real data anonymous, our protocol’s communication
cost is correspondingly increased. In this section, we perform
theoretical analysis to compare the efficiency of our protocol
and other previous content-hiding-based protocols in terms of
the amount of data transmitted.

In particular, we compare the amounts of data transmitted
in our protocol and two recent content-hiding-based
protocols [26], [39] when they are used to securely compute
two different aggregation functions sum and Max/Min. Before
we present our comparison results, we want to make a few
clarifications. First of all, as we have mentioned, the two
protocols proposed in [26] and [39] are designed for a different
purpose (i.e. to compute the sum securely) compared with our
protocol. Therefore, we perform the efficiency comparisons
only to provide a straightforward idea about these protocols’
performance of conducting different computations, and the
comparison results do not suggest one protocol is actually
better than another. As a matter of fact, these protocols and
our protocol are complementary to each other. Furthermore,
to be fair, we note that the protocol proposed by Li et al.
in [26] enjoys excellent enhanced security to deal with users’
collusion and dynamic user joins/leaves compared with ours.

In [39], a slicing technique is used to protect each node’s
data. When computing sum, each node slices its data into
n’ + 1 random shares (1 < n’ < n — 1), keeps one share
and sends other n’ shares to n’ randomly selected nodes
(called “cover nodes”). Every node sums its own share and
the shares of other nodes which it receives, and sends this
sum to the aggregator. By summing the data received from
all nodes, the aggregator knows the sum. The amount of data
transmitted equals nn’l + nl (To be fair, here we neglect the
traffic generated in the selection of cover nodes). To compute
Max/Min, the aggregator runs a binary with the help of all
nodes. It needs ! queries and in each query the aggregator
sends all nodes an [-bit data and counts the number of
positive answers with the same slicing technique. If each
user’s answer is sliced into n + 1 slices and the answer is
log([n + 17) bit, The amount of data transmitted here equals
nl? + (nn’ + n)[log(n + 1)].

In [26], zero-sum noise has been added to protect users’
data. To achieve privacy-preserving sum aggregation, each user
only needs to send the encrypted data to the aggregator in a
time period. Thus, the amount of data transmitted in a period
is nl. To achieve privacy-preserving max/min, each user needs
to generates a new data of length 2/[log(n + 1)]. Thus, the
amount of data transmitted in a period is n2![log(n + 1)].

Table III shows comparison results. We can see that
as the complexity of the aggregation function increases,

TABLE IV
EFFICIENCY OF OUR PROTOCOL WHEN [ CHANGES (n = 1000)

1=5 1=15 1=20 1=30 1=40 1=50
Enc. 7.3ms 7.3ms 7.3ms 7.3ms 7.3ms 7.3ms
Dec. | 197.3ms  198.0ms 198.1ms 199.3ms  200.8ms  202.2ms
1=100 1=200 1=500 1=1000 1=2000 1=5000
Enc. 7.3ms 7.4ms 7.5ms 15.1ms 35.4ms 115.4ms
Dec. | 209.3ms  222.0ms 275.0ms 348.7ms  486.7ms  897.4ms
TABLE V

EFFICIENCY OF OUR PROTOCOL WHEN n CHANGES (I = 10)

n=100 n=200 n=500 n=1000 n=2000 n=5000
Enc. | 0.8ms 1.5ms 3.7ms 7.3ms 14.7ms 36.6ms
Dec 2.1ms 7.9ms 49.6ms 197.5ms 792.1ms 4.9s
TABLE VI

EFFICIENCY OF OUR PROTOCOL WHEN n CHANGES (I = 100)

n=100 n=200 n=500 n=1000 n=2000 n=5000
Enc. | 0.7ms 1.5ms 3.7ms 7.3ms 14.7ms 36.5ms
Dec 2.1lms 8.6ms 52.4ms 209.3ms 836.4ms 5.2s

the communication overhead increases in both [26] and [39]
while the overhead remains the same in our protocol.
In addition, although our protocol has a O (n?) communication
overhead, the overhead could still be less compared with
existing privacy preserving data aggregation protocols in some
cases, for example, [ is very large in [39] or n’ is chosen to
be n — 1 in [26].

B. Efficiency of the Anonymous Data Aggregation Protocol

The efficiency of our protocol is closely related to the
total user number n and the data length [. Therefore we
test our protocol’s efficiency under different n and [ values

respectively.
First, we fix the total user number to 1000 and test our
protocol under twelve different data lengths from I = 5

to I = 5000. The results are shown in Table IV. We can
see that the encryption/decryption time increases slowly as [
grows. Even when [ reaches 5000 (which means a quite large
data space [0,2%9%0 — 1] for general mobile phone sensing
applications), the encryption time is only 115.4 milliseconds
and the decryption time is only 897.4 milliseconds.

Also, we fix [ to 10 and 100, and test our protocol under
different values of total user number n: 100, 200, 500, 1000,
2000 and 5000. The results are shown in Tables V and VI.
We can see that the encryption time increases slowly as n
grows. Due to the O(n*) complexity, the decryption time’s
growth is a little faster compared with the encryption time,
but the efficiency is still high. When n reaches 5000, the
corresponding decryption time is only 4.9 seconds (I = 10)
and 5.2 seconds (I = 100).

C. Efficiency and Effectiveness of the Optimal Grouping
Algorithm

The efficiency of our optimal grouping algorithm is closely
related to the total user number n. Therefore we test our
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TABLE VII
EFFICIENCY OF THE OPTIMAL GROUPING ALGORITHM (¢ = n/2)

[ n=100

‘ time ‘ 15.9us

n=200
58.0us

n=500
381.2us

n=1000

1.5ms

n=2000
6.0ms

n=5000
36.9ms

n=10000
143.7ms

n=50000 |
2985 |

TABLE VIII

TOTAL AMOUNT OF DATA RECEIVED BY THE AGGREGATOR WITH/
WITHOUT APPLYING THE OPTIMAL GROUPING
ALGORITHM (n = 10000)

q With optimal grouping  With naive grouping  Percentage
1000 1,055,742 2,980, 569 35.42%
2000 2,191,421 6,105,841 35.89%
3000 3,408, 804 9,374,218 36.36%
4000 4,720,393 12,853,078 36.73%
5000 6,120,561 16, 398, 246 37.32%
6000 7,611,881 20,468,094 37.19%
7000 9,197,760 24,337,719 37.79%
8000 10,892, 837 26,494,114 41.11%
9000 12,693,283 34,446, 455 36.85%
10000 14,538, 832 34,543,026 42.09%

algorithm’s efficiency under different values of n: 100, 200,
500, 1000, 2000, 5000, 10000 and 50000. We set users’
maximum privacy level ¢ to a half of n in this test.

Table VII shows the results. We can see that the efficiency
of our optimal grouping algorithm is very high. When n equals
10000, the time it takes our algorithm to find an optimal
grouping is only 143.7 milliseconds. When n reaches 50000,
the time is only 2.98 seconds.

To evaluate the effectiveness of the optimal grouping
algorithm, we compare the total amount of data received by
the aggregator in two cases: 1) letting all users apply the
anonymous data aggregation protocol according to a naive
grouping. The naive grouping divides users into groups with
the same size that equals the highest privacy level requirement
of all users. 2) letting users apply the protocol according to
the optimal grouping computed by our grouping algorithm.
In particular, we set the total user number n to 10000 and
test the two cases under different values of g ranging from
1000 to 10000. Note that there might be some “remnant users”
when the highest privacy level requirement of users cannot
divide n in the first case, we assume the naive grouping
generates one big group by adding these users into a normal
group.

Table VII shows the results. We can see that the effec-
tiveness of our optimal grouping algorithm is very excellent.
When ¢ equals 1000, the total amount of data received by the
aggregator after grouping using our algorithm is only 35.42%
of the total amount of data received by the aggregator with a
naive grouping. When ¢ equals 10000, the percentage is only
42.09%. Applying our grouping algorithm greatly improves
the entire data aggregation process’s efficiency.

VII. DISCUSSION

In this section, we discuss several interesting topics and
possible extensions of our protocols.

A. Dealing With the Dynamic Change of Users

In this section, we extend our anonymous data aggregation
protocol to efficiently handle users’ dynamic change.

Intuitively, when a participating user leaves, or a new user
joins in the aggregation, our protocol can be re-established
by letting the trusted authority (TA) re-issue new keys to all
current participants and allow them to regenerate new random
bit strings to encrypt their messages with. However, applying
the above method in highly dynamic scenarios with a very
large number of users may incur very high computation and
communication overheads for all remaining users. To deal
with this issue, we propose alternative efficient approaches
which significantly reduce the overhead introduced due to the
dynamic change of users.

1) When a User Leaves: To efficiently handle users which
leave, we propose to let the TA help the aggregator. Specif-
ically, when a participating user i leaves the system, all
remaining users continue to run the original protocol without
any change. After the aggregator notices user i’s leaving,
it notifies the TA of the leaving user, and asks for
its help.

Recall that the TA knows every user’s keys, includ-
ing user i’s two keys sfl and sl’;. To help the aggregator,
the TA simulates user i to compute its random bits k;
(j=1,...,n) as specified in (1), and uses them to encrypt n
dummy strings of {0}/. The TA sends these encrypted bit
strings to the aggregator. With the bit strings generated by the
TA and the remaining users, the aggregator can still compute
the aggregation of the remaining users’ data (and a dummy
data of {0})).

We point out that this approach does not require the
remaining users to make any changes when any user leaves.
In addition, they do not need to keep track of the current
number of users in the aggregation (except the original total
number n). Therefore, the computation and communication
overhead due to the users leave is significantly reduced com-
pared with the intuitive method.

2) When a New User Joins: When a new user joins the
aggregation, we propose an efficient approach that requires
only two of the original participants to update their keys and
their sequence numbers, thus the additional overhead due to
the new users’ joining is also reduced significantly compared
with the intuitive method.

Specifically, recall that each original user owns two of the n
keys So, ..., Sqp—1 € {0, 1}1, the TA generates one new random
key S, € {0, 1}/ when a new user joins the system. Also, the
TA randomly selects two original users i and i’. Let (st’;, sli)
and (sg, sl’;)) be users i’s and i”’s keys respectively. Then, the
TA sends S, to user i and user i/, and sends s’ and sg to
the new user. Now, to participate in the aggregation protocol,
user i and user i’ would use (S,,,sl’;) and (S,,,sl’;/) as their
new keys respectively, and the new user would use (s, s’)
as its own keys. It is easy to verify that the bitwise XOR
homomorphism still holds, thus the aggregation still holds
correctly.

In addition, the three users would also need to update their
sequence numbers to protect the new user’s privacy. To do
so, the TA randomly shuffles their original sequence numbers
(letting the newly joined users sequence number be n+1), and
notifies them of the shuffled ones.
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With the new keys and sequence numbers, all users could
continue to jointly apply our protocol to let the aggregator
compute the data aggregation securely.

B. Grouping by Users’ Views

We have proposed a grouping method from the aggregator’s
point of view. One might also be interested in designing the
grouping method from each user’s point of view.

Let G = {G,}j=1,.g| denote the grouping solution, where
G is the set that contains the index of all users in the j-th
group. For each i, let g(i) € [1, |G|] denote the group index of
user i in the grouping solution. According to the complexity
analysis of our aggregation protocol, user i’s computation
overhead and communication overhead are determined by its
group size |Gg(;)l, and are O(|G4(il).

As user groups may have different sizes, their computation
and communication overhead may also be different. Therefore,
we use users’ average computation overhead and communica-
tion overhead as our optimizing objectives. Specifically, both
overheads equal:

Z [Gg@iyl/n 1o
i=1,...,n
- 3 SiGm (a
j=1,..,1G| i€G;
= 3 G "
i=L..,IG|

Given a fixed total number of users, to minimize users’
average computation overhead and communication overhead
specified in the above equations, is equivalent to minimize the
aggregator’s total computation overhead which is specified in
equation (4). Therefore, our optimal packing algorithm also
optimizes users’ average overheads.

C. Regrouping

When users’ required privacy level changes, or a new user
joins the system, or an existing user leaves, the aggregator
may need to re-run our optimal packing algorithm to com-
pute a new optimal grouping solution. Here, we provide a
possible alternative method to further expedite the regrouping
process.

Instead of re-running the optimal packing algorithm every
time a change occurs, we propose to use a composite updating
policy to adjust the existing grouping solution. Specifically, we
let the aggregator perform two kinds of re-grouping operations:
the “complete re-grouping” which is required in order to re-run
the optimal packing algorithm, and the “quick re-grouping”
which adjusts the previous grouping solution to guarantee that
users’ privacy requirements are not violated.

In cases where a user decreases its required privacy level,
quick re-grouping makes no change to the existing grouping
solution; In cases where a user increases its privacy level from
a to a’, quick re-grouping searches for the smallest existing
group, other than the this user’s group, with the size that is no
less than a’ — a, and merges this group and the user’s group
together in the new grouping solution.

In cases where a new user whose required privacy level
equals a joins the system, quick re-grouping adds this user
to the smallest existing group with the size that is no less
than a — 1 if such group exists. If there is no such a group,
quick re-grouping continuously merges the largest group with
small groups, starting with the smallest one, until the merged
group’s size is no less than a — 1, and then adds the user into
this group.

In cases that an existing user leaves, quick re-grouping
simply merges this user’s group with the smallest if they are
not of the same group. Otherwise, quick re-grouping simply
merges this user’s group with the second smallest group.

It is easy to see that the new grouping solution generated
by quick re-grouping satisfies all users’ privacy requirements.
In addition, by sacrificing some optimality, quick re-grouping
is much more efficient compared with complete-regrouping.
To expedite the regrouping process, the aggregator can
run complete re-grouping at the start, then perform quick-
regrouping operations to handle every change. Meanwhile, to
maintain a good optimality at all time, once a certain number
of quick re-groupings are performed, the aggregator performs
a complete re-grouping. Here, the number of times can be
determined empirically based on the total number of current
users and the magnitude of the changes.

D. Sensing Data Authenticity

Other than the problems we have studied, another very
interesting problem is how to guarantee the data collected from
the users is trustworthy, or authentic.

To guarantee the authenticity of sensing data generally
requires that the sensing data is collected in the right way,
at the right place, and that the data has not been tampered
with. This could be a highly challenging task depending on
the specific requirements of the sensing job. Recently, there
have been a few works which propose different approaches
to secure the authenticity of the sensing data in different
sensing applications. Some of them are based on non-technical
economic and/or legal frameworks. For example, freelance
photographers could receive payments by sending their photos
which conform to the guidelines on integrity [1] put in place
by the New York Times newspaper. Some of them are based
on cryptographic and/or trusted hardware techniques. For
example, in [16], authors use Trusted Platform Module (TPM)
hardware to generate cryptographic signatures on the sensing
data to guarantee that the data is not tampered with. Some
of them are based on reputation systems. For example, in [3],
authors build a trust and reputation system in a wireless sensor
network to differentiate trustworthy nodes from malicious
nodes.

In our humble opinion, solving the authenticity issue in
mobile sensing applications requires a hybrid framework that
is based on all techniques mentioned above. Firstly, since
mobile phone users generally incur costs when they do
perform sensing tasks, proper economic incentives can be
introduced to compensate their costs, and incentivize non-
malicious users to contribute correct sensing data. Secondly,
cryptographic and trusted hardware techniques can be intro-
duced to detect false data which is sent by a malicious user.
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For example, trusted hardwares (e.g. the TPM) can be used
to monitor the software configurations or status by generating
cryptographic signatures on the hash values of the configu-
rations/status. By verifying the signatures and examining the
hash values, the data aggregator knows whether the data is
collected or processed following the correct procedure. Finally,
a reputation system enables analysis based on empirical data,
thus can help the aggregator to avoid malicious users in future
data aggregations.

VIII. CONCLUSION

In this paper, we first propose an anonymous data aggre-
gation protocol that allows an untrusted aggregator to collect
participants’ data without being able to identify the source
of any particular piece of data in a mobile sensing scenario.
To improve the efficiency, especially in cases where the total
number of participants is very large, we propose to divide users
into several groups and let users inside one group execute the
anonymous data aggregation protocol together. We study how
to find an optimal grouping which minimizes the total amount
of data sent to the aggregator and give an optimal grouping
algorithm.

Different from exist privacy-preserving mobile sensing
works which only support secure computation of single simple
aggregation function, our protocols allow the aggregator to
efficiently compute arbitrary/complicated aggregation func-
tions and protect users’ privacy at the same time.
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