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Abstract—The increasing diffusion of mobile and portable de-
vices provided with wireless connectivity makes the problem of
distance measurement based on radio-frequency technologies in-
creasingly important for the development of next-generation no-
madic applications. In this paper, the performance limitations of
two classic wireless ranging techniques based on received signal
strength (RSS) and two-way time-of-flight (ToF) measurements,
respectively, are analyzed and compared in detail. On the basis of
this study, a data fusion algorithm is proposed to combine both
techniques in order to improve ranging accuracy. The algorithm
has been implemented and tested on the field using a dedicated
embedded prototype made with commercial off-the-shelf compo-
nents. Several experimental results prove that the combination
of both techniques can significantly reduce measurement uncer-
tainty. The results obtained with the developed prototype are not
accurate enough for fine-grained position tracking in Ambient
Assisted Living applications. However, the platform can be suc-
cessfully used for reliable indoor zoning, e.g., for omnidirectional
and adjustable hazard proximity detection. Most importantly, the
proposed solution is absolutely general, and it is quite simple
and light from the computational point of view. Accuracy could
be further improved by using a more isotropic antenna and by
integrating the ToF measurement technique at the lowest possible
level on the same radio chip used for communication. Usually, this
feature is not available in typical low-cost short-range wireless
modules, e.g., for wireless sensor networks. Thus, the results of
this research suggest that combining RSS with ToF measurements
could be a viable solution for chip manufacturers interested in
adding ranging capabilities to their radio modules.

Index Terms—Distance measurement, estimation uncertainty,
Kalman filtering, wireless sensor networks (WSNs).

I. INTRODUCTION

IN THE last years, wireless measurement techniques for
indoor object positioning have become increasingly inter-

esting in various applicative fields such as home automation,
security, and Ambient Assisted Living (AAL). Unfortunately,
most of the existing solutions suffer from limitations imposed
by the line-of-sight (LOS) constraints, as they usually properly
work only in a specified direction. As a consequence, they
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are very effective if the sensor-to-target bearing is known in
advance or if complex pointing systems are used. Moreover,
strongly directional sensors can be hardly used when power
consumption is a concern. In fact, achieving both omnidirec-
tionality and accuracy in the short range is notoriously quite
hard, and consequently, it is still a hot research topic worldwide.
Several approaches relying on different sensing technologies
have been proposed for indoor positioning and ranging, e.g.,
based on laser rangefinders [1], ultrasound devices [2], infrared
sensors [3], inertial platforms [4], and video cameras [5] or
combinations thereof [6], [7]. Camera-based solutions are very
effective in terms of accuracy, even in the presence of partial
occlusions. However, they are not always usable because of pri-
vacy issues and because they suffer from scalability problems.
To overcome the directional constraint of such systems, pan-
tilt and omnidirectional cameras have been also proposed [8].
Their main drawback is the high computational burden when
multiple targets have to be recognized and tracked. The most
accurate approach is provided by laser scanning heads that
also address the target pointing problem [9]. Unfortunately,
these systems are very expensive. Radio frequency (RF)-based
ranging techniques are inherently less sensitive to obstacles and
dissipate less power than optical and ultrasound solutions. In
addition, they could exploit the same wireless modules used for
communication, and they are particularly suitable for wearable
applications. In wireless RF ranging techniques, the distance
between two objects is indirectly measured from some distance-
related parameters of the RF signals. The two most common
approaches are based on received signal strength (RSS) and
message time-of-flight (ToF) measurements. The RSS-based
methods rely on the relationship between the measured received
signal power and the transmitter–receiver distance. If the trans-
mitted power and the signal propagation model are known, the
distance from the transmitter can be estimated by reversing the
equation of the model. Usually, the RSS can be easily measured
without additional circuitry, because most of the integrated
wireless chips are natively equipped with an RSS indicator.
RSS-based ranging has been widely analyzed in recent years,
both theoretically and experimentally. An exhaustive empirical
analysis of this method is available in [10] and [11]. The main
drawback of RSS-based ranging is its considerable sensitivity
to multipath and shadowing phenomena, which are particularly
critical indoor for IEEE 802.15.4 wireless networks [12], [13].
Multipath propagation perturbs the ideal relationship between
RSS values and distance, thus leading to nonmonotonic and
space-varying measurement results [14]. Some researchers state
that the performance of RSS-based methods cannot be signif-
icantly improved by means of signal processing techniques,
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since it is limited by the intrinsic variability of the RSS in
the chosen environment [15]. However, other authors believe
that the total uncertainty can be mitigated through subsequent
refinements [16].

The ToF-based ranging methods rely on the measurement of
the propagation time of a radio packet. In general, two alterna-
tive ToF-based ranging methods exist, i.e., the time-of-arrival
(ToA) approach and the round-trip time (RTT) approach. The
ToA method, also known as one-way ranging (OWR), is based
on the estimation of the propagation time of a signal traveling
between two wireless devices [17]. In particular, the estimated
distance results from the product of the packet propagation time
and the light speed. However, the OWR technique requires that
the transmitter and the receiver are tightly synchronized (i.e., on
the order of 1 ns or less for short-range communications),
which is extremely challenging [18]. The RTT method instead,
sometimes also referred to as two-way ranging (TWR), is based
on the measurement of the time interval between the moment
when a message is sent and the moment when the correspond-
ing response message is received by the same device [19]. In
this case, the ToF value is obtained by dividing the measured
RTT by two after removing the time spent by the message on
either node [20], [21]. Since the RTT is measured by the same
device, no clock synchronization is required, and residual clock
drifts can be removed through symmetric double-sided TWR
[22]. Nowadays, the best available solutions based on RTT rely
on ultrawideband signals [23], [24], as they proved to be less
sensitive to multipath propagation issues. However, they require
custom and sometimes power-hungry circuits that can be hardly
used on wearable devices. Alternatively, solutions based on
chirp spread spectrum (CSS) signals have been recently pro-
posed, although their performance is not very clear [25], [26].
With other widely used wireless technologies (e.g., based on the
standard IEEE 802.15.4), accuracy typically drops due to the
large random jitter associated with time-interval measurements.
However, in static conditions (namely at fixed distances), it can
be improved through averaging or linear regression [27].

Whenever the presence of a moving object within a given
area is enough to support decisions (e.g., as it may happen in
some home automation applications), precise wireless ranging
can just be replaced by proximity detection. Some common
examples of proximity detectors are: photocells, magnetic,
inductive or capacitive sensors, and RF identification (RFID)
technologies [28], [29]. Despite the fact that proximity detec-
tion is simpler than ranging, achieving both low error rates and
omnidirectionality is still quite challenging. In fact, infrared
photocells have a limited field of view; inductive and capacitive
sensors as well as passive RFID readers work only in the very
short range, and active RFID solutions require a good rela-
tive orientation between antennas in order to assure adequate
coupling. Furthermore, the proximity threshold, usually, can be
hardly adjusted by the user according to the needs of the con-
sidered application. In this context, standard radio transceivers
could also provide interesting alternatives for flexible proximity
and zoning, provided that suitable techniques and algorithms
are used [30].

In this paper, starting from an in-depth analysis of both RSS-
and RTT-based ranging techniques (see Section II), a new data

fusion algorithm combining the results of both techniques is
presented in Section III. The proposed approach relies on the
improvement of the algorithm reported in [30], and it has been
implemented on a new custom embedded prototype, which is
presented in Section IV. In Section V, after a detailed descrip-
tion of the experimental setup and a preliminary evaluation
of the measurement uncertainty associated with either tech-
nique in static conditions, several experimental results in two
orthogonal dynamic scenarios are reported. Finally, Section VI
concludes the paper with some considerations about current
limitations and perspectives of the proposed solution both for
ranging and for flexible proximity detection.

II. WIRELESS RANGING TECHNIQUES

As stated in the Introduction, two different types of wireless
RF ranging techniques are commonly used, i.e., those based
on RSS and those relying on ToF values. With the RSS-based
approach, the distance from the transmitting device can be
estimated using the following expression [31]:

dR(t) = d0 · 10
s0−s(t)

10·α (1)

where s(t) is a random variable describing the power (typically
expressed in dBm) associated with a packet received by a given
node at time t, s0 is the random variable modeling the RSS at a
reference distance d0, and α is the path loss coefficient for the
considered environment. While apparently simple, the distance
measured through (1) is affected by multiple uncertainty contri-
butions that may considerably alter measurement results. First
of all, in indoor environments, α typically deviates from the
ideal value (i.e., 2 assuming the classic free-space attenuation
model) as it ranges from ≈ 1.5 in a long corridor to ≈ 3 in
furnished rooms [32]. Second, both s0 and s(t) are affected
by multipath propagation and fading. In this respect, several
research results confirm that the amplitude of a radio signal at
various distances from a transmitter located in the same room
exhibits a Rice rather than a Rayleigh distribution, because the
LOS contribution is significantly larger than the signal replicas
received after one or multiple reflections [33]. In particular,
the so-called K-factor (namely, the ratio between the power of
the LOS term and the total power of the other signal replicas)
typically ranges from 2 to 5 [34]. In principle, this value should
monotonically decrease, but in practice, it exhibits sudden
oscillations [35], [36]. In addition, the antenna anisotropy and
the limited resolution of the RSS detector integrated in most
radio chips make uncertainty estimation even more difficult. If
the law of propagation of uncertainty is applied to (1) under the
assumption that all individual uncertainty terms are perfectly
correlated and that the position-dependent systematic offsets
are properly estimated and compensated [37], the worst case
standard uncertainty is given by

u(dR(t)) =
d010

( |ŝ0−ŝ(t)|
10·α̂ −1

)
α̂

·
[
u(s0) + u (s(t)) +

|ŝ0 − ŝ(t)|
α̂

u(α)

]
(2)
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where u(s(t)), u(s0), and u(α) are the standard uncertainties
associated with the individual input quantities, whereas ŝ0,
ŝ(t), and α̂ are the corresponding values measured at time t.
Unfortunately, a trustworthy uncertainty stochastic model for
the RSS is hard to find, and it is still an active research
topic. Equation (2) suggests that the ranging uncertainty can
be reduced by calibrating the system in different positions at
the same reference distance d0 from the target in order to
make u(s0) as little as possible. Observe that (2) tends to
exponentially grow with the difference in RSS. This means that
a properly calibrated RSS-based system could be potentially a
good proximity detector with threshold d0. However, it can be
hardly used for accurate ranging at arbitrary distances.

The situation is quite different when the distance between
two nodes is estimated through the ToF. In principle, the
distance between the transmitter and the receiver can be easily
estimated as follows:

dT (t) =
c

2
[τ (t)− oτ (t)] (3)

where τ (t) is a random variable modeling the total RTT, c is
the speed of light, and oτ (t) is the random temporal overhead
given by the sum of

• the latency between the moment when a packet is times-
tamped on the sender side and the moment when the
corresponding bit actually leaves the antenna;

• the time spent on the destination node to receive the
incoming message and to reply with an acknowledgement
(ACK) packet;

• the latency between the moment when the first bit of the
ACK packet reaches the antenna and the moment when the
message is timestamped by the receiver.

Note that (3) returns an accurate distance estimate only if
1) the node distance variation during the whole RTT is

negligible;
2) oτ (t) is approximately constant so that it can be properly

estimated and compensated.
While the first assumption is reasonably true for people moving
indoor (i.e., quite slowly), the second one holds only if the var-
ious random latency contributions (particularly those due to the
specific channel access mechanism employed) are negligible.
Since, in general, this is not true, it is reasonable to assume that,
due to the superimposition of multiple independent terms, the
random fluctuations associated with τ (t) and oτ (t) are quite
large and normally distributed. In addition, the mean value of
oτ (t) is expected to be much larger than the pure propagation
time, but it can be estimated from the average of multiple RTT
values collected when the destination node is placed at a known
reference distance d0. Accordingly, the worst case standard
uncertainty associated with (3) after compensating possible
position-dependent systematic offsets is simply given by [37]

u (dT (t)) =
c

2
[u (τ (t)) + u (oτ (t))] (4)

where the standard uncertainty terms u(τ (t)) and u(oτ (t))
are assumed to be stationary and perfectly correlated, and the
wireless traffic is low enough as not to perturb the RTT signif-
icantly. In such conditions, (4) mainly depends on the message

timestamping jitter both at the transmitting and at the receiving
end. In particular, if the receiving timestamp is collected as soon
as the first symbol or at least the first field of an incoming packet
[e.g., the start frame delimiter (SFD)] is correctly detected, the
RTT uncertainty is certainly quite smaller than the cumulative
jitter associated with the reception of the whole message. In
this case, the RTT measurement uncertainty depends on the
random time at which the peak generated by the correlator at
the input of the receiver crosses the detection threshold. Such a
jitter is a function of the rising time of the correlation peak, and
it depends on both the SNR at the receiver input and the chosen
modulation scheme. However, if the LOS contribution is much
stronger than the various multipath replicas and the distance
between nodes is not so large as to make the SNR excessively
low for reliable symbol detection, the jitter associated with
the LOS correlation peak does not significantly change with
distance. Usually, such a jitter is on the order of a few tens of
nanoseconds if no special modulation schemes (e.g., CSS) are
used [38]. Under such conditions, the relative impact of ToF
uncertainty on ranging uncertainty tends to decrease as the dis-
tance between the transmitter and the receiver grows. However,
it certainly grows back as soon as the SNR drops. In conclu-
sion, from the previous analysis, it follows that the RSS-based
ranging approach is preferable around the reference distance
d0, particularly in the very short range, where it is easier to
have a better calibration. Conversely, the RTT-based technique
looks more promising over a longer range. Several experimen-
tal results reported in Section V-A confirm this assumption.
Therefore, combining both approaches is a sensible strategy to
improve wireless ranging accuracy.

III. DATA FUSION ALGORITHM FOR

DISTANCE ESTIMATION

In order to perform object tracking, the distance between two
nodes should be continuously measured over time. Assuming
that one node is fixed, whereas the other is moving, the distance
can be measured by either node (e.g., the moving device) as
soon as it receives the response or acknowledgment message
sent by its partner. Thus, every distance value estimated through
either (1) or (3) is intrinsically event driven. If the commu-
nication between nodes periodically occurs, the time interval
Tc between two consecutive messages received by the node
measuring the distance can be regarded as the sampling period
of the ranging system. In theory, Tc can be arbitrarily set by the
user. The lower bound to Tc is given by the sum of the minimum
RTT value including the time spent to process any sent or
received packet and the computing time due to the distance
estimation algorithm. Of course, Tc is generally subject to some
fluctuations (e.g., due to timestamping jitter, channel access, or
processing latency variations). However, if Tc is set much larger
than these fluctuations, their effect on the performance of the
digital ranging system is negligible, as shown in Section V-B.

As stated in Section II, in principle, the RSS and ToF data
are affected by different uncertainty contributions. Therefore,
the distance values estimated with (1) and (3) can be assumed
to be just weakly correlated, and they can be merged in a
variety of ways, e.g., by simply averaging both estimates or
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Fig. 1. Block diagram of the distance estimation algorithm based on RSS and
ToF data fusion. The P and U initials in the diagram stand for Prediction step
and Update step.

using one of them to measure the relative speed between nodes.
In the following, the main steps of a new distance estimation
algorithm based on RSS and ToF data fusion are reported. A
visual description of this algorithm is offered in Fig. 1. The
related symbols are defined in the following subsections.

A. Data Acquisition and Filtering

An essential preliminary step to improve ranging accuracy
is data filtering. The purpose of this operation is not only to re-
duce the random fluctuations affecting raw measurement results
(particularly the ToF values) but also to remove possible values
that are not compatible with the movement of a real target
(e.g., sudden large distance variations). Data filtering can be
implemented in a variety of ways. However, the simultaneous
presence of both wideband stationary noise and nonstationary
disturbances suggests using an ad hoc solution based on the
series of a linear filter with a nonlinear heuristic technique.
As far as the linear part is concerned, a plain moving-average
(MA) filter is used. In fact, not only is the MA filter extremely
simple from the computational point of view, but it is also
optimal in reducing the random wideband noise, since it has

the smallest equivalent noise bandwidth among other finite-
impulse response filters of the same order. In addition, it assures
the sharpest step response [39], [40]. Moreover, unlike infinite-
impulse response filters, the MA filter exhibits a perfect linear
phase response, i.e., with no phase distortion and a constant and
predictable group delay. The order M of the MA filters results
from the tradeoff between four contrasting issues, i.e., output
noise variance, filter bandwidth, available memory, and delay.
The first two quantities decrease with M . However, if the filter
bandwidth is too small, possible sharp direction changes of the
moving target could be heavily filtered, thus degrading accuracy
in dynamic conditions. In addition, the overall estimation delay
should be lower than 1 or 2 s, in order not to excessively perturb
the system responsiveness perceived by the user. Since the
group delay of an MA filter in the analog domain is (Tc ·M)/2,
by reducing Tc for a given value of M , filter responsiveness
can be improved at no price in terms of accuracy. Thus, if
M consecutive raw RSS and ToF data are filtered by an MA,
the distance values resulting from either technique are given
respectively by

d̄R(n) = d0 · 10
ŝ0− 1

M

∑M−1

i=0
ŝ(n−i)

10·α̂ (5)

d̄T (n) =
c

2

[
1

M

M−1∑
i=0

τ̂(n− i)− ôτ

]
(6)

where ŝ0, α̂, and ôτ are assumed to be previously estimated
through calibration, while ŝ(n) and τ̂(n) are measured in real-
time as soon as the nth ACK message is received. Of course,
ŝ(−1) = · · · = ŝ(−M + 1) = 0 and τ̂(−1) = · · · = τ̂(−M +
1) = 0 by definition. Note that in (5) and (6), the MA is com-
puted over raw measurement data before applying functions (1)
and (3), as suggested in [37]. This approach is preferable in the
case of indirect measurements based on nonlinear functional
models, because it reduces the estimation bias caused by the
intrinsic variance of the individual input quantities [41].

Unfortunately, as stated above, wideband noise is not the
only uncertainty source in the considered measurement prob-
lem. Other position-dependent errors may significantly alter
measurement results. In order to tackle this additional problem,
a heuristic criterion based on human-motion constraints is used.
In fact, the human speed in an indoor environment is usually
smaller than vmax = 2 m/s [42]. Therefore, any value returned
by (5) and (6) can be considered as acceptable only if the
variation from the last estimated distance does not exceed
±vmax Tc. In practice, this criterion leads to the definition of
the following nonlinear filters:

d̂R(n)=

⎧⎨
⎩
d̂R(n−1)+vmax Tc d̄R(n)−d̂R(n−1)≥vmax Tc

d̂R(n−1)−vmax Tc d̄R(n)−d̂R(n−1)≤−vmax Tc

d̄R(n) otherwise

(7)

d̂T (n)=

⎧⎨
⎩
d̂T (n−1)+vmax Tc d̄T (n)−d̂T (n−1)≥vmax Tc

d̂T (n−1)−vmax Tc d̄T (n)−d̂T (n−1)≤−vmax Tc

d̄T (n) otherwise.

(8)
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Note that the probability of saturation in (7) and (8) depends not
only on the environmental and position-dependent disturbances
but also on the order M of the MA filter. Some experimental
data showing the effectiveness of the heuristic criterion are
reported in Section V-A.

B. System Model

Let r(t) be the LOS distance between two wireless nodes at
time t. The dynamic of r(t) can be described by the following
simple linear kinematic model:{

ṙ(t) = v(t)
d(t) = r(t)

(9)

where the input v(t) is the speed component of the moving
object in the direction of the fixed node (in the following simply
called as relative radial speed), and the distance d(t) can be
regarded as the output of the system. Given that either node can
measure the values of v(t) and d(t) only when an ACK packet
is received, system (9) can be discretized as follows:{

r(n+ 1) = r(n) + Tcv(n) + Tcν(n)
d(n) = r(n) + ε(n)

(10)

where r(n) and v(n) are the distance and the radial speed val-
ues, respectively, after n message pairs are exchanged between
nodes. It is worth emphasizing that the model defined by (10)
holds both when Tc can be assumed to be constant and when
Tc changes as a function of time. Of course, in the latter case,
Tc should be also measured at run-time. The two discrete-time
random sequences ν(·) and ε(·) in (10) model the effect of
speed and distance measurement uncertainty. Both sequences
depend on the superimposition of multiple nonstationary uncer-
tainty contributions, e.g., the relative orientation of the antennas
and the presence of obstacles or walls. As a consequence,
ν(·) and ε(·) may exhibit time and/or space fluctuations that
survive the preliminary filtering step. In particular, the position-
dependent distance offsets randomly change when the target
moves, thus becoming either positive or negative. Therefore,
in a first approximation, ν(·) and ε(·) can be assumed to have
zero-mean and time-varying variance in the spatio-temporal
domain.

C. KF Definition

Since no clear assumptions can be made on the stochastic
distribution of ν(·) and ε(·), finding an optimal dynamic state
estimator of (10) is very difficult. For this reason, a simple but
effective suboptimal approach was used to solve the estimation
problem at hand. In fact, it is known that the Kalman filter (KF)
is the best linear state estimator when either the process noise
or the measurement uncertainty have unknown distributions
[43]. A typical KF has a recursive structure that estimates the
internal state of a linear dynamic system from a sequence of
noisy measurement data. In particular, a KF consists of two
main stages connected in a loop, i.e., the prediction step and the
update step. If the superscript ∗ is used to denote the predicted

quantities, the prediction equations of the KF based on (10)
are [43]

r̂∗(n+ 1) = r̂(n) + Tcv̂(n)

d̂∗(n+ 1) = r̂∗(n+ 1)

σ∗2
r (n+ 1) =σ2

r(n) + T 2
c σ

2
ν(n) (11)

where σ2
r(n) and σ2

ν(n) are the variance values associated with
r̂(n) and ν(n), respectively, as soon as the nth ACK message
is received. Since the system (10) is monodimensional, the
covariance terms in (11) are just variances. While σ2

r(·) is
updated by the KF itself in the subsequent update step, σ2

ν(·)
is estimated and modified in real-time using the collected input
data (e.g., over a window of fixed size) due to the nonstationary
behavior of ν(·).

In the update step, it can be easily shown that [43]

r̂(n+ 1) = r̂∗(n+ 1) +K(n+ 1)
[
d̂(n+ 1)− d̂∗(n+ 1)

]
σ2
r(n+ 1) =

[
1− σ∗2

r (n+ 1)
]
K(n+ 1) (12)

where K(n+ 1) = σ∗2
r (n+ 1)[σ∗2

r (n+ 1) + σ2
ε (n+ 1)]−1 is

the so-called Kalman gain, and σ2
ε (n+ 1) is the variance of

ε(n+ 1) when the (n+ 1)th ACK message is received. In
practice, σ2

ε (·) can be estimated through a preliminary analysis
of the distribution of ε(·) in the considered environment, as
described in Section V-A.

D. Data Fusion

According to (11) and (12), independent speed and position
data are required to implement the KF. In particular, the relative
radial speed between two nodes can be estimated as the ratio
between the backward Euler difference of two consecutive
distance measures and Tc. Given that RSS- and ToF-based
distance values estimated with (7) and (8), respectively, can
be assumed to be just weakly correlated, either (7) is used to
measure d̂(·) and (8) is employed to estimate v̂(·) (Kalman
Filter A, or KF A for brevity), or vice versa (Kalman Filter B,
or KF B). In the former case, the relative radial speed to be used
as input of (11) is given by v̂A(n) = (d̂T (n)− d̂T (n− 1))/Tc,
whereas the sequence of distance measures to be injected into
(12) is simply d̂A(n) = d̂R(n). Dually, in the latter case, radial
speed and distance values result from d̂B(n) = d̂T (n) and
v̂B(n) = (d̂R(n)− d̂R(n− 1))/Tc, respectively. In principle,
only one of the two KFs should be used. However, both of
them are suboptimal since the distribution of the uncertainty
contributions is unknown and nonstationary both in time and in
space. As a consequence, the most sensible approach is to run
both KFs in parallel and then to weigh r̂A(n) and r̂B(n) using
the reciprocal values of the respective variances. As a result, the
measured distance is finally given by

r̂(n) =
σ2
rB

(n)r̂A(n) + σ2
rA
(n)r̂B(n)

σ2
rA
(n) + σ2

rB
(n)

. (13)

This way, the output mainly depends on the term with the
smaller estimated uncertainty.
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Fig. 2. (a) Functional block diagram and (b) snapshot of the MTS (by courtesy
of Tretec S.r.l., Trento).

IV. HARDWARE PLATFORM DESCRIPTION

In order to evaluate the performance of the data fusion
algorithm described in Section III, a new wireless node proto-
type developed in cooperation with Tretec S.r.L., Trento, Italy,
was used for all experimental activities. The block diagram
and a snapshot of the node are shown in Fig. 2(a) and (b),
respectively. The system results from the evolution of the node
employed for similar experiments in [30], but it is smaller in
size, and it is equipped with a faster microcontroller (MCU)
and a larger memory. In particular, the node consists of

• a TI CC2520 RF transceiver compliant with the standard
IEEE 802.15.4;

• a 32-bit STM32F103T8 MCU based on a 72-MHz ARM
cortex M3 architecture with 20 kB of RAM and 64 kB of
Flash memory;

• a tiny piggyback daughterboard provided with a time-to-
digital converter (TDC) TDC-GP2 by Acam Mess Elec-
tronic with an RMS resolution of 50 ps;

• a 3.7-V 800-mAh rechargeable lithium-ion polymer
battery;

• a chip antenna WE-MCA by Würth Elektronik located in
one of the corners of the node prototype along with its own
balun;

• a micro Secure Digital (SD) slot for data logging
purposes;

• a USB port for node programming and battery charging.

The node, in the following simply referred to as Mobile Track-
ing System (MTS), is rectangular in shape with the following
dimensions: 5.8× 3.0× 1.9 cm. The last value refers to the
thickness of the node including the battery. The MTS is able
to measure both RSS and RTT data relative to a chosen fixed
anchor (FA), which must be preliminary tuned on the same
IEEE 802.15.4 channel used by the MTS. The lifetime of

the node at room temperature when it is fully active (i.e.,
uninterruptedly used for high-rate distance measurements) is
about 12 h when the transmission power is set to 0 dBm.
The MCU is provided with two serial peripheral interfaces:
one is used to handle and to exchange information with the
transceiver, whereas the other one is linked to the TDC. The
TDC is triggered by the rising edge of the SFD flag signal
generated by the CC2520 when the first bit of the SFD field
of an IEEE 802.15.4 message is sent. Similarly, the TDC is
stopped by the rising edge of the same flag signal as soon as the
SFD field of the corresponding ACK message is received. After
the TDC is stopped, the corresponding RTT value is read by
the MCU, followed by the RSS value associated with the ACK.
Such data are buffered and timestamped by one of the timers
of the MTS. If an excessive amount of time elapses between
the edges starting and stopping the TDC, the TDC is reset,
and the corresponding RTT value is discarded. In order to
reduce the RTT latency as much as possible, the payload size
of each message is set to the minimum specified in the standard
IEEE 802.15.4 [44]. In addition, the MTS is configured to oper-
ate in a low-level mode, i.e., disabling the carrier sense multiple
access with collision avoidance (CSMA-CA) mechanism. As a
consequence, the transmission and the channel access times are
not affected by the random back-off delays normally introduced
by the media access control layer. In addition, the FA ACK
response latency in a nonbeacon-enabled personal area network
is deterministic and equal to the radio turnaround time [44].
It is worth highlighting that the FA is not required to be a
special device, as instead it was in [30]. On the contrary, any
IEEE 802.15.4-compliant node (e.g., a TelosB or a Tmote Sky)
can play the role of the FA provided that its transceiver is
configured to send ACK messages automatically, i.e., without
MCU intervention. The Tc value can be arbitrarily set by the
user, but, as stated in Section III, it must be larger than the
sum of the worst case RTT, the total computational time of
the MCU, and the time necessary to save the results into the
micro SD memory card. Of course, faster transmission rates
improve trajectory tracking and reduce estimation uncertainty
for the same reasons described in [30]. By pressing a small
button on the MTS, a user moving along a given trajectory can
mark when he/she reaches specified points of interest, thus en-
abling a fair comparison between the estimated distance and the
real one.

V. EXPERIMENTAL RESULTS

Different types of experiments were conducted in the
Domotic Application Lab, Department of Information Engi-
neering and Computer Science, University of Trento. This
laboratory consists of a 25-m2 room furnished like a real
living room (e.g., with a sofa, a table, some chairs, a TV set,
and a small kitchen). All experiments were conducted by two
trained researchers. The proposed testbed (which was purposely
established and instrumented to support several projects dealing
with domotics) offers the possibility to reproduce a real-world
domestic indoor environment, while assuring repeatable con-
ditions. At first, the MTS prototype was calibrated at known
fixed distances. Afterward, the standard uncertainty associated
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with raw distance measurement results as well as the average
root-mean-square error (RMSE) in different positions of the
room with and without using the heuristic filter were evaluated,
as described in Section V-A. Finally, the accuracy of the MTS
was analyzed in repeatable dynamic conditions, i.e., with the
node carried by a user moving along given trajectories. The
details of such experiments are described in Section V-B. All
data were saved into the onboard SD memory and were even-
tually processed offline to extract interesting statistics about
performance.

A. Uncertainty Evaluation of Individual Quantities

The standard uncertainty associated with individual RSS-
and ToF-based measurements was evaluated with a Type-A
approach [37], namely, with a statistical data analysis. A com-
mercial Crossbow TelosB node configured as an FA was put
on top of a 90-cm plastic pole at about 1 m from one of the
walls of the room. The MTS prototype was put on another
90-cm pole that was placed in LOS conditions at various
distances from the FA. Both nodes were tuned on the same
IEEE 802.15.4 channel (i.e., channel 16 centered at 2.43 GHz)
with a nominal transmission power equal to 0 dBm and with
their antennas as parallel as possible in order to optimize the
quality of the radio link. The MTS was calibrated in two
steps. In the first one, about 5000 RSS and RTT raw values
were collected at the reference distance d0 = 1 m in four
different orthogonal positions around the FA. The resulting
average reference RSS value is ŝ0 = −55 dBm with standard
uncertainty u(ŝ0) = 4 dBm. Similarly, the mean overhead la-
tency estimated from (3) after averaging all RTT values col-
lected at d0 = 1 m is ôτ = 433 065 ns with negligible standard
uncertainty.

In the second step of the calibration procedure, about 5000
RSS and RTT values were collected by the MTS at 2, 3, 4, and
5 m from the FA. The path loss coefficient can be estimated
through linear regression, after applying the base-10 logarithm
function to both terms of (1). From this procedure, it follows
that α̂ = 2.14 with negligible uncertainty. In Fig. 3(a) and (b),
the standard uncertainty and the RMSE patterns associated with
dR(n) and dT (n), respectively, are plotted as a function of the
real distance. The solid lines result from a Type-A uncertainty
evaluation at different known distances from the FA, after
removing the static position-dependent offsets. The dotted lines
refer to the theoretical worst-case standard uncertainty values
given by (2) and (4), respectively. Clearly, the theoretical and
experimental uncertainty patterns are in good agreement. In
particular, the uncertainty associated with the RSS data tends
to grow with distance, whereas the uncertainty related to ToF-
based estimates is approximately constant, as expected. The
dashed lines in Fig. 3(a) and (b) represent the experimental
RMSE patterns including the effect of both random fluctuations
and position-dependent offsets. When the MTS is steadily
located in the same place, the position-dependent offsets as-
sociated with each method are approximately systematic, and
they cannot be removed by the preliminary filtering. Observe
that the position-dependent offsets can significantly affect the
RMSE, but their influence on RSS- and ToF-based measure-

Fig. 3. Standard uncertainty and RMSE values associated with individual
(a) RSS-based and (b) ToF-based distance measurements. The solid lines result
from a Type-A uncertainty evaluation. The dotted lines in (a) and (b) refer
to the worst case theoretical standard uncertainty values given by (2) and (4),
respectively. Finally, the dashed lines represent the experimental RMSE values
including the effect of both random fluctuations and position-dependent offsets.

ment results can be different even when they refer to the same
position. This justifies the use of an estimator based on the
combination of dual techniques, such as the one proposed in
this paper.

Fig. 4 shows the probability that the saturation due to the
heuristic criteria in (7) and (8) is actually activated when
either the RSS values (dotted line) or the ToF values (solid
line) are used for distance estimation. Both probability curves
are computed as a function of the MA window size M over
about 50 000 values collected at various known distances.
The probability patterns show that the heuristic has a rel-
evant impact when M is small, and it becomes less and
less significant as M grows. This is quite obvious because
with an MA computed over an increasingly large number
of samples, all distance variations are heavily filtered. How-
ever, this also negatively affects the tracking capability of
the MTS. Note that the heuristic is particularly useful in the
case of ToF-based measurements. This is due to the fact that
when M is small, the wideband noise affecting raw RTT
values is so large as to trigger the heuristic with a very high
probability.

Fig. 5 shows the average RMSE related to the same set of
experiments as in Fig. 4. Different markers refer to RSS- and
ToF-based distance estimators both with and without using the
heuristic, i.e., based on (5)–(8), respectively. The benefits of
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Fig. 4. Average probability of using the heuristic criterion as a function of the
MA window size, when either the (dotted line) RSS values or the (solid line)
ToF values are used for distance estimation.

Fig. 5. Average RMSE patterns related to different RSS- and ToF-based
distance estimators (i.e., MA filters only and MA filters enhanced with the
heuristic).

the heuristic are evident for ToF-based distance measurements.
In this case, the RMSE obtained with (8) is always smaller
than the value resulting from (6). In addition, it converges to
the asymptotic value with a smaller number of samples M .
In this case, the residual error is clearly dominated by the
average position-dependent offset. Observe that for M ≥ 100,
accuracy improvements are negligible. Therefore, it is pointless
to compute an MA over a larger number of samples.

In the case of RSS-based distance measurements, the benefits
of the heuristic criteria are typically minor. Nonetheless, in
dynamic conditions, the heuristic can be very useful to remove
sporadic large distance variations (i.e., outliers) due to abnor-
mal RSS changes occurring in the considered environment.

B. Accuracy Analysis in Dynamic Conditions

The uncertainty analysis described in the previous subsection
is essential for three main purposes:

1) To estimate the calibration parameters ŝ0, α̂, and ôτ ;
2) To define the size of the MA filter M ;
3) To initialize both KFs.

As stated in Section V-A, the value of M should be set equal
to 100. Since the MTS prototype is much faster than the
platform described in [30], the minimum nominal value of Tc

assuring both reliable radio communication and real-time data

Fig. 6. Histogram of the measured sampling time values.

acquisition and processing is equal to 10 ms. Consequently,
the group delay of the preliminary MA filter is just 0.5 s,
i.e., low enough not to disturb the responsiveness perceived by
the user. The random fluctuations affecting Tc are particularly
small in the considered scenario. This is clearly visible in the
histogram shown in Fig. 6, which reports the relative frequency
of occurrence of the measured sampling periods out of several
tens of thousands samples. Observe that more than 90% of
values lie in the range 10 ± 0.2 ms. This is mainly due to the
fact that the CSMA channel access mechanism is disabled and
that the firmware is very optimized. A few outliers (below 1%)
are caused by some lost packets.

The state variables of both KFs are initialized to 2.5 m with
variance σ2

rA
(1) = σ2

rB
(1) = 25 m2. The initial speed values

instead are set equal to zero. While the speed variances σ2
νA

(·)
and σ2

νB
(·) are estimated in real-time over the same M -long

window used to compute the MA, the variances σ2
εA
(·) = 4 m2

and σ2
εB
(·) = 4 m2 associated with the measured distances are

kept constant as they are mostly due to the position-dependent
uncertainty contributions.

In order to test the performance of the algorithm in dynamic
and realistic repeatable conditions, two kinds of orthogonal
experiments were conducted in the Domotic Application Lab.
In all cases, the FA was steadily kept on top of a fixed 90-cm
plastic pole located in different positions, but always at about
1 m from the walls of the room. The MTS instead was manually
held by the moving user just in front of the body at about
1 m from the floor, with the MTS and FA antennas reason-
ably parallel to each other and always in LOS conditions. No
obstacles or bodies were used to steadily obstruct the LOS
communication between the two wireless devices. However,
the environment was perturbed by another person randomly
moving in the room. In the first experimental session, a target
person repeatedly moved forth and back along a 5-m straight-
line radial trajectory until touching the FA. In order to make the
trajectories as repeatable as possible, some reference adhesive
labels were put on the floor at known distances from the FA.
The values measured by the MTS in four check points (i.e., at
1.25, 2.5, 3.75, and 5 m in either direction) were marked by
the user by pressing one of the buttons of the MTS, as soon as
the user’s leg treading on one of the labels was approximately
vertical with a residual uncertainty of a few centimeters. The
button press latency (including both the human reaction time
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Fig. 7. Measurement results obtained with the (a) proposed algorithm, with
the (b) KF A only, and with the (c) KF B only. In all cases, the target was moving
forward and backward along a straight-line radial trajectory. The (dashed line)
almost triangular waveform represents the real movement over time. The check
points at 1.25, 2.50, 3.75, and 5 m from the FA are highlighted with star
markers.

and the interrupt service processing time) is roughly 200 ms.
At a speed of about 1 m/s, this means that the overall intrinsic
uncertainty due to the chosen experimental setup is on the order
of 20 cm. The results of one of these experiments in the time
domain are shown in Fig. 7(a)–(c). In particular, Fig. 7(a) shows
the distance estimated with the proposed algorithm, whereas the
patterns in Fig. 7(b) and (c) refer to the output of KF A and KF
B, respectively. The quasi-triangular waveforms (dashed lines)
shown in each picture represent the real trajectory as a function
of time. In addition, the star markers highlight the check points,
namely, the moments when the button was pressed by the

Fig. 8. Box-and-whiskers plot of the distance uncertainty at 1.25, 2.5, 3.75,
and 5 m collected when the target moves along a 5-m straight-line forth-and-
back trajectory.

Fig. 9. Box-and-whiskers plot of the distance uncertainty at 1, 2, 3, and 4 m
collected when the target repeatedly moves along a 2-m arc of a circle with the
center in the FA.

moving user. Note that the proposed approach improves the
estimation accuracy of either individual ranging technique.

The results of a more detailed analysis are reported in Fig. 8,
which shows the box-and-whiskers plots of the errors associ-
ated with any of the four check points mentioned above. Each
box refers to more than 50 data. Observe that the uncertainty is
generally about 1 m. However, it may occasionally reach 2 m.
Similar results are also confirmed by the second group of
experiments, in which a target person repeatedly moved along
a 2-m arc of a circle with the center in the FA and the radius
equal to 1, 2, 3, and 4 m, respectively. Again, some stickers put
on the floor and a wire of adjustable length used as a compass
were used to keep the trajectories as stable and repeatable
as possible. In this case, the intrinsic uncertainty due to the
setup is on the order of a few centimeters. The corresponding
box-and-whiskers plot is shown in Fig. 9. Observe that the
worst case uncertainty tends to grow with distance, but it
is quite low in the very short range. In applications where
real users are involved, two main further intrinsic uncertainty
contributions may seriously affect measurement results, i.e.,
possible changes in the relative orientation of MTS and FA
antennas and poor LOS visibility (e.g., due to the posture
of the person wearing the MTS or to other people steadily
obstructing the LOS communication between MTS and FA).
When such situations occur, uncertainty may grow from two to
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three times as much. This is a common issue for all RF wireless
ranging techniques, even those based on commercial platforms
[45]. Nonetheless, the proposed data fusion algorithm is at
least able to mitigate the detrimental effects of the uncertainty
contributions described above, because the distance estimated
through (13) prevailingly relies on the measurement result with
the smaller overall variance. To further reduce this problem,
the position of MTS and FAs should be always chosen so as
to maximize nodes reciprocal visibility (e.g., with the MTS
worn on a special hat and the FAs installed at least 2 m above
the floor).

VI. CONCLUSION

This paper deals with a data fusion algorithm merging RSS
and ToF measurement results in order to improve wireless
ranging accuracy. Both approaches have been analyzed in detail
in order to evaluate the main uncertainty contributions affecting
either measurement procedure. The proposed algorithm has a
general validity (i.e., independent of the chosen implemen-
tation), and it relies on two MA filters to reduce the input
wideband noise, a heuristic criterion able to easily remove
possible large position-dependent offsets, and two KFs that use
RSS- and ToF-based measurement results in a complementary
manner. Due to its moderate complexity, the algorithm could
be integrated in future transceiver chips to support possible
positioning services (e.g., for wireless sensor networks). At
the moment, the algorithm has been implemented and tested
on the field using a dedicated embedded system made up of
commercial off-the-shelf (COTS) components. The estimated
accuracy is generally about 1 m, but it can be so small as
50–60 cm around a given reference distance. Accordingly,
such a distance can be also set as a threshold for adjustable
and omnidirectional proximity detection. Unfortunately, the
accuracy of the developed prototype is limited by the features
of some hardware components, particularly the antenna that
is not so isotropic as specified in the data sheet. Moreover,
ToF measurement accuracy could be much better if message
timestamping was done in the transceiver front end as soon as
the first symbol of any packet is sent or received. However, this
is not possible with COTS components. Due to the limitations
above, the developed prototype cannot be used in AAL appli-
cations with tracking accuracy requirements on the order of a
few tens of centimeters. Nevertheless, the system is accurate
enough for reliable indoor zoning and proximity detection. For
instance, the platform is going to be used in an AAL project
where the staff assisting mentally disabled people (e.g., affected
by Alzheimer’s disease) should be alerted as soon as patients
enter into potentially dangerous areas, e.g., within 1 m from
windows, doors, staircases, or gas cookers.
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