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Abstract—Applications running in today’s data centers show high workload variability. While seasonal patterns, trends and expected
events may help building proactive resource allocation policies, this approach has to be complemented with adaptive strategies
which should address unexpected events such as flash crowds and volume spikes. Additionally, the limitations of current I/O
infrastructures in the face of dramatic increase of data generation require, the ability to build novel abstractions and models for robust
decision making regarding data layout and data locality. In this work, we present CONDESA (CONtrolling Data distribution
on Elastic Server Architectures), a framework for exploring adaptive data distribution strategies for elastic server architectures.
To the best of our knowledge CONDESA is the first platform that permits to systematically study the interplay between five data
related strategies: workload prediction, adaptive control of data distribution and server provisioning, adaptive data grouping, adaptive
data placement, and adaptive system sizing. We demonstrate how CONDESA can be used for browsing the design space of
adaptive data distribution policies. We show how prediction models can be compared in terms of overhead and accuracy. We
evaluate the impact of change detection on prediction accuracy and how CONDESA can be used for choosing an adequate
prediction horizon. We demonstrate how adaptive prediction can be used for sizing a server system. Finally, we show how prediction
models, change detection strategies, and data placement policies can be combined and compared based on server utilization,
load balance, data locality, over- and underprovisioning.
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1 INTRODUCTION

THE growing amount of information to be stored and
processed in a data center and the high workload

variability shown by Internet applications have increased
the importance of efficient data management. Data place-
ment has become one of the most important topics in
data management due to its relevance for the desired data
center operation and its direct impact on performance,
elastic scalability, resource sharing, availability, and energy-
efficiency. Controlling data layout is critical for feasibility of
processing large data amounts, as the reorganization of
large data sets is severely limited by the I/O infrastructure
capabilities and must not negatively impact quality of
service requirements [1]. However, controlling data layout
has become an increasingly difficult task as the workloads
of Internet applications show high variability due to factors
such as periodic variations (seasonality), trends, expected
and unexpected events. Traditionally, these variations have
been addressed by overprovisioning the infrastructure, but
this approach has been demonstrated to be costly and
economically risky, as the peek volume is short-lived and

the server utilization in normal traffic periods is between
10 percent and 50 percent [2].

The advent of cloud computing was a suitable match for
the variable demand of Internet applications. Cloud com-
puting enables elastic horizontal scalability of server infra-
structures, which allows to dynamically allocate resources
depending on demand and to pay only for the used resources.
However, efficiently exploiting the dynamic resource
allocation mechanisms offered by clouds strongly depends
on understanding and controlling the dynamics of work-
loads and on reducing the data traffic inside the data center.
Increasing scale and demand variations pose huge challenges
on developing, deploying, and evaluating control mechan-
isms and policies for efficient resource allocation.

The main goal of our work is to simplify the process of
designing and evaluating dynamic data distribution strategies
for efficiently mapping the variable demand of applications
on elastic infrastructures such as clouds. For achieving this
goal, this paper proposes CONDESA (CONtrolling Data
distribution on Elastic Server Architectures), a framework
that leverages adaptive prediction and control techniques
for facilitating the development of elastic data distribution
policies for scalable applications with variable data workload
patterns. Building elastic data distribution policies for highly
variable demand is challenging, as changing workloads
require data to be dynamically regrouped and redistributed
in order to make an efficient use of resources and achieve
economy of scale. When addressing this problem a designer
works in a complex setup requiring to select and combine a
series of complex techniques including:

1. building prediction models of workload variations
at various granularities;
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2. adaptation to both permanent changes in workload
patterns and unexpected workload spikes;

3. techniques for elastically scaling up and down the
infrastructure depending on demand variation;

4. techniques for dynamically grouping data into alloca-
tion units called placement groups;

5. techniques for dynamically placing groups over
servers or disks.

For evaluating the dynamics of an elastic infrastructure,
CONDESA provides several metrics for estimating re-
source utilization, load balance, data locality, and model-
ing accuracy.

CONDESA framework emerges as an overarching
approach of our previous work on dynamically provision-
ing elastic server infrastructures [3], [4], [5]. Beyond those
publications this paper presents the following new con-
tributions. First, CONDESA abstracts away the workload
modeling, data grouping, and data placement strategies.
Any time series prediction model, data grouping, and data
placement strategies can be defined, integrated, and evalu-
ated together with the other framework features. Second,
CONDESA unifies local and global workload models into a
hierarchy, allowing to take advantage of the tradeoff
between global and local predictions. Third, CONDESA
provides adaptability by automatic detection of inaccurate
models and reactive model redefinition. Fourth, we intro-
duce novel metrics for evaluating efficiency of dynamic data
distribution and server allocation policies.

The remainder of this paper is structured as follows.
Section 2 presents CONDESA architecture. Then, we discuss
the main CONDESA components. Section 3 presents the
adaptive prediction component. Section 4 discusses the
system sizing module. Section 5 describes the adaptive data
distribution module. Section 6 presents the data set used in the
evaluation. Section 7 describes CONDESA metrics. Section 8
demonstrates a subset of analyses that can be performed
with the CONDESA framework. We overview related work
in Section 9, and finally, Section 10 concludes. Additional
material is provided in a supplementary file consisting of six
appendices which is available in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2013.197.

2 CONDESA ARCHITECTURE

CONDESA is a framework for evaluating adaptive and
predictive data distribution techniques for elastic server
infrastructures. CONDESA addresses three-tiers architec-
tures [6], as they are the most common solutions for data-

intensive Web-based applications. The three tiers of the
model architecture are: dispatchers, content servers, and
storage backend, as shown in the left-hand side of Fig. 1.
The dispatcher tier receives application requests for storage
objects ðoiÞ and redirects them to content servers based on a
request distribution policy. The content servers return the
demanded storage object to the application either from a
local cache or from the storage backend.

The notations used in this paper are summarized in three
tables shown in Appendix A available online: the input
parameters in Table 1, the observed and predicted variables
in Table 2, and the model evaluation criteria in Table 3.

CONDESA consists of three main components
connected in a feedback loop with the controlled system
as shown in Fig. 1:

. The adaptive prediction modeling component has two
main tasks: 1) to define, monitor, modify, and adapt
time series workload models; 2) to inform the adaptive
data distribution component about model failures that
could cause reactive resource provisioning actions.
This component has as input the current workload at
server level ðlsðtÞÞ, group level ðlgkðtÞÞ, and global level
ðlðtÞÞ. The adaptive prediction modeling component
consists of two interacting modules: a predictor
module and a change detector module. The predictor
module manages a extensible library of generic time-
series models, which are employed for generating
forecasts at global level ð~lðtÞÞ and group level ð~lgkðtÞÞ.
The change detector module constantly monitors the
prediction accuracy and takes decisions on model
change based on user-defined criteria. The adaptive
prediction component provides a series of statistics
that can be used for estimating model accuracy or for
defining criteria for model selection or model
change. The predictions generated by this compo-
nent are forwarded to the adaptive data distribution
component.

. The adaptive data distribution component allows to
employ elastic data distribution strategies for con-
tent servers based on two modules: data grouping
and data placement. The data grouping module
dynamically clusters storage objects into logical
groups, which are the unit of placement and
replication on the content servers. The data placement
module allows to implement adaptive data place-
ment strategies based on the information provided
by the adaptive prediction component.

. The system sizing module dynamically scales the
system by turning servers on and off based on the

Fig. 1. CONDESA architecture.
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information provided by the adaptive prediction
module.

The remainder of this paper focuses on the three
components of the CONDESA framework: adaptive system
prediction (Section 3), system sizing (Section 4), and adaptive
data distribution (Section 5).

3 ADAPTIVE PREDICTION COMPONENT

The adaptive prediction modeling component uses historical
workload information and prediction accuracy for controlling
the system size, data grouping, and data placement strategies.
The logic of this component is implemented in two interacting
modules, as shown in Fig. 2: a predictor module and a change
detector module. The predictor module automatically defines
prediction models, selects among several candidates and
generates predictions from these models as discussed in
Section 3.1. The change detector module estimates the model
accuracy and decides when to redefine a model as described
in Section 3.2.

3.1 Prediction Module
The prediction module manages models for predicting
the system workload based on access pattern history. The
prediction module receives as input a series of past observa-
tions ðlt�k; . . . ; lt�2; lt�1Þ and generates a time window of h
predictions ð~lt; . . . ; ~ltþh�1Þ and the fitting error. The next
three sections discuss the definition of prediction models
(Section 3.1.1), selection of prediction models (Section 3.1.2),
and the hierarchical modeling approach employed in
CONDESA (Section 3.1.3).

3.1.1 Model Definition
The definition of a model is done in two steps: model
formulation and model estimation (fitting) [7]. The model
formulation identifies the form of the internal equations
used by the models, while the fitting stage estimates the
model parameters by methods such as recursive least
squares or maximum likelihood.

CONDESA library contains currently three time-series
family models: ARIMA [7], Holt-Winters [8], and ARz [9].
For each of them CONDESA relies on automatic model

formulation and estimation tools available for R statistical
software environment. Nevertheless, CONDESA predic-
tion library can be extended, as the prediction module
interface is generic: any uni-dimensional time series family
model can be incorporated into the framework and
evaluated together with other system components.

Our choice of time series models is motivated by the fact
that they are natural and straightforward ways of repre-
senting and predicting variability in time. This intuition has
been confirmed by our experience, which has shown the
appropriateness of applying time series to model workload
variability.

3.1.2 Model Selection
CONDESA allows to employ several concurrent prediction
models and to select the best one based on various criteria,
as shown in Fig. 2. First, a candidate model is chosen based
on a family model specific selector. For instance, CONDESA
uses for autoregressive models the AIC and BIC [7] criteria
to select the model with the best combination of low fitting
error and small number of parameters. Further, a model can
be chosen from the selected candidate models based on two
criteria: MinFE and MinPE. Minimum Fitting Error (MinFE)
selects the model with the smallest fitting error, while
Minimum Prediction Error (MinPE) selects the model with
the smallest prediction error. The error for both MinPE and
MinFE is calculated as a Root Mean Squared Error (RMSE).

3.1.3 Hierarchical Modeling
CONDESA allows building hierarchical prediction models
at two levels corresponding to models for the global and
local workloads. A global model predicts the total work-
load of the system, which helps to dynamically size the
system. At a second level, a local model predicts the
expected number of requests for a group of items. This
second level of prediction permits to identify workload
variations at a lower granularity and to control the
dynamic assignment of groups to content servers. The
decomposition of the global workload into local workloads
is managed by the data grouping module, which is part of
the adaptive data distribution component and is discussed
in Section 5.1. The relationship between global and local
model predictions, data placement and system sizing is
further discussed in Sections 4 and 5.2.

3.2 Change Detector Module
As the workload patterns change, the prediction models
can become inaccurate and have to be either re-fitted or re-
formulated. The change detection module monitors the
model accuracy and uses change detection criteria for
discovering when a model prediction becomes inaccurate.
Detecting when to redefine a model is a difficult task as it
implies to distinguish between permanent changes in the
workload and temporal fluctuations. CONDESA allows to
define custom criteria for change detection. Below, we
illustrate this process by presenting two change detection
criteria we have already implemented in CONDESA for
global and local models.

A model redefinition method periodically checks the
accuracy of the predictions and decides based on change

Fig. 2. Internal structure of the adaptive prediction component.
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detection criteria when the models have to be redefined.
The details of the change detection algorithms are provided
in the supplementary material in Appendix B available
online.

4 SYSTEM SIZING MODULE

The system sizing module elastically scales the system by
turning servers up and down. Fig. 3 shows the different
variables involved in the system sizing process. First, at
time t, the global workload model generates h predictions. In
order to reduce oscillations in the system size evaluation, we
take ~lmaxðt; tþ h� 1Þ ¼ maxð~lðtÞ; . . . ; ~lðtþ h� 1ÞÞ as the ref-
erence value for system sizing for the next time window h. If
we assume that all content servers have the same maximum
capacity of c requests per unit of time (c ¼ cs for all s) and
that the desired utilization ratio is thru, the number of
servers for the next prediction window h is given by:

~nðtÞ ¼ . . . ¼ ~nðtþ h� 1Þ ¼
~lmaxðt; tþ h� 1Þ

thru � c

& ’
:

When the prediction is not possible or fails, the system
sizing module allows to define reactive sizing policies. For
example, if the observed load of a server ðlsðtÞÞ is larger
than a user configurable threshold, the system sizing
module employs a reactive mechanism that allocates a
new server on-demand. For instance, CONDESA can
simply enforce the Amazon auto-scaling policy [10] by
allocating a new server when the server load lsðtÞ exceeds a
thru percentage of the server capacity cs.

5 ADAPTIVE DATA DISTRIBUTION

The adaptive data distribution component is in charge
of dynamically adapting the data distribution based on
discrete information provided from the adaptive predic-
tion component. This component consists of two modules:
the data grouping module and the data placement module.

5.1 Data Grouping Module
The data grouping module maps storage objects (data items)
to placement groups. A placement group is a unit of data
placement, i.e. it is not further divided in smaller logical units
when stored on a server or on a disk (although it can be
physically divided on several blocks when physically stored

on a disk). CONDESA allows to associate prediction models
with placement groups, i.e. our approach attempts to predict
the workload at granularity of a group in order to detect
local variations of workload and react accordingly. In order
to make this approach efficient, groups have to be large
enough to reduce the modeling overhead and small enough
to avoid that popularity variations of individual items
remain undetected.

CONDESA supports currently two data grouping
policies: affinity-based grouping and random. Proposed
in one of our previous works [3] affinity-based grouping
builds placement groups based on the probability of
accessing related content within a time window. This
probability is computed based on the historical access
patterns. Another grouping policy supported by CONDESA
is on-demand random assignment of storage objects to
placement groups. In the future we plan to implement and
study further grouping strategies such as popularity-based
regrouping [11] or entropy-based regrouping [12].

The placement groups are dynamically created though
the data grouping strategies and can be used for in-
memory or on-disk storage. Each placement group is
assigned to one or several content servers as discussed in
the next subsection.

CONDESA separates the mechanism of data grouping
from the policy. This allows users to define and evaluate
custom data grouping policies.

5.2 Data Placement Module
The data placement module is in charge of managing the
dynamic distribution of placement groups over content
servers. This distribution is controlled through a data
structure called dispatching table. The dispatching table
maps placement groups onto content servers and is used
for redirecting user requests to content servers. The details
of the change dispatching table algorithm are provided
in the supplementary material in Appendix C available
online. Table 1 shows an example of a dispatching table.
The table consists of three columns: placement groups,
servers, and dispatching probabilities. Each group is
associated with a set of servers with a certain dispatching
probability. Each server is associated a probability interval,
which controls the amount of requests redirected to each
server at placement group granularity. To determine where
to redirect a request, the dispatcher generates a uniform
random number between 0 and 1 and identifies the server
in charge of the group based on the probability distribu-
tion interval which contains that number. For example,

Fig. 3. System sizing for a prediction horizon h.

TABLE 1
Example of a Dispatching Table with 3 Placement Groups and
3 Servers. Each Group Is Replicated over a Number of Servers

Based on Probability Intervals
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assuming a request for an item belonging to group 1 using
Table 1, the dispatcher generates a random number e.g.,
0.48. As this number satisfies pðs1Þ G 0:48 � pðs2Þ, then the
request is redirected to server s2.

The dispatching table construction is based on assigning
groups to servers and can be modeled as a bin-packing
problem [13]: the groups gj with sizes ~lgjðtÞ are to be
assigned to content servers s1; s2; . . . ; sn, which are bins
with capacities cs.

The dispatching table plays a central role in the system
dynamics, as it controls data and request distribution. The
table is updated every time a new set of predictions
is generated in order to assure an up-to-date view of
the system. Additionally, the table has to be reactively
recomputed every time the observed load exceeds the
server capacity due to an unexpected event which causes a
prediction failure.

6 DATA SET

In Section 8 we demonstrate how CONDESA can be used
for evaluating the design space of adaptive data placement
policies. The evaluation is based on a set of traces collected
from Wikipedia servers by Urdaneta et al. [14]. The whole
data set contains 10 percent of all the requests directed to

Wikipedia proxy caches from September 19th 2007 to
January 2nd 2008 accounting for 20.6 billion requests. Each
request in the trace contains a unique identifier, a time stamp,
and the URL of the request. From this trace we selected
only the requests to articles in the English Wikipedia during
the first two weeks of trace. After filtering and cleaning the
original trace, these two weeks account for 145 million
requests to about 6 million data items.

Fig. 4 shows the number of requests per minute for the
first two weeks. The workload is clearly periodic and
similar to the one shown in [14]. There is a weekly pattern
according to which the workload diminishes in weekends
and increases during the week. During a single day,
the number of requests doubles and decreases again.
A similar daily pattern has been also observed in other
systems [15], [16].

Unexpected workload variations are known to be
common in the vast majority of web server infrastructures.
However, the Wikipedia trace from Fig. 4 contains
relatively regular seasonal variations, which can be rela-
tively easy predicted by seasonal time series models. In
order to be able to evaluate the power of adaptivity of
CONDESA approach, we have extended the trace with real
spike patterns extracted from other systems. We have
considered two types of spikes: volume spikes and data
spikes. A volume spike significantly modifies the global
workload, while a data spike changes the popularity of
small number of data items, while not necessarily impact-
ing the total volume of requests.

We synthetically modify the Wikipedia dataset to
include volume and data spikes following the methodology
proposed by Bodı́k et al. [12] for generation of spikes for
stateful Web services. We selected three significant spikes
based on real traces: the requests served by Wikipedia after
Michael Jackson’s death ðw1Þ, the server demand variations
during the World Cup 1998 [17] ðw2Þ, and a peak demand to
Ebates.com servers [18] ðw3Þ. Fig. 5 displays the resulting
global workloads. The shadowed area represents the
duration of the spike. For w1 there is no significant change

Fig. 4. Daily workload for the first two weeks.

Fig. 5. Original workload and synthetically generated spike scenarios. Shadowed area indicates the duration and magnitude of the spike. (a) Original
workload. (b) w1. (c) w2. (d) w3. (e) w4.
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in the magnitude of the spike, only the popularity distribution
of items varies. The scenario w2 is characterized by a fast
growth and fast decay. The spike w3 is characterized by a
steady growth followed by a moderately fast decay. In our
experiments we employ the first three days of trace inserting
the mentioned spikes in the third day. The three versions w1,
w2 and w3 account for 25.1, 25.5, and 28.6 million requests
respectively. Finally, w4 is a synthetic trace constructed by
aggregating the original workload and ten spikes with
random magnitude and duration.

7 CONDESA METRICS

This section presents a categories of metrics metrics used
by CONDESA: system sizing metrics, server utilization
metrics, and content locality metrics.

System sizing metrics. System sizing metrics estimate
the efficiency of server provisioning based on the optimal
number of servers. For a given server capacity cs, the optimal
number of provisioned servers can be calculated by:

noptðtÞ ¼
lðtÞ
cs

� �

where lðtÞ is the total number of requests received by the
system at time t. We define the relative provisioning error
�pðtÞ as:

�pðtÞ ¼
~nðtÞ � noptðtÞ

noptðtÞ

where ~nðtÞ is the number of provisioned servers at time t.
Based on all calculated values of the relative provisioning
errors in an time interval between t1 and t2, CONDESA
calculates the overprovisioning rate roðt1; t2Þ as the mean of
all positive relative provisioning errors and the under-
provisioning rate ruðt1; t2Þ as the negated mean of all negative
relative provisioning errors (i.e. both ro and ru have positive
values).

Server utilization metrics. CONDESA calculates the
utilization of a server s at time t, denoted usðtÞ, as the ratio
between the number of served requests ls and the server

capacity cs. Based on these values CONDESA calculates
aggregation metrics such as the average server utilization
between t1 and t2 denoted uðt1; t2Þ. The servers load balance
for that interval is estimated as the standard deviation of
server utilization and denoted �uðt1; t2Þ.

Locality metrics. Each server maintains an object cache
with a configurable size ds. To measure the content locality
we evaluate the hit rate in each server. This hit rate for a
period between t1 and t2 is denoted as hitsðt1; t2Þ. The
average for all the servers between t1 and t2 is denoted as
hitðt1; t2Þ.

8 EVALUATION

This section demonstrates how CONDESA can be used for
browsing the parameter space of the data distribution in an
elastic server infrastructure. Due to space limitations we
show only a small part of the analyses enabled by
CONDESA. Table 2 overviews the input parameter values
employed by the experiments discussed here. Further
evaluations of modeling overhead, prediction accuracy,
and change detection are provided in the supplementary
material in Appendices D and E available online.

For brevity reasons we use the following naming
conventions. Adding the suffix ‘‘+P’’ to a method name
indicates the employment of prediction. Adding the suffix
‘‘+A’’ shows that a method employs model adaptivity
based on change detection. For instance HW+A denotes the
utilization of Holt-Winters with adaptivity enabled.

We evaluate a three-tier platform as the one showed in
Fig. 1. For simplifying the analysis we make the following
assumptions. The system has a variable number of
dispatchers, which simply scale with the number of client
requests. The client requests coming from the outside
world are uniformly distributed over all dispatchers. The
system has a variable number of content servers, whose
elasticity is controlled by CONDESA. Finally, the storage
system has a fixed size and a uniform service time.

This section is organized into four parts, which illustrate
how CONDESA can be used for evaluating adaptive data
placement strategies: system sizing (Section 8.1), server
utilization and load balance (Section 8.2), data locality
(Sections 8.3), over- and underprovisioning (Sections 8.4).

TABLE 2
Evaluation Parameters

Fig. 6. Example of system size variation for w4 workload, using
thru ¼ 90%, random grouping, DP+P+A based on MinFE+A, and
ds ¼ 2048 MB.
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8.1 System Sizing
This section demonstrates how CONDESA can be used for
evaluating the performance of system sizing.

Fig. 6 shows the global load lðtÞ and the total number of
provisioned servers ~nðtÞ for w4 workload using thru ¼ 90%,
random grouping, DP+P+A based on MinFE+A, and
ds ¼ 2048 MB. We note that the provisioned servers
adequately adapts to the workload volume and causes a
small amount of oscillations.

Fig. 7 shows the saved machine time of various server
provisioning approaches based on adaptive prediction,
when compared with the traditional approach of statically
provisioning a percentage over the maximum workload for
w1,w2,w3 andw4. In this experiment, we statically provision
10 percent over the maximum workload i.e., thru ¼ 90%.
For the provisioning based on adaptive prediction we use
various prediction methods (ARIMA, ARIMA+A, ARz,
ARz þA, HW, HW+A, MinPE, MinPE+A, MinFE, and
MinFE+A), thru ¼ 90%, random grouping, DP+P+A, and
ds ¼ 2048 MB. The saved machine time is calculated by
summing up the time individual machines are not provi-
sioned due to predictions. The results indicate that the
saved machine time is around 30 percent for w1, w3, and w4

and 50 percent for w2. The savings are larger for w2 as this
workload has a peak higher than the other workloads. In all
cases the savings are significant and the adaptive prediction
approaches can be used for turning off machines, and
therefore, reduce the energy consumption.

8.2 Server Utilization and Load Balance
One of the most important objectives of any data placement
technique is to maximize the server utilization, while
perfectly balancing the load. CONDESA allows to estimate
for a time interval ðt1; t2Þ the average server utilization
uðt1; t2Þ and the load balance �uðt1; t2Þ. In the optimal case
the servers are 100 percent loaded and, thus, perfectly load
balanced. However, this is impractical for two reasons.
First, unexpected peaks will be delayed until additional
resources will be available. Second, as the load of a server
gets closer to 100 percent, the variance of the response time
is known to increase [19]. Therefore, a small over provi-
sioning of 1� thru has the role of mitigating both problems.

Fig. 8 shows how CONDESA allows to estimate uðt1; t2Þ
and �uðt1; t2Þ for an adaptive data placement policy,
random grouping, thru ¼ 90%, three prediction models
(HW, ARz, ARIMA, MinPE, and MinFE), with and without
adaptivity, and employing both global and local change
detection.

The average server utilization does not exceed the
threshold in any case. However, its closeness to the target
threshold thru ¼ 90% depends on the prediction method
and on adaptivity. We observe that adaptivity (+A)
improves the average server utilization in all cases. The
load balance is stable: �u is approximately 2 percent for w1,
w3 and w4, and 3 percent for w2.

8.3 Locality Evaluation
Another important indicator of the efficiency of a data
placement policy is data locality. In this section we show
how CONDESA allows to evaluate data locality of the
content servers. Locality is measured as the average hit rate
hitðt1; t2Þ over all the servers (individual server hit rates can
also be retrieved). Fig. 9 shows a comparison of average
hit rates between a data placement policy uniformly
distributing the data over the content servers (DP) and a
data placement policy employing predictive models and
adaptivity based on MinFE+A (DP+P+A). Both policies scale

Fig. 7. Saved machine time over a static approach provisioning the maxi-
mum number of servers needed to serve the given workload. The example
uses thru ¼ 90%, random grouping, DP+P+A, and ds ¼ 2048 MB.

Fig. 8. Average server utilization uðt1; t2Þ (bars) and load balance
�uðt1; t2Þ (dashed lines) for w1, w2, w3 and w4, thru ¼ 90, and DP+P+A
data placement.

Fig. 9. Hit rate for w1, w2, w3, and w4 using thru ¼ 90%, random
grouping, DP+P+A based on MinFE+A, and ds ¼ 2048 MB.
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based on the same system sizing policy described in Section 4
and are evaluated for w1, w2, w3 and w4 using thru ¼ 90%,
random grouping, DP+P+A based on MinFE+A, and ds ¼
2048 MB. The results show that DP+P+A obtains a signifi-
cantly higher average hit rate than DP for all three work-
loads. In particular, this improvement is 25 percent for w1

and 13 percent for w2 and w3.
In a second analysis, we are interested to see how the

server cache size impacts the average hit rate for the two
data placement policies from the previous experiment. We
use the same parameters as in the previous experiment,
except that we focus on w2 workload and use three
different cache sizes ds ¼ 512 MB, 1024 MB, and 2048 MB.
Fig. 10 shows the results. As expected, the hit rate increases
with the cache capacity for all methods. However, DP+P+A
obtains around 15 percent improvement over DP for all
three cache sizes.

DP+P+A uses prediction for estimating future load on
servers, adaptation for changing prediction models when
they become inaccurate, and proactive prediction-aware
replication of content over servers as shown in Section 5.2.
The higher hit rate for DP+P+A is explained by the fact that
by accurately predicting the workload of the data place-
ment groups and leveraging this prediction for pro-actively
placing the data on servers results in higher temporal stability
of content on servers. This temporal stability of content on
servers means that a higher content locality can be obtained
due to the fact that content is distributed/replicated based
on workload prediction at group level.

8.4 Over- and Underprovisioning Evaluation
CONDESA facilitates the concomitant evaluation of over-
and underprovisioning generated by an adaptive data
placement policy. Fig. 11 shows the overprovisioning and
underprovisioning rates for the workload w2 using
random grouping, DP+P+A, several different values of thru
(75 percent, 80 percent, 85 percent, 90 percent, 95 percent, and
99 percent), three prediction methods (ARIMA, ARz,
and Holt Winters), two model selection criteria (MinPE
and MinFE) and enabled/disabled change detection for the
prediction models. For each thru value, there are ten
points corresponding to the employed adaptive prediction
method: ARIMA, ARIMA+A, ARz, ARz þA, HW, HW+A,
MinPE, MinPE+A, MinFE, and MinFE+A. The x-axis of
each point on the plot represents the underprovisioning rate

ru and the y-axis the overprovisioning rate ro, respectively.
An ideal method would have ru ¼ 0 and ro ¼ 0.

We observe in Fig. 11 three main clusters of points
(a breakdown of the graph based on target utilization rates
is provided in the supplementary material in Appendix F
available online). First, the upper left cluster with ro larger
than 0.15 and ru lower than 0.01 contains mostly points
corresponding to target utilization rates thru of 75 percent
and 80 percent. Second, the lower left cluster is the closest
to the ideal under- and overprovisioning values and
contains of ro values between 0 and 0.15 and ru values
between 0 and 0.1 corresponding mostly to target utilization
rates thru with values between 85 percent and 95 percent.
Third, the lower right cluster contains points representing
low ro values and ru values larger than 0.01, corresponding to
target utilization rates thru with values larger than 95 percent.
We notice that, as expected, as target system utilization gets
closer to the 100 percent value, the underprovisioning rate
increases, which has to be avoided. One would like to design
a data placement strategy, whose corresponding ro and ru
values fall in the lower left cluster. For our analyzed data
placement policy, the best utilization threshold thru would
be between 85 percent and 95 percent.

9 RELATED WORK

Predictability is one of the most desired characteristics of a
data center system, as it allows for optimal resource
provisioning. In general, predicting high workload variations
is a known difficult problem, and the safest approach is to
substantially overprovision resources. The standard approach
of capacity planning is to overprovision resources for the
double of the expected peak load [20]. However, the advent of
cloud computing has increased the need for proactive
resource provisioning [21]. An important body of work has
been dedicated to predictive methods of application work-
loads and dynamic resource allocations for data centers.
Many prediction methods have been proposed based on
queuing theory models [22], time series models [23], and
machine learning techniques [24]. Several works employ
autoregressive models for system size prediction [25], [26],
[15], [24] and dynamically predicting CPU voltage/frequency
in order to reduce power consumption [27].

Fig. 10. Hit rate for w2, using thru ¼ 90%, random grouping, DP+P+A
based onMinFE+A, and various server cache sizes ds ¼ 512MB, 1024MB,
and 2048 MB.

Fig. 11. Overprovisioning rate ro and underprovisioning rate ru for
workload w2 using random grouping, DP+P+A, several different values
of thru (75 percent, 80 percent, 85 percent, 90 percent, 95 percent, and
99 percent), five prediction methods (ARIMA, ARz, Holt Winters, MinPE,
and MinFE), and enabled/disabled change detection for the prediction
models.
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Prediction techniques are useful for proactive resource
provisioning to a limited extent. Unexpected events such as
volume spikes and flash crowds require reactive resource
provisioning for serving unexpected surges in workloads.
Control theory has been recognized as a good match for
addressing unpredictability and change in computing sys-
tems [28]. Even though many system designers still employ
ad-hoc solutions of feedback control loops [29], there are an
increasing number of works that consider the controllability
as one of the design goals as discussed in the Appendix G of
the supplementary material available online.

Workload decomposition has been used by several
works for data and storage management. Some authors
decompose the workload into a stable component and a
variable component. For instance, Zhang et al. [30] describe
a hybrid solution for private-public clouds that decompose
the application workload into two components: a base
workload and their spikes. The base workload is served
from a private cloud, while spikes are served from
instances launched in a public cloud. Some other works
focus on decomposing the workload into partial workloads
for groups of data rather than into stable and variable
components. SCADS [31] is a control framework that
monitors groups of items, and dynamically determines
the number of storage servers and the most suitable
replication strategy. Sastry and Crowcroft [32] propose to
group popular user-generated content from an Internet
workload onto few disks for allowing other disks to be
placed in low energy states. CONDESA is a framework that
allows to experiment with various workload decomposi-
tion techniques, while combining them with data grouping,
data placement and system sizing strategies.

10 CONCLUSION

In this work we have presented CONDESA, a framework
for exploring adaptive data distribution strategies for
elastic server architectures. To the best of our knowledge
CONDESA is the first platform that allows to systemati-
cally study the interplay between five data related
strategies: workload prediction, adaptive control of data
distribution and server provisioning, adaptive data group-
ing, adaptive data placement, and adaptive system sizing.
We have demonstrated how CONDESA can be used for
browsing the design space of adaptive data distribution
policies. First, we have shown how prediction models can be
compared in terms of overhead and accuracy. Second, we
have evaluated the impact of change detection on prediction
accuracy and how CONDESA can be used for choosing an
adequate prediction horizon. Third, we demonstrated how
the adaptive prediction can be used for sizing a server system.
Fourth, we have shown how prediction models, change
detection strategies and data placement policies can be
combined and compared based on server utilization, load
balance, data locality, over- and underprovisioning.

CONDESA is an evolving framework emerged from our
previous work on adaptive data distribution of web server
infrastructure. CONDESA evolution has opened up a
considerable amount of possibilities to both extend the
framework and apply it beyond its original domain.
Currently, we are working on the integration of CONDESA

with real infrastructures. Our objective is to provide an on-
line tool for data distribution based on adaptive prediction.
Further, CONDESA has been designed and implemented
for facilitating the extension with novel modules for time-
series prediction algorithms, model selection criteria, change
detection criteria, data grouping and data placement. Finally,
CONDESA can be used beyond the initial application
domains, and we plan to apply it for designing and evaluating
elastic data distribution policies for distributed file systems.
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