518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

Securing Broker-Less Publish/Subscribe
Systems Using ldentity-Based Encryption

Muhammad Adnan Tariq, Boris Koldehofe, and Kurt Rothermel

Abstract—The provisioning of basic security mechanisms such as authentication and confidentiality is highly challenging in a content-
based publish/subscribe system. Authentication of publishers and subscribers is difficult to achieve due to the loose coupling of
publishers and subscribers. Likewise, confidentiality of events and subscriptions conflicts with content-based routing. This paper
presents a novel approach to provide confidentiality and authentication in a broker-less content-based publish/subscribe system. The
authentication of publishers and subscribers as well as confidentiality of events is ensured, by adapting the pairing-based cryptography
mechanisms, to the needs of a publish/subscribe system. Furthermore, an algorithm to cluster subscribers according to their
subscriptions preserves a weak notion of subscription confidentiality. In addition to our previous work [23], this paper contributes 1) use
of searchable encryption to enable efficient routing of encrypted events, 2) multicredential routing a new event dissemination strategy
to strengthen the weak subscription confidentiality, and 3) thorough analysis of different attacks on subscription confidentiality. The
overall approach provides fine-grained key management and the cost for encryption, decryption, and routing is in the order of
subscribed attributes. Moreover, the evaluations show that providing security is affordable w.r.t. 1) throughput of the proposed
cryptographic primitives, and 2) delays incurred during the construction of the publish/subscribe overlay and the event dissemination.

Index Terms—Content-based, publish/subscribe, peer-to-peer, broker-less, security, identity-based encryption

1 INTRODUCTION

HE publish/subscribe (pub/sub) communication para-

digm has gained high popularity because of its
inherent decoupling of publishers from subscribers in
terms of time, space, and synchronization. Publishers inject
information into the pub/sub system, and subscribers
specify the events of interest by means of subscriptions.
Published events are routed to their relevant subscribers,
without the publishers knowing the relevant set of
subscribers, or vice versa. This decoupling is traditionally
ensured by intermediate routing over a broker network
[10]. In more recent systems, publishers and subscribers
organize themselves in a broker-less routing infrastructure,
forming an event forwarding overlay [24].

Content-based pub/sub is the variant that provides the
most expressive subscription model, where subscriptions
define restrictions on the message content. Its expressive-
ness and asynchronous nature is particularly useful for
large-scale distributed applications such as news distribu-
tion, stock exchange, environmental monitoring, traffic
control, and public sensing. Not surprisingly, pub/sub
needs to provide supportive mechanisms to fulfill the basic
security demands of these applications such as access
control and confidentiality.

o The authors are with the Institute of Parallel and Distributed Systems,
University of Stuttgart, Universitatsstrafie 38, Stuttgart 70569, Germany.
E-mail: {adnan.tariq, boris.koldehofe,
kurt.rothermel |@ipvs.uni-stuttgart.de.

Manuscript received 16 Sept. 2012; revised 23 Sept. 2013; accepted 24 Sept.
2013; published online 4 Oct. 2013.

Recommended for acceptance by X. Li, P. McDaniel, R. Poovendran, and
G. Wang.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-09-0915.

Digital Object Identifier no. 10.1109/TPDS.2013.256.

1045-9219/14/$31.00 © 2014 IEEE

Access control in the context of pub/sub system means
that only authenticated publishers are allowed to dissemi-
nate events in the network and only those events are
delivered to authorized subscribers. Moreover, the content
of events should not be exposed to the routing infrastruc-
ture and a subscriber should receive all relevant events
without revealing its subscription to the system. Solving
these security issues in a content-based pub/sub system
imposes new challenges. For instance, end-to-end authenti-
cation using a public key infrastructure (PKI) conflicts with
the loose coupling between publishers and subscribers, a
key requirement for building scalable pub/sub systems.
For PKI, publishers must maintain the public keys of all
interested subscribers to encrypt events. Subscribers must
know the public keys of all relevant publishers to verify the
authenticity of the received events. Furthermore, traditional
mechanisms to provide confidentiality by encrypting the
whole event message conflict with the content-based
routing paradigm. Hence, new mechanisms are needed to
route encrypted events to subscribers without knowing
their subscriptions and to allow subscribers and publishers
authenticate each other without knowing each other.

In the past, most research has focused only on providing
expressive and scalable pub/sub systems, but little atten-
tion has been paid for the need of security. Existing
approaches toward secure pub/sub systems mostly rely
on the presence of a traditional broker network [20], [2], [9],
[22], [7], [18], [16]. These either address security under
restricted expressiveness, for example, by using only
keyword matching for routing events [22], [21] or rely on
a network of (semi-)trusted brokers [19], [17], [12].
Furthermore, existing approaches use coarse-grain epoch-
based key management and cannot provide fine-grain
access control in a scalable manner [22], [20]. Nevertheless,

Published by the IEEE Computer Society

TARIQ ET AL.: SECURING BROKER-LESS PUBLISH/SUBSCRIBE SYSTEMS USING IDENTITY-BASED ENCRYPTION 519

security in broker-less pub/sub systems, where the sub-
scribers are clustered according to their subscriptions, has
not been discussed yet in the literature.

Building on our results of [23], this paper presents a new
approach to provide authentication and confidentiality in a
broker-less pub/sub system. Our approach allow subscri-
bers to maintain credentials according to their subscrip-
tions. Private keys assigned to the subscribers are labeled
with the credentials. A publisher associates each encrypted
event with a set of credentials. We adapted identity-based
encryption (IBE) mechanisms [4], [8] 1) to ensure that a
particular subscriber can decrypt an event only if there is a
match between the credentials associated with the event
and the key; and 2) to allow subscribers to verify the
authenticity of received events. Furthermore, we address
the issue of subscription confidentiality in the presence of
semantic clustering of subscribers. A weaker notion of
subscription confidentiality is defined and a secure overlay
maintenance protocol is designed to preserve the weak
subscription confidentiality.

In addition to [23], we also present 1) extensions of the
cryptographic methods to provide efficient routing of
encrypted events by using the idea of searchable encryption,
2) “Multicredential routing” a new event dissemination
strategy which strengthens the weak subscription confiden-
tiality, and 3) a thorough analysis of different attacks on
subscription confidentiality. Moreover, the supplemental
document, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2013.256, presents detailed analysis of the
correctness of cryptographic methods used in this paper and
a concise review of the related work.

2 SYSTEM MODEL AND BACKGROUND
2.1 Content-Based Publish/Subscribe

For the routing of events from publishers to the relevant
subscribers, we use the content-based data model. The event
space, denoted by (), is composed of a global ordered set of d
distinct attributes (A4;): @ = {Ay, Ao, ..., Ay}. Each attribute
A; is characterized by a unique name, its data type, and its
domain. The data type can be any ordered type such as
integer, floating point, and character strings. The domain
describes the range [L;,U;] of possible attribute values. A
subscription filter f is a conjunction of predicates, i.e.,
f={Pred; A Preds--- A\ Pred;}. Pred; is defined as a tuple
(4;, Op;,v;), where Op; denotes an operator and v; a value.
The operator Op; typically includes equality and range
operations for numeric attributes and prefix/suffix opera-
tions for strings. An event consists of attributes and
associated values. An event is matched against a subscrip-
tion f if the values of attributes in the event satisfy the
corresponding constraints imposed by the subscription.
We consider pub/sub in a setting where there exits no
dedicated broker infrastructure. Publishers and subscribers
contribute as peers to the maintenance of a self-organizing
overlay structure. To authenticate publishers, we use the
concept of advertisements in which a publisher announces
beforehand the set of events which it intends to publish.

2.2 Attacker Model

Our attacker model is similar to the commonly used honest-
but-curious model [22], [21]. There are two entities in the
system: publishers and subscribers. Both the entities are
computationally bounded and do not trust each other.
Moreover, all the peers (publishers or subscribers) partici-
pating in the pub/sub overlay network are honest and do
not deviate from the designed protocol. Likewise, author-
ized publishers only disseminate valid events in the system.
However, malicious publishers may masquerade the
authorized publishers and spam the overlay network with
fake and duplicate events. We do not intend to solve the
digital copyright problem; therefore, authorized subscribers
do not reveal the content of successfully decrypted events to
other subscribers.

Subscribers are, however, curious to discover the
subscriptions of other subscribers and published events to
which they are not authorized to subscribe. Similarly,
curious publishers may be interested to read events
published in the system. Furthermore, passive attackers
outside the pub/sub overlay network can eavesdrop the
communication and try to discover content of events and
subscriptions.

Finally, we assume the presence of secure channels for
the distribution of keys from the key server to the
publishers and subscribers. A secure channel can be easily
realized by using transport layer mechanisms such as
Transport Layer Security (TLS) or Secure Socket Layer (SSL).

2.3 Security Goals and Requirements

There are three major goals for the proposed secure pub/
sub system, namely to support authentication, confidenti-
ality, and scalability.

Authentication. To avoid noneligible publications, only
authorized publishers should be able to publish events in
the system. Similarly, subscribers should only receive those
messages to which they are authorized to subscribe.

Confidentiality. In a broker-less environment, two aspects
of confidentiality are of interest: 1) the events are only
visible to authorized subscribers and are protected from
illegal modifications, and 2) the subscriptions of subscribers
are confidential and unforgeable.

Scalability. The secure pub/sub system should scale with
the number of subscribers in the system. Three aspects are
important to preserve scalability: 1) the number of keys to
be managed and the cost of subscription should be
independent of the number of subscribers in the system,
2) the key server and subscribers should maintain small and
constant numbers of keys per subscription, and 3) the
overhead because of rekeying should be minimized without
compromising the fine-grained access control.

2.4 Identity-Based Encryption

While a traditional PKI infrastructure requires to maintain
for each publisher or subscriber a private/public key pair
which has to be known between communicating entities to
encrypt and decrypt messages, identity-based encryption [6]
provides a promising alternative to reduce the amount of
keys to be managed. In identity-based encryption, any valid
string which uniquely identifies a user can be the public key
of the user. A key server maintains a single pair of public

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

Key Server

* Master private key
« Master public key
-

Master public key

!

1- Alice encrypts with

Master prlvate key

2- Bob receives private key

“Bob@ipvs.de” for “Bob@ipvs.de”
.i_. 3- Bob decrypt message
& with private key
o Master Public key is
Alice@ipvs.de known to every user Bob@ipvs.de

Fig. 1. Identity-based encryption.

and private master keys. The master public key can be used
by the sender to encrypt and send the messages to a user
with any identity, for example, an e-mail address. To
successfully decrypt the message, a receiver needs to obtain
a private key for its identity from the key server. Fig. 1
shows the basic idea of using identity-based encryption.

We want to stress here that although identity-based
encryption at the first glance appears like a highly
centralized solution, its properties are ideal for highly
distributed applications. A sender needs to know only a
single master public key to communicate with any identity.
Similarly, a receiver only obtains private keys for its own
identities. Furthermore, an instance of central key server
can be easily replicated within the network. Finally, a key
server maintains only a single pair of master keys and,
therefore, can be realized as a smart card, provided to each
participant of the system.

Although identity-based encryption has been proposed
some time ago, only recently pairing-based cryptography
(PBC) has laid the foundation of practical implementation
of identity-based encryption. Pairing-based cryptography
establishes a mapping between two cryptographic groups
by means of bilinear maps. This allows the reduction of one
problem in one group to a different usually easier problem
in another group. We utilize bilinear maps for establishing
the basic security mechanisms in the pub/sub system and,
therefore, introduce here the main properties. Let G; and
G be cyclic group of order ¢, where ¢ is some large prime.
A Dbilinear map is a function é: G x G; — G, that
associates a pair of elements from G; to elements in Gi,.
A bilinear map satisfies the following conditions:

1. Bilinearity. é(u®,v¥) = é(u¥,v") = é(u,
u,v € Gy, and z,y € Z.

2. Nondegeneracy. é(u,v) # 1, for all u,v € Gi.

3. Computability. é can be efficiently computed.

v)™, for all

3 APPROACH OVERVIEW

For providing security mechanisms in pub/sub, we
leverage the principles of identity-based encryption to
support many-to-many interactions between subscribers
and publishers. Although we subsequently demonstrate the
implementation of our security methods in terms of a
concrete variant called attribute-based encryption, it is
important to remark that our approach also benefits from
other identity-based encryption schemes.

NO. 2, FEBRUARY 2014

In our approach, publishers and subscribers interact with
a key server. They provide credentials to the key server and
in turn receive keys which fit the expressed capabilities in
the credentials. Subsequently, those keys can be used to
encrypt, decrypt, and sign relevant messages in the content-
based pub/sub system, i.e., the credential becomes author-
ized by the key server. A credential consists of two parts:
1) a binary string which describes the capability of a peer in
publishing and receiving events, and 2) a proof of its
identity. The latter is used for authentication against the key
server and verification whether the capabilities match the
identity of the peer. While this can happen in a variety of
ways, for example, relying on challenge response, hardware
support, and so on, we pay attention mainly at expressing
the capabilities of a credential, i.e.,, how subscribers and
publishers can create a credential. This process needs to
account for the many possibilities to partition the set of
events expressed by an advertisement or subscription and
exploits overlaps in subscriptions and publications. Subse-
quently, we use the term credential only for referring to the
capability string of a credential.

The keys assigned to publishers and subscribers, and the
ciphertexts, are labeled with credentials. In particular, the
identity-based encryption ensures that a particular key can
decrypt a particular ciphertext only if there is a match
between the credentials of the ciphertext and the key.
Publishers and subscribers maintain separate private keys
for each authorized credential.

The public keys are generated by a string concatenation
of a credential, an epoch for key revocation, a symbol
€ {SUB, PUB} distinguishing publishers from subscri-
bers, and some additional parameters described in Section
5. The public keys can be easily generated by any peer
without contacting the key server or other peers in the
system. Similarly, encryption of events and their verifica-
tion using public keys do not require any interaction.

Due to the loose coupling between publishers and
subscribers, a publisher does not know the set of relevant
subscribers in the system. Therefore, a published event is
encrypted with the public key of all possible credentials,
which authorizes a subscriber to successfully decrypt the
event. The ciphertexts of the encrypted event are then signed
with the private key of the publisher, as shown in Fig. 2.

The overlay network is maintained according to the
containment relationship between the subscriptions. Sub-
scribers with coarser subscriptions are placed near the root
and forward events to the subscribers with less coarser
subscriptions. To maintain such a topology, each subscriber
should know the subscription of its parent and child peers.
When a new subscriber arrives, it sends the connection
request (CR) along with its subscription to a random peer
in the overlay network. The connection request is for-
warded by possibly many peers in the overlay network
before it reaches the right peer to connect. Each forwarding
peer matches the subscription in the request with the
subscription of its parent and child peers to decide the
forwarding direction. Maintaining a relationship between
subscriptions clearly contradicts subscription confidential-
ity. Therefore, we show the approach to ensure a weaker
notion of subscription confidentiality in Section 6.

TARIQ ET AL.: SECURING BROKER-LESS PUBLISH/SUBSCRIBE SYSTEMS USING IDENTITY-BASED ENCRYPTION 521

Cipehertexts generated by encrypting
event with the public keys of all credentials
whose subscribers should receive the
event.

(Cred, || SUB|..)

(Credg || SUB]|..)

(Cred,g || SUB|..)

Sign with private key for (Cred,g || PUB ||..)

Event= A,B

Private Key for:
(Cred,g || PUB ||..)

Pub/Sub network/x’/'

Advertisement= Cred,,

Verify signature
using public Key Private Key for:
which corresponds |(Cred, || SUB ||..)
to the publisher
credentials:
(Cred, || PUB]|.)

Subscription = Cred,

Key Server

Fig. 2. Approach overview: Publisher has credentials to publish events
with two attributes A and B. Subscriber sg has credentials to receive
events with attribute A.

4 CREATION OF CREDENTIALS

In the following, we will first describe the creation of
credentials for numeric and string attributes. Further
extensions to handle complex subscriptions are discussed
subsequently.

4.1 Numeric Attributes

The event space, composed of d distinct numeric attributes,
can be geometrically modeled as a d-dimensional space
such that each attribute represents a dimension in the space.
With the spatial indexing approach, the event space is
hierarchically decomposed into regular subspaces, which
serve as enclosing approximation for the subscriptions,
advertisements, and events. The decomposition procedure
divides the domain of one dimension after the other and
recursively starts over in the created subspaces. Fig. 3
visualizes the advancing decomposition with the aid of a
binary tree.

Subspaces are identified by a bit string of “0” and “1”s. A
subspace represented by dz; is covered by the subspace
represented by dz,, if dz is a prefix of dz;. Subscription or
advertisement of a peer can be composed of several
subspaces. A credential is assigned for each of the mapped
subspace. For instance, in Fig. 3, f, is mapped to two
subspaces and therefore possesses two credentials
{000,010}. An event can be approximated by the smallest

U,=100 100
Level =0
a o
£ 5 -
'%, e - ,:I_IJ 0 1 Level =1
oy <
Level =2
1,=0 0
L,=0 U, =100 0 X,=50 100
d,= Humidity d,= Humidity Level =3
100 100
Decomposition Binary Tree
o 01 11 o (010011 110|111
Ey - £
£ s
_gﬂ _gN f, ={ Humidity = [0,50],
00 10 000]001 {100|101 Temp= [50,100] }
0 0 A
0 50 100 0 25 50 75 100 f, =(Humidity = [0,25],
d,= Humidity d,= Humidity =TT | (0100

Hierarchical decomposition of Event Space

Subscriptions

Fig. 3. Numeric attribute.

©.
@ O B
() () @ G
M @ & ©

Prefix Tree

f, ={ name prefix s }
f, ={ name prefix an}

Subscriptions

Fig. 4. Prefix matching.

(finest granularity) subspace that encloses the point
represented by it. To deliver the encrypted event, a
ciphertext must be generated for each subspace that
encloses the event so that the peer whose subscription
mapped to any of these subspaces should be able to
successfully decrypt the event. For example, an event 0010
is enclosed by the five subspaces 0010, 001, 00, 0, and e.
For an event space with a large set of numeric attributes,
the number of mapped subspaces and, therefore, creden-
tials for a subscription can be very large. This affects the
scalability of the system. We address this problem by
decomposing the domain of each attribute into subspaces
separately. The spatial indexing procedure is the same as
above; however, in this case, a separate decomposition tree
is built for each attribute. Each peer receives credentials
separately for each attribute in its subscription. The
number of credentials maintained for each subscription or
advertisement is bounded by Zle log,(Z;), where Z; =
W and Gmnulqrity(i) deﬁ.ne.s the smallest addres-
sable value of the attribute A;. Similarly, the number of
subspaces matched by an event is °% , log,(Z;).

4.2 String Attributes

The above spatial indexing technique can work with any
ordered data type with a known domain. String attributes
usually have a maximum number of characters. This allows
them to have known bounds. They can be linearized by
hashing or other linearization mechanisms and, thus, can
also be indexed [24].

Credentials for more expressive string operations such as
prefix matching can be generated using a trie. Each node in
the trie is labeled with a string, which serves as a common
prefix to all its descendants, as shown in Fig. 4. Each peer is
assigned a single credential, which is same as its subscrip-
tion or advertisement. Events correspond to the leaf nodes
of the trie. To deliver an encrypted event, a ciphertext must
be generated with the label of each node in the path from
the leaf to the root of the trie, so that a peer whose
subscription matches any of the labels should be able to
successfully decrypt the event. In general, the number of
nodes on the longest path from a leaf to the root of a trie
associated with a string attribute A; is equal to £;, where L,
is the length of the longest label assigned to a leaf node.
Similar mechanism can be used to generate credentials for
suffix matching.

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

4.3 Complex Subscriptions

For a complex subscription with predicates on different
attributes, a subscriber receives separate credentials and,
thus, keys for each attribute. Using these keys, a subscriber
should be able to successfully decrypt any event with the
corresponding attributes, if he is authorized to read the
values associated with the attributes. In a content-based
pub/sub system, a subscription defines a conjunction on
predicates. An event matches a subscription if and only if
all of the predicates in the subscription are satisfied. To
ensure event confidentiality, a subscriber must not be able
to successfully decrypt any event which matches only parts
of its subscriptions. For example, consider a subscriber
with two subscriptions f; = {Area = [10,20] A location =
Stuttgart} and fo = {Area = [40, 80] A location = London}.
If the credentials and, therefore, keys are assigned for
individual attributes, then the subscriber can also decrypt
the events matching the subscriptions f;5 = {Area =
[10,20] A location = London} and fy = {Area = [40,80] A
location = Stuttgart}, although he is not authorized to
read events matching the subscriptions f; and f;. To
properly ensure event confidentiality, all the keys asso-
ciated with a subscription should be bound together, so
that keys associated with different subscriptions should not
be combined together.

5 PUBLISHER/SUBSCRIBER AUTHENTICATION AND
EVENT CONFIDENTIALITY

The security methods describe in this section are built
upon ciphertext-policy attribute-based encryption (in short
CP-ABE) scheme proposed by Bethencourt et al. [4]. In
particular, our modifications 1) allow publishers to sign and
encrypt events at the same time by using the idea of the
identity-based signcryption proposed by Yu et al. [25],
2) enable efficient routing of encrypted events (from
publishers to subscribers) by using the idea of searchable
encryption proposed by Boneh et al. [5], and 3) allow
subscribers to verify the signatures associated with all the
attributes (of an event) simultaneously. Our modifications
do not change the basic structure of the CP-ABE scheme
and preserves the same security strength, as discussed in
the supplemental document available online.

5.1 Security Parameters and Initialization

Let & and Gy denote the bilinear groups of prime
order ¢, ie., |G| = |G| =¢q, é¢: G; x Gy — Gy denote an
admissible bilinear map, and g denote a generator in
G. Moreover, let H, : {0,1}* — {0,1}™, Hy : {0,1}" —
{0,1}", Hy : {0,1}" — @4, and H; : Gy — {0,1}% des-
ignate collusion resistant cryptographic hash functions.

The initialization algorithm

chooses o, p € Z,,

computes g, = g* and h = ¢¥,

chooses g9, u',m' € Giy, and

selects vectors @ = (u;) and m = (m;) of length n,
and n,,, respectively, with every element chosen
uniformly at random from G.

bl ol

The Master Public Key MPu is composed of (¢, 9,491, 92,
h,u',m', @,m).This master public key is known to every

NO. 2, FEBRUARY 2014

peer in the system and is used for encryption and signature
verification. The Master Private key MPr is (p,¢5), and is
only known to the key server. The master private key is
used for generating private keys for publishers and
subscribers.

5.2 Key Generation for Publishers/Subscribers
Publisher keys. Before starting to publish events, a publisher
contacts the key server along with the credentials for each
attribute in its advertisement. If the publisher is allowed to
publish events according to its credentials, the key server
will generate separate private keys for each credential. Let
Cred; ; denote the credential with label j for the attribute A;,
for example, Credren,o denotes credential 0 of attribute
Temp. The public key of a publisher p for credential Cred; ;
is generated as

Puj ;= (Cred;; || A; || PUB || Epoch).

The key server will generate the corresponding private keys
as follows: For each credential Cred; ; and a publisher p, let
v, = Hi(Puj;) be a bit string of length n, and let v,[#]
denote the kth bit. Let IT'; ; C {1,2,...,n,} be the set of all &
for which v,[k] = 1. The key server chooses v;; € Z, at
random and computes

Yig
P?“fd = (g‘; <u/ H Uk,) 79’%.;) = (Prgij[l],PTﬁj[Q]).

kel

Subscriber keys. Similarly, to receive events matching its
subscription, a subscriber should contact the key server and
receive the private keys for the credentials associated with
each attribute A;. In case of subscribers, the public key for a
credential Cred, ; is given as

Puf,j :=(Cred;; || A; || SUB || Epoch).

A different symbol SUB is used to differentiate the keys
used for the verification of valid events from the ones used
to provide event confidentiality. The private keys are
generated as follows: The key server chooses v, € Z, at
random. The same - is used for all credentials associated
with a subscription. For each credential Cred; j, it calculates
I';; similar to the publisher’s case, chooses v;; € Z, and
computes

Vi 12
Prf/ L= (g;5 <ul H uk‘) 797“/’ H3 (’LL/ H uk) >
; kel kel

=: (Prf,j[l], Pr‘;j[Q], Pri; [3]) .

Furthermore, a credential independent key Pr[4] = g,* is
generated. Later, we will see that v, along with Pr[4] is
needed to bind the keys/credentials of a subscription
together. It is worth mentioning that the key Pr;[3] is not
used to decrypt events but rather it facilitates the routing
of encrypted events from publishers to subscribers (cf.
Section 6.4).

5.3 Publishing Events

Encryption. When a publisher wants to publish an event
message M, it chooses b; € Z, at random for each attribute
A; of the event, such that b = Zle b;. These random values

TARIQ ET AL.: SECURING BROKER-LESS PUBLISH/SUBSCRIBE SYSTEMS USING IDENTITY-BASED ENCRYPTION 523

ensure that only the subscribers who have matching
credentials for each of the attributes should be able to
decrypt the event. Furthermore, the publisher generates a
fixed-length random key SK for each event. More precisely,
the following steps are performed by the publisher to
encrypt an event:

Step 1. Compute: CT) = e(gl,gg) SK, CTy = h* and,

CT; = BlockCipher(Msg||0*)*", where Msg = (M, {Pui;})
defines a record that includes 1) the actual event message
M, and 2) the public keys of the credentials which authorize
the publisher p to send the event.

The cost of asymmetric encryption generally increases
with the size of the plaintext. Therefore, only a fixed-length
random key SK is encrypted using the private keys of
publisher. The record Msyg is encrypted with a symmetric
encryption algorithm such as AES [15] or Triple DES [3],
using key SK.

During decryption, a subscriber does not know about the
credentials with which the event is encrypted and cannot
tell in advance whether he is authorized to read the event
message. Therefore, to enable the subscribers to detect the
successful decryption of events, Msg is appended with a
predefined number of zeros (Msg||0*). Alternatively, hash
of Msg, i.e., Hy(Msg), can be included in the ciphertext to
serve the same purpose.

Step 2. For each attribute A;, compute CT; = ¢". The CT;
ciphertexts along with CTZJ- (created in Step 3) and Pr; (3]
are used for the routing of encrypted events (cf. Section 6.4).

Step 3. For each attribute of the event, a ciphertext should
be created for every credential that matches the value
associated with that attribute, so that a subscriber with any
of these credentials should be able to decrypt the event. For
example, in case of a numeric attribute with value mapped
to 0000, a ciphertext should be disseminated for the
credentials 0000, 000, 00, and O.

For each credential Cred, ; that matches the value of the
attribute A4;, compute CT7 = (u err u)” and CT
Hy(e(Hs(u' [[zer, uk) b)), where I';; is calculated, as
described above. The ciphertexts are ordered according
to the containment relationship (in descending order)
between their associated credentials, for example, for the
above example the order is [CT;y, CT; 00, CT; 000, CT; 0000]-

Signature. Finally, the publisher p signs the ciphertexts
using its private keys. It computes v,, = Hy(M) a bit string
of length n,. Let v,[k] denotes the kth bit and T, C
{1,2,...,n,,} be the set of all k for which v,,[k] = 1. For each
attribute, the credential Cred; ; that authorizes the publisher
p to send the corresponding attribute value, p computes

b;
CT (1] = Pl 1] <m’ H mk> , CT 2] = Prl [2)].
kel

The credentials Cred; ; are same to those included in CT3.

5.4 Receiving Events

Decryption. On receiving the ciphertexts, a subscriber tries to
decrypt them using its private keys. The ciphertexts for each
attribute are strictly ordered according to the containment
relation between their associated credentials; therefore, a
subscriber only tries to decrypt the ciphertext whose
position coincides with the position of its credential in the

containment hierarchy of the corresponding attribute. The
position of a credential can be easily determined by
calculating its length. For example, for a numeric attribute,
credential 0000 occupies fourth position in the containment
hierarchy, i.e., after 0, 00, and 000. Subscribers decrypt the
ciphertext in the following manner:

Step 1. The symmetric key SK is retrieved from the
ciphertext CT; by performing the following pairing-based
cryptographic operations:

4 éPr, 1.CT)
(Hi:l W) ¢
DT = STl

é(CTy, Prs[4])

= SK, (1)

where 7; is the credential assigned to the subscriber for the
attribute A;.! As mentioned above, for each attribute A;,
only the ciphertext that corresponds to the credential
assigned to the subscriber is used during decryption, i.e.,
CT; 5. The correctness of the operations performed by (1) is
discussed in the supplemental document available online.

Step 2. Symmetric key SK is then used to recover Msg =
(M, {Puj;}) from CT;. The successful decryption of Msg is
detected by looking for predefined number of zeros append-
ing the M sgrecord or verifying the hash of Msg,i.e., Hy(Msg).

Verification. A subscriber will only accept the message if
it is from an authorized publisher. To check the authenticity
of an event, subscribers use the master public key (MPu)
and perform the following steps: }

Step 1. Compute: VT =&}, CT;7"1],9), where
L 1C’TS“]"[H represents the product of all received
o1y 1] c1phertexts

Step 2. Compute: VIg = H (gl,gg)

Step 3. Compute: Vg = e(H (W Tler,, w)s T
COT;"[2]), where 1, (u erp uy,) represents the product
of all Puf; in CTy and -, CT‘W"[] is the product of all
received CT”g "12] ciphertexts.

Step 4. Compute: VTrs = é(m/ [[1er,, Mk 1L, cT).

The received event is authentic if the following identity
holds (see supplemental document, available online, for
details): VTL = VTR1 X VTRQ X VTng

Table 1 shows the worst case costs of our security
methods for numeric and string attributes.

To ensure forward and backward secrecy in the presence
of continuously arriving and leaving subscribers, we
proposed an epoch-based key management scheme that
provides fine-grain access control in a scalable manner.
The details are available in the supplemental document
available online.

6 SUBSCRIPTION CONFIDENTIALITY

In this section, we address to achieve subscription con-
fidentiality in a broker-less pub/sub system.

6.1 Publish/Subscribe Overlay

The pub/sub overlay is a virtual forest of logical trees,
where each tree is associated with an attribute (cf. Fig. 5). A

1. A subscriber might have many credentials for a single attribute,
for example, log,(Z;) in the worst case for a numeric attribute A4;. Our
overlay topology maintenance (cf. Section 6.3) and event dissemination
(cf. Section 6.4) mechanisms ensure that a subscriber knows the exact
credential needed to decrypt the event.

524

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

TABLE 1
Cost of Security Methods
Public Private Ciphertext Encryption Decryption Sign Verification
params keys Size cost cost cost cost
Numeric O (1) O (Zj:1 logy zi> o) (27:1 logy 22-) o) (ijl log, zi) O 0O 0
Stting O(1) O (d Ei) o (Z;i:l ci) 1o (z;i:l Li) 0@ 0@ O

subscriber joins the trees corresponding to the attributes of
its subscription. Similarly, a publisher sends an event on all
the trees associated with the attributes in the event.

Within each attribute tree, subscribers are connected
according to the containment relationship between their
credentials associated with the attribute. The subscribers
with coarser credentials (e.g., the ones mapped to coarser
subspaces in case of numeric attributes) are placed near the
root of the tree and forward events to the subscribers with
finer credentials. A subscriber with more than one
credentials can be handled by running multiple virtual
peers on a single physical node, each virtual peer main-
taining its own set of tree links, as shown in Fig. 5. To
connect to an attribute tree, a newly arriving subscriber s,
sends the connection request along with its credential to a
random peer s, in the tree. The peer s, compares the request
credential with its own; if the peer’s credential covers the
request credential and the peer can accommodate more
children, it accepts the connection. Otherwise, the connec-
tion request is forwarded to all the children with covering
credentials and the parent peer with the exception of the
peer from which it was received. In this way, the connection
request is forwarded by many peers in the tree before it
reaches the suitable peer with covering credential and
available connection, as shown in Fig. 5.

6.2 Weak Subscription Confidentiality

It is infeasible to provide strong subscription confidenti-
ality in a broker-less pub/sub system because the main-
tenance of the overlay topology requires each peer to know
the subscription of its parent as well as its children. To
address this issue, a weaker notion of subscription
confidentiality is required.

Definition 6.1. Let sy and so denote two subscribers in a pub/sub
system which both possess credentials for an attribute A,.
Weak subscription confidentiality ensures that at most the
following information can be inferred about the credentials of
the subscribers:

Tree of Attribute A,

Tree of Attribute A,

Fig. 5. Pub/Sub system with two numeric attributes.

1. The credential of s, is either coarser or equal to the
credentials of ss.

2. The credential of s, is either finer or equal to the
credentials of s,.

3. The credentials of sy and sy are not in any containment
relationship.

6.3 Secure Overlay Maintenance

In the following, we propose a secure protocol to maintain
the desired pub/sub overlay topology without violating the
weak subscription confidentiality. For simplicity and with-
out loss of generality, here we discuss the overlay main-
tenance w.r.t. a single tree associated with a numeric attribute
A; and each of the subscribers owns a single credential.

The secure overlay maintenance protocol is based on the
idea that in the tree, subscribers are always connected
according to the containment relationship between their
credentials, for example, a subscriber with credential 00 can
only connect to the subscribers with credentials 0 or 00.

A new subscriber s generates a random key SW and
encrypts it with the public keys Pu;; for all credentials that
cover its own credential, for example, a subscriber with
credential 00 will generate ciphertexts by applying the
public keys Pu;j, and Pu;,. The generated ciphertexts are
added to a connection request (CR) and the request is
forwarded to a random peer in the tree. A connection is
established if the peer can decrypt any of the ciphertexts
using its private keys.

Filling the security gaps. By looking at the number of
ciphertexts in the connection request, a peer can detect the
credential of the requesting subscriber s. For example, a
subscriber with credential 00 can only connect to 0 or 00, and
therefore, a connection request will have two ciphertexts,
whereas the connection request for 000 will have three
ciphertexts. In the worst case, a subscriber has a credential of
the finest granularity. This can be covered by log,(Z;) other
credentials, and therefore, a connection request contains in
the worst case that many ciphertexts. To avoid any informa-
tion leak, ciphertexts in the connection request are always
kept in O(log, Z;) (O(L;) for prefix matching) by adding
random ciphertexts if needed. Furthermore, the ciphertexts
are shuffled to avoid any information leak from their order.

A different random key SW is used for the generation of
each ciphertext to avoid any information leak to the peer
who has successfully decrypted one of the ciphertexts and,
thus, has recovered the random key SW. Otherwise, the
peer can try to generate ciphertexts by encrypting the
(recovered) SW with public keys for O(log, Z;) (likewise
O(L;)) credentials and can easily determine the random
ciphertexts in the connection request and, thus, the

TARIQ ET AL.: SECURING BROKER-LESS PUBLISH/SUBSCRIBE SYSTEMS USING IDENTITY-BASED ENCRYPTION 525

credentials of the requesting subscriber s. Finally, to avoid
an attacker to generate arbitrary connection request
messages and try to discover the credential of other peers
in the system, the connection request is signed by the key
server. This step needs to be performed only once, when a
newly arriving subscriber authorizes itself to the key server
in order to receive private keys for its credentials.

Owerall algorithm. The secure overlay maintenance pro-
tocol is shown in Algorithm 1. In the algorithm, the
procedure decrypt_request tries to decrypt one of the
ciphertexts in the connection request message.

Algorithm 1. Secure overlay maintenance protocol
at peer s;.
1: upon event Receive(CR of sy, from s,) do
2: if decrypt_request(CR) == SUCCESS then
3: if degree(s,) == available then //can have
child peers
connect to the s,y
else
forward CR to {child peers and parent} — s,
if decrypt_request(CR) == FAIL then
if s, == parent then
Try to swap by sending its own CR to the ;.
10: else
11: forward to parent

RN AR L

A child peer s, receives CR (of subscriber s,,,,) from the
parent s, only if the parent cannot accommodate more
children. If s, cannot be the parent of spe,, i€., Spew’s
credential is coarser than that of s,, then it tries to swap its
position with s,., by sending its own connection request
(cf. Algorithm 1, lines 7-9). However, if none of the children
of parent s, can connect or swap with s,,,, then there is no
containment relationship between the credentials of the
children and s;,,. In this case, a parent should disconnect
one of its children to ensure the new subscriber is connected
to the tree.

6.4 Secure Event Dissemination

To publish an event, a publisher forwards the ciphertexts of
each attribute to the root of the corresponding attribute tree.
All the ciphertexts of an event are labeled with a unique
value such as sequence number of the event. This helps
subscribers to identify all the ciphertexts of an event
(though the ciphertexts for each attribute are received on
a separate tree). In this section, we describe two strategies to
route events (from publishers to the relevant subscribers) in
the pub/sub overlay network without violating the weak
subscription confidentiality.

Omne-hop flooding (OHF). In one-hop flooding, a parent
assumes that the children have the same credentials as its
own and forward each successfully decrypted event to all of
them. In turn, the children forward each event which was
successfully decrypted to all of their children and so on. In
this strategy, each subscriber maintains O(dlog, Z) overlay
connections in worst case (one for each credential). More-
over, a child may have finer credentials than its parent and
may receive false positives. This strategy is detailed in the
supplemental document available online.

Multicredential routing (MCR). MCR strategy targets
reduction in false positives by enabling parents to forward
only those event on each attribute tree that match the
credential of their children. In particular, every child
subscriber s on an attribute tree A; informs each parent p
about the private key Pr [3] of the credential Cred;,
associated with the overlay connection to p. Upon receiving
an event on an attribute tree A;, a parent p forwards the
event to a child s if one of the credentials (i.e., CT;,J-) under
which the event is encrypted matches the credential of the
private key Pr; ;[3] submitted by the child s. More precisely,
the decision (DEC) to forward ciphertexts associated with
an attribute A; to the child can be described as

if Hy(e (Prfﬁ
otherwise.

R131,CTh) = CT;

DEC — { forward, 2)

drop,

Although the actual credentials of children are hidden from
the parent peers by the use of Pr;} ;3] keys. Nevertheless, the
hidden credentials (i.e., Pr;;[3] keys) are not adequate to
ensure weak subscription confidentiality. This is because a
parent decrypts every event which it forward to its children
and, therefore, can eventually discover their credentials, for
example, by maintaining histories of the events forwarded
to each child.

To preserve weak subscription confidentiality, subscri-
bers divide the original credential(s) for each attribute of
their subscriptions into a number of fine granular creden-
tials and Pr{;[3] key for each (fine granular) credential is
forwarded to a separate parent in the corresponding
attribute tree. For example, credential 1 for a numeric
attribute can be divided into three credentials 10, 110, and
111, and a separate parent connection can be maintained (by
forwarding Pr;;[3] key) for each credential (obtained as a
result of division). This enables that the exact credential(s)
of an attribute of a subscription cannot be determined
unless multiple parents (with knowledge about the indivi-
dual credentials) collude with each other. To ensure that a
subscriber always connects to a distinct parent for each of
its credentials, techniques such as broadcast revocation can
be used [13]. It is also important to mention that the
subscribers cannot generate Pr7;[3] keys for the fine
granular credentials obtained as a result of dividing the
original credential(s) and, therefore, should contact the key
server for the creation of Pr};[3] keys. This step can be
performed at the same time when a new subscriber
authorizes itself to the key server.

A subscriber maintains at least kp credentials for each
attribute of its subscription. The parameter kp can be
defined by the system or selected by each subscriber
independently depending on its confidentiality require-
ments. In this strategy, a subscriber may maintain more
overlay connections than OHF if the number of credentials
per attribute (i.e., kp) is more than log, Z. However, the
complete subscription of the subscriber cannot be deter-
mined unless d.kp parents collude with each other.

Analysis of secure overlay maintenance (cf. Section 6.2)
and secure event dissemination (cf. Section 6.4) algorithms
to preserve weaker notion of subscription confidentiality as
well as traffic analysis and timing attacks on subscription

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

TABLE 2
Throughput of Cryptographic Primitives
Encryption(E) ~ 10KB/sec
Decryption(D) 10KB/sec
Signature(S) 158 sign/sec
Verification(V) 52 verify/sec

confidentiality are discussed in the supplemental document
available online.

7 PERFORMANCE EVALUATIONS

We evaluate three aspects of our system: 1) quantifying the
overhead of our cryptographic primitives, 2) benchmarking
the performance of our secure pub/sub system, and
3) analyzing attacks on subscription confidentiality. Here,
we only discuss the first two aspects and the evaluations
related to the analysis of subscription confidentiality are
available in the supplemental document available online.
Experimental Setup. Simulations are performed using
PeerSim [11]. Simulations are performed for up to N =
2,048 peers. Unless otherwise stated, out-degree constraints
of the peers are chosen as log,(N). The delays between the
communication links are chosen in the range [24 and
134 ms]. The complex subscriptions used during the
evaluations contain conjunction of predicates defined on
up to d =16 different attributes. We evaluate the system
performance under uniform (WL;) and skewed (WLy)
subscription workloads, and with a uniform and skewed
event distribution. Skew is simulated using the widely used
80-20 percent Zipfian distribution with three to five hot
spots. The security mechanisms are implemented by the
pairing-based cryptography library [14]. The implementa-
tion uses a 160-bit elliptic curve group based on the
supersingular curve y* = z* + z over a 512-bit finite field.

7.1 Performance of Cryptographic Primitives

In this section, we measure the computational overhead of
our security methods. All of our measurements were
made on a 2-GHz Intel Centrino Duo with 2-GB RAM,
running Ubuntu 9. Table 2 shows the throughput of the
cryptographic primitives to perform encryption, decryp-
tion, signature, and verification. All reporting values
are averaged over 1,000 measurements. In our system,
pairing-based encryption is used to encrypt a random key
SK, which is later used to decrypt the actual event using
symmetric encryption (cf. Section 5.3). Therefore, the

TABLE 3
Computation Times for Publishers and Subscribers
Operation Time(msec)
Encryption(E) 6.9+dx54
Signature(S) d x 6.32
Decryption(D) 6.24+dx6.1

Verification(V) 19.3 + d x 0.001

NO. 2, FEBRUARY 2014

TABLE 4
Average CPU Utilization

Operation Usage (%)
0.34+d x0.24

d x 0.274

0.266 + d x 0.265

0.83 + d x 0.00003

Encryption(E)
Signature(S)
Decryption(D)
Verification(V)

message size is kept 128 bytes as this key length is good
enough for most symmetric encryption algorithms. Table 3
shows the computational overhead (in msec) from the
perspective of publishers and subscribers in our system. In
general, the cost of verification is high due to the fact that
it involves the computationally expensive pairing opera-
tions. Likewise, Table 4 shows the average CPU utilization
for publishers and subscribers.

7.2 Performance of Publish/Subscribe System

The pub/sub overlay proposed in Section 6.1 is similar to
DPS system [1] with modifications to ensure subscription
confidentiality. In this paper, we, therefore, evaluate
performance and scalability of the proposed pub/sub
system only with respect to the security mechanisms and
omit other aspects. In particular, we evaluate the perfor-
mance of our system w.r.t. the overlay construction time
and the event dissemination delays.

In Fig. 6a, we measure the average delay experienced by
each subscriber to connect to a suitable position in an
attribute tree. Delay is measured from the time a subscriber
sends connection request message to a random peer in the
tree till the time the connection is actually established. The
evaluations are performed only for a single attribute tree.
Fig. 6a shows that the average connection time (delay)
increases with the number of peers in the system because of
the increase in the height of the attribute tree (each new hop
increases the network delay as well as time to apply
security methods). Furthermore, Fig. 6a shows that there is

5 1000 Unsecure System *--€-- 7 o 1000
.S Secure System —— o
-
5 D
ﬂé,{; 800 8 800
e ie
0~ 600 g
N o 600
53 o 1
Ba a00 @ 1
5 4| T 400 ..
9 v e® R D ga 4
© 200 i1°0
. H R 200
g o
% 0 L L L L >
@e o <« % < o
N &
Han S < SR - i &
No. of subseribers - (3) out-degree constraints - (b)
g 1100
9« Unsecure System =--9---
D 1000 [Secure System —— o
o
ETE 900
b L
VE 800
A > 700
e t
T ©
o
PO 600 |, H
=R} P
2 500 PR
o
K 400]
2
= 300

o o <« @
N ~ <
Han o =)
I
c

A
No. of subscribers - (

Fig. 6. Performance evaluations.

TARIQ ET AL.: SECURING BROKER-LESS PUBLISH/SUBSCRIBE SYSTEMS USING IDENTITY-BASED ENCRYPTION 527

an overhead of approximately 230-300 ms due to security
mechanisms. Our evaluations with higher number of
attributes indicate that the average connection delay
experienced by a subscriber is independent to the number
of attributes. The reason being that each attribute tree is
created in parallel and a subscriber sends connection
request to connect multiple attribute trees at the same time.
Nevertheless, the average connection delay is affected by
the out-degree constraints of the peers participating in the
overlay network. Fig. 6b shows that for a fixed set of peers
(i.e., 1,024 peers for this experiment), the average delay
experienced by subscribers decreases significantly with the
increase in out-degree mainly because the resultant dis-
semination tree is fat (i.e., tree with smaller height). For the
similar reason, Fig. 6a reports that average connection time
(delay) increases very slightly with the number of peers.
The increase in the average connection delay is small
because the overall out-degree also increases with the
number of peers, resulting in only a small increase in the
height of the tree.

Fig. 6c measures the average time needed by the event
to be disseminated to all the relevant subscribers in the
system. For each subscriber, the time is measured from the
dissemination of the event by the publisher till it is
successfully decrypted and verified by the subscriber. For
the experiment, 160 publishers are introduced in the
system and each published 10 events. Fig. 6c shows that
the average time to disseminate an event increases with
the number of peers in the system because of the increase
in number of the relevant subscribers as well as the height
of the dissemination tree. Similar to the previous results,
there is an overhead of approximately 150-250 ms due to
security mechanisms.

The evaluation results obtained from WL, show similar
trend. The rest of the evaluations can be found in the
supplemental document available online.

8 CONCLUSION

In this paper, we have presented a new approach to provide
authentication and confidentiality in a broker-less content-
based pub/sub system. The approach is highly scalable in
terms of number of subscribers and publishers in the
system and the number of keys maintained by them. In
particular, we have developed mechanisms to assign
credentials to publishers and subscribers according to their
subscriptions and advertisements. Private keys assigned to
publishers and subscribers, and the ciphertexts are labeled
with credentials. We adapted techniques from identity-
based encryption 1) to ensure that a particular subscriber
can decrypt an event only if there is a match between the
credentials associated with the event and its private keys
and 2) to allow subscribers to verify the authenticity of
received events. Furthermore, we developed a secure
overlay maintenance protocol and proposed two event
dissemination strategies to preserve the weak subscription
confidentiality in the presence of semantic clustering of
subscribers. The evaluations demonstrate the viability of
the proposed security mechanisms and analyze attacks on
subscription confidentiality.

REFERENCES

[1] E. Anceaume, M. Gradinariu, A.K. Datta, G. Simon, and A.
Virgillito, “A Semantic Overlay for Self- Peer-to-Peer Publish/
Subscribe,” Proc. 26th IEEE Int’l Conf. Distributed Computing
Systems (ICDCS), 2006.

[2] J. Bacon, D.M. Eyers, J. Singh, and P.R. Pietzuch, “Access Control
in Publish/Subscribe Systems,” Proc. Second ACM Int’l Conf.
Distributed Event-Based Systems (DEBS), 2008.

[3] W.C. Barker and E.B. Barker, “SP 800-67 Rev. 1. Recommendation
for the Triple Data Encryption Algorithm (TDEA) Block Cipher,”
technical report, Nat'l Inst. of Standards & Technology, 2012.

[4]]. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-Based Encryption,” Proc. IEEE Symp. Security and
Privacy, 2007.

[5] D.Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” Proc. Int’l Conf. Theory and
Applications of Cryptographic Techniques on Advances in Cryptology
(EUROCRYPT), 2004.

[6] D.Boneh and M.K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Int’l Cryptology Conf. Advances in Cryptology,
2001.

[71 S. Choi, G. Ghinita, and E. Bertino, “A Privacy-Enhancing
Content-Based Publish/Subscribe System Using Scalar Product
Preserving Transformations,” Proc. 21st Int'l Conf. Database and
Expert Systems Applications: Part I, 2010.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data,”
Proc. ACM 13th Conf. Computer and Comm. Security (CCS), 2006.

[91 M. Ion, G. Russello, and B. Crispo, “Supporting Publication and
Subscription Confidentiality in Pub/Sub Networks,” Proc. Sixth
Int’l ICST Conf. Security and Privacy in Comm. Networks (Secur-
eComm), 2010.

[10] H.-A. Jacobsen, AK.Y. Cheung, G. Li, B. Maniymaran, V.
Muthusamy, and R.S. Kazemzadeh, “The PADRES Publish/
Subscribe System,” Principles and Applications of Distributed
Event-Based Systems. 1GI Global, 2010.

[11] M. Jelasity, A. Montresor, G.P. Jesi, and S. Voulgaris, “PeerSim: A
Peer-to-Peer Simulator,” http://peersim.sourceforge.net/, 2013.

[12] H. Khurana, “Scalable Security and Accounting Services for
Content-Based Publish/Subscribe Systems,” Proc. ACM Symp.
Applied Computing, 2005.

[13] A.Lewko, A. Sahai, and B. Waters, “Revocation Systems with Very
Small Private Keys,” Proc. IEEE Symp. Security and Privacy, 2010.

[14] B. Lynn, “The Pairing-Based Cryptography (PBC) Library,”
http:/ /crypto.stanford.edu/pbc/, 2010.

[15] E.P. Miller, A.F. Vandome, and]J. McBrewster, Advanced Encryp-
tion Standard. Alpha Press, 2009.

[16] M. Nabeel, N. Shang, and E. Bertino, “Efficient Privacy Preserving
Content Based Publish Subscribe Systems,” Proc. 17th ACM Symp.
Access Control Models and Technologies, 2012.

[17] L. Opyrchal and A. Prakash, “Secure Distribution of Events in
Content-Based Publish Subscribe Systems,” Proc. 10th Conf.
USENIX Security Symp., 2001.

[18] L.ILW. Pesonen, D.M. Eyers, and]. Bacon, “Encryption-Enforced
Access Control in Dynamic Multi-Domain Publish/Subscribe
Networks,” Proc. ACM Int’l Conf. Distributed Event-Based Systems
(DEBS), 2007.

[19] P. Pietzuch, “Hermes: A Scalable Event-Based Middleware,” PhD
dissertation, Univ. of Cambridge, Feb. 2004.

[20] C. Raiciu and D.S. Rosenblum, “Enabling Confidentiality in
Content-Based Publish/Subscribe Infrastructures,” Proc. IEEE
Second CreatNet Int’l Conf. Security and Privacy in Comm. Networks
(SecureComm), 2006.

[21] A. Shikfa, M. Onen, and R. Molva, “Privacy-Preserving Content-
Based Publish/Subscribe Networks,” Proc. Emerging Challenges for
Security, Privacy and Trust, 2009.

[22] M. Srivatsa, L. Liu, and A. Iyengar, “EventGuard: A System
Architecture for Securing Publish-Subscribe Networks,” ACM
Trans. Computer Systems, vol. 29, article 10, 2011.

[23] M.A. Tariq, B. Koldehofe, A. Altaweel, and K. Rothermel,
“Providing Basic Security Mechanisms in Broker-Less Publish/
Subscribe Systems,” Proc. ACM Fourth Int’l Conf. Distributed Event-
Based Systems (DEBS), 2010.

[24] M.A. Tariq, B. Koldehofe, G.G. Koch, I. Khan, and K. Rothermel,
“Meeting Subscriber-Defined QoS Constraints in Publish/Sub-
scribe Systems,” Concurrency and Computation: Practice and
Experience, vol. 23, pp. 2140-2153, 2011.

528 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.2, FEBRUARY 2014

[25] Y. Yu, B. Yang, Y. Sun, and S.-1. Zhu, “Identity Based Signcryption
Scheme without Random Oracles,” Computer Standards & Inter-
faces, vol. 31, pp. 56-62, 2009.

Muhammad Adnan Tariq received the PhD
degree from the University of Stuttgart,
Germany. He is currently working as a
postdoctoral research fellow at the Distributed
Systems research group, University of Stutt-
gart. His research interests include event-
based systems, service-aware adaptive over-
lay networks, QoS, and security.

Boris Koldehofe received the PhD degree from
the Chalmers University of Technology, in 2005,
and joined the EPFL as a postdoctoral research
fellow directly after the PhD. He has been a
senior researcher and lecturer at the IPVS of the
University of Stuttgart in the field of distributed
systems, since 2006. In 2010, he was also
appointed as a visiting professor at the Uni-
versity of Heidelberg. Currently, he is leading
the Adaptive Communication Systems group at
the Department of Distributed Systems, University of Stuttgart, where
his research is centered on scalable and reliable adaptation of
distributed applications. In particular, his current work deals with
methods for reliable, mobile, and secure event processing systems
and event routing with QoS in communication networks.

‘ Kurt Rothermel received the doctoral degree
in computer science from the University of
Stuttgart in 1985. From 1986 to 1987, he was
a postdoctoral fellow at the IBM Almaden
Research Center in San Jose and then joined
IBM European Networking Center in Heidelberg,
Germany. He left IBM in 1990 to become a
professor of computer science back at the
University of Stuttgart, where he now leads the
distributed systems research group. His re-
search interests are in the fields on distributed systems, computer
networks, mobile systems, and sensor networks.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

