
1

Shared Authority Based Privacy-preserving
Authentication Protocol in Cloud Computing

Hong Liu, Student Member, IEEE, Huansheng Ning, Senior Member, IEEE, Qingxu Xiong, Member, IEEE,
and Laurence T. Yang, Member, IEEE

Abstract—Cloud computing is emerging as a prevalent data interactive paradigm to realize users’ data remotely stored in an online
cloud server. Cloud services provide great conveniences for the users to enjoy the on-demand cloud applications without considering
the local infrastructure limitations. During the data accessing, different users may be in a collaborative relationship, and thus data
sharing becomes significant to achieve productive benefits. The existing security solutions mainly focus on the authentication to realize
that a user’s privative data cannot be unauthorized accessed, but neglect a subtle privacy issue during a user challenging the cloud
server to request other users for data sharing. The challenged access request itself may reveal the user’s privacy no matter whether
or not it can obtain the data access permissions. In this paper, we propose a shared authority based privacy-preserving authentication
protocol (SAPA) to address above privacy issue for cloud storage. In the SAPA, 1) shared access authority is achieved by anonymous
access request matching mechanism with security and privacy considerations (e.g., authentication, data anonymity, user privacy, and
forward security); 2) attribute based access control is adopted to realize that the user can only access its own data fields; 3) proxy
re-encryption is applied by the cloud server to provide data sharing among the multiple users. Meanwhile, universal composability (UC)
model is established to prove that the SAPA theoretically has the design correctness. It indicates that the proposed protocol realizing
privacy-preserving data access authority sharing, is attractive for multi-user collaborative cloud applications.

Index Terms—Cloud computing, authentication protocol, privacy preservation, shared authority, universal composability.

F

1 INTRODUCTION

C LOUD computing is a promising information tech-
nology architecture for both enterprises and in-

dividuals. It launches an attractive data storage and
interactive paradigm with obvious advantages, includ-
ing on-demand self-services, ubiquitous network access,
and location independent resource pooling [1]. Towards
the cloud computing, a typical service architecture is
anything as a service (XaaS), in which infrastructures,
platform, software, and others are applied for ubiquitous
interconnections. Recent studies have been worked to
promote the cloud computing evolve towards the inter-
net of services [2], [3]. Subsequently, security and privacy
issues are becoming key concerns with the increasing
popularity of cloud services. Conventional security ap-
proaches mainly focus on the strong authentication to
realize that a user can remotely access its own data
in on-demand mode. Along with the diversity of the
application requirements, users may want to access and
share each other’s authorized data fields to achieve pro-

• H. Ning is with the School of Computer and Communication Engineering,
University of Science and Technology Beijing, China, and also with the
School of Electronic and Information Engineering, Beihang University,
China. E-mail: ninghuansheng@buaa.edu.cn

• H. Liu and Q. Xiong are with the School of Electronic and Information En-
gineering, Beihang University, China. E-mail: liuhongler@ee.buaa.edu.cn;
qxxiong@buaa.edu.cn

• L. T. Yang is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, China, and also with the
Department of Computer Science, St. Francis Xavier University, Canada.
E-mail: ltyang@stfx.ca

ductive benefits, which brings new security and privacy
challenges for the cloud storage.

An example is introduced to identify the main mo-
tivation. In the cloud storage based supply chain man-
agement, there are various interest groups (e.g., supplier,
carrier, and retailer) in the system. Each group owns its
users which are permitted to access the authorized data
fields, and different users own relatively independent
access authorities. It means that any two users from
diverse groups should access different data fields of the
same file. Thereinto, a supplier purposely may want to
access a carrier’s data fields, but it is not sure whether
the carrier will allow its access request. If the carrier
refuses its request, the supplier’s access desire will be
revealed along with nothing obtained towards the de-
sired data fields. Actually, the supplier may not send
the access request or withdraw the unaccepted request in
advance if it firmly knows that its request will be refused
by the carrier. It is unreasonable to thoroughly disclose
the supplier’s private information without any privacy
considerations. Fig. 1 illustrates three revised cases to
address above imperceptible privacy issue.

• Case 1: The carrier also wants to access the supplier’s
data fields, and the cloud server should inform each
other and transmit the shared access authority to the
both users;

• Case 2: The carrier has no interest on other users’ da-
ta fields, therefore its authorized data fields should
be properly protected, meanwhile the supplier’s
access request will also be concealed;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS VOL:PP NO:99 YEAR 2014

2

I want to access
the carrier's data fields

Retailer

Supplier Carrier

Cloud server

I want to access
the carrier's data fields

I want to access
the supplier's data fields

I want to access
the carrier's data fields No access request

I want to access
the retailer's data fields

No access request

The different data fields.

Carrier

Carrier

Supplier

Supplier

Fig. 1. Three possible cases during data accessing and
data sharing in cloud applications.

• Case 3: The carrier may want to access the retailer’s
data fields, but it is not certain whether the retailer
will accept its request or not. The retailer’s autho-
rized data fields should not be public if the retailer
has no interests in the carrier’s data fields, and the
carrier’s request is also privately hidden.

Towards above three cases, security protection and pri-
vacy preservation are both considered without revealing
sensitive access desire related information.

In the cloud environments, a reasonable security pro-
tocol should achieve the following requirements. 1) Au-
thentication: a legal user can access its own data fields,
only the authorized partial or entire data fields can be
identified by the legal user, and any forged or tampered
data fields cannot deceive the legal user. 2) Data anonymi-
ty: any irrelevant entity cannot recognize the exchanged
data and communication state even it intercepts the
exchanged messages via an open channel. 3) User privacy:
any irrelevant entity cannot know or guess a user’s ac-
cess desire, which represents a user’s interest in another
user’s authorized data fields. If and only if the both
users have mutual interests in each other’s authorized
data fields, the cloud server will inform the two users
to realize the access permission sharing. 4) Forward secu-
rity: any adversary cannot correlate two communication
sessions to derive the prior interrogations according to
the currently captured messages.

Researches have been worked to strengthen security
protection and privacy preservation in cloud application-
s, and there are various cryptographic algorithms to ad-
dress potential security and privacy problems, including
security architectures [4], [5], data possession protocols
[6], [7], data public auditing protocols [8]–[10], secure
data storage and data sharing protocols [11]–[16], access
control mechanisms [17]–[19], privacy preserving proto-
cols [20]–[23], and key management [24]–[27]. However,

most previous researches focus on the authentication to
realize that only a legal user can access its authorized
data, which ignores the case that different users may
want to access and share each other’s authorized data
fields to achieve productive benefits. When a user chal-
lenges the cloud server to request other users for data
sharing, the access request itself may reveal the user’s
privacy no matter whether or not it can obtain the data
access permissions. In this work, we aim to address a
user’s sensitive access desire related privacy during data
sharing in the cloud environments, and it is significant to
design a humanistic security scheme to simultaneously
achieve data access control, access authority sharing, and
privacy preservation.

In this paper, we address the aforementioned priva-
cy issue to propose a shared authority based privacy-
preserving authentication protocol (SAPA) for the cloud
data storage, which realizes authentication and autho-
rization without compromising a user’s private informa-
tion. The main contributions are as follows.

1) Identify a new privacy challenge in cloud storage,
and address a subtle privacy issue during a user
challenging the cloud server for data sharing, in
which the challenged request itself cannot reveal
the user’s privacy no matter whether or not it can
obtain the access authority.

2) Propose an authentication protocol to enhance a us-
er’s access request related privacy, and the shared
access authority is achieved by anonymous access
request matching mechanism.

3) Apply ciphertext-policy attribute based access con-
trol to realize that a user can reliably access its
own data fields, and adopt the proxy re-encryption
to provide temp authorized data sharing among
multiple users.

The remainder of the paper is organized as follows.
Section 2 introduces related works. Section 3 introduces
the system model, and Section 4 presents the proposed
authentication protocol. The UC model based formal se-
curity analysis is performed in Section 5 Finally, Section
6 draws a conclusion.

2 RELATED WORK

Dunning et al. [11] proposed an anonymous ID assign-
ment based data sharing algorithm (AIDA) for multipar-
ty oriented cloud and distributed computing systems. In
the AIDA, an integer data sharing algorithm is designed
on top of secure sum data mining operation, and adopts
a variable and unbounded number of iterations for
anonymous assignment. Specifically, Newton’s identities
and Sturm’s theorem are used for the data mining, a
distributed solution of certain polynomials over finite
fields enhances the algorithm scalability, and Markov
chain representations are used to determine statistics on
the required number of iterations.

Liu et al. [12] proposed a multi-owner data sharing
secure scheme (Mona) for dynamic groups in the cloud

3

applications. The Mona aims to realize that a user can
securely share its data with other users via the untrusted
cloud server, and can efficiently support dynamic group
interactions. In the scheme, a new granted user can di-
rectly decrypt data files without pre-contacting with data
owners, and user revocation is achieved by a revocation
list without updating the secret keys of the remaining
users. Access control is applied to ensure that any user
in a group can anonymously utilize the cloud resources,
and the data owners’ real identities can only be revealed
by the group manager for dispute arbitration. It indicates
the storage overhead and encryption computation cost
are independent with the amount of the users.

Grzonkowski et al. [13] proposed a zero-knowledge
proof (ZKP) based authentication scheme for sharing
cloud services. Based on the social home networks, a
user centric approach is applied to enable the sharing
of personalized content and sophisticated network-based
services via TCP/IP infrastructures, in which a trusted
third party is introduced for decentralized interactions.

Nabeel et al. [14] proposed a broadcast group key man-
agement (BGKM) to improve the weakness of symmetric
key cryptosystem in public clouds, and the BGKM real-
izes that a user need not utilize public key cryptography,
and can dynamically derive the symmetric keys during
decryption. Accordingly, attribute based access control
mechanism is designed to achieve that a user can decrypt
the contents if and only if its identity attributes satisfy
the content provider’s policies. The fine-grained algo-
rithm applies access control vector (ACV) for assigning
secrets to users based on the identity attributes, and
allowing the users to derive actual symmetric keys based
on their secrets and other public information. The BGKM
has an obvious advantage during adding/revoking users
and updating access control policies.

Wang et al. [15] proposed a distributed storage in-
tegrity auditing mechanism, which introduces the ho-
momorphic token and distributed erasure-coded data to
enhance secure and dependable storage services in cloud
computing. The scheme allows users to audit the cloud
storage with lightweight communication overloads and
computation cost, and the auditing result ensures strong
cloud storage correctness and fast data error localization.
Towards the dynamic cloud data, the scheme supports
dynamic outsourced data operations. It indicates that the
scheme is resilient against Byzantine failure, malicious
data modification attack, and server colluding attacks.

Sundareswaran et al. [16] established a decentralized
information accountability framework to track the user-
s’ actual data usage in the cloud, and proposed an
object-centered approach to enable enclosing the logging
mechanism with the users’ data and policies. The Java
ARchives (JAR) programmable capability is leveraged to
create a dynamic and mobile object, and to ensure that
the users’ data access will launch authentication. Addi-
tionally, distributed auditing mechanisms are also pro-
vided to strengthen user’s data control, and experiments
demonstrate the approach efficiency and effectiveness.

User mUser 1 User 2

Data fields

... ...

TT
P

Trusted third party
(optional)

Data related
delegation

Public auditing and
dispute arbitration

Cloud server

Fig. 2. The cloud storage system model.

In the aforementioned works, various security issues
are addressed. However, a user’s subtle access request
related privacy problem caused by data accessing and
data sharing has not been studied yet in the literature.
Here, we identify a new privacy challenge, and pro-
pose a protocol not only focusing on authentication to
realize the valid data accessing, but also considering
authorization to provide the privacy-preserving access
authority sharing. The attribute based access control and
proxy re-encryption mechanisms are jointly applied for
authentication and authorization.

3 SYSTEM MODEL

Fig. 2 illustrates a system model for the cloud storage
architecture, which includes three main network entities:
users (Ux), a cloud server (S), and a trusted third party.

• User: an individual or group entity, which owns
its data stored in the cloud for online data storage
and computing. Different users may be affiliated
with a common organization, and are assigned with
independent authorities on certain data fields.

• Cloud server: an entity, which is managed by a par-
ticular cloud service provider or cloud application
operator to provide data storage and computing ser-
vices. The cloud server is regarded as an entity with
unrestricted storage and computational resources.

• Trusted third party: an optional and neutral entity,
which has advanced capabilities on behalf of the
users, to perform data public auditing and dispute
arbitration.

In the cloud storage, a user remotely stores its data via
online infrastructures, flatforms, or software for cloud
services, which are operated in the distributed, parallel,
and cooperative modes. During cloud data accessing,
the user autonomously interacts with the cloud server
without external interferences, and is assigned with the
full and independent authority on its own data fields. It
is necessary to guarantee that the users’ outsourced data
cannot be unauthorized accessed by other users, and is
of critical importance to ensure the private information
during the users’ data access challenges. In some sce-
narios, there are multiple users in a system (e.g., supply
chain management), and the users could have different
affiliation attributes from different interest groups. One

4

of the users may want to access other associate users’
data fields to achieve bi-directional data sharing, but it
cares about two aspects: whether the aimed user would
like to share its data fields, and how cannot expose
its access request if the aimed user declines or ignores
its challenge. In the paper, we pay more attention on
the process of data access control and access authority
sharing other than the specific file oriented cloud data
transmission and management.

In the system model, assume that point-to-point com-
munication channels between users and a cloud server
are reliable with the protection of secure shell protocol
(SSH). The related authentication handshakes are not
highlighted in the following protocol presentation.

Towards the trust model, there are no trust relation-
ships between a cloud server S and a user Ux.

• S is semi-honest and curious: Being semi-honest mean-
s that S can be regarded as an entity that appropri-
ately follows the protocol procedure. Being curious
means that S may attempt to obtain Ux’s private in-
formation (e.g., data content, and user preferences).
It means that S is under the supervision of its
cloud provider or operator, but may be interested
in viewing users’ privacy. In the passive or honest-
but-curious model, S cannot tamper with the users’
data to maintain the system normal operation with
undetected monitoring.

• Ux is rational and sensitive: Being rational means that
Ux’s behavior would be never based on experience
or emotion, and misbehavior may only occur for
selfish interests. Being sensitive means that Ux is
reluctant to disclosure its sensitive data, but has
strong interests in other users’ privacy.

Towards the threat model, it covers the possible secu-
rity threats and system vulnerabilities during cloud data
interactions. The communication channels are exposed in
public, and both internal and external attacks exist in the
cloud applications [15]. The internal attacks mainly refer
to the interactive entities (i.e., S, and Ux). Thereinto, S
may be self-centered and utilitarian, and aims to obtain
more user data contents and the associated user behav-
iors/habits for the maximization of commercial interests;
Ux may attempt to capture other users’ sensitive data
fields for certain purposes (e.g., curiosity, and malicious
intent). The external attacks mainly consider the data
CIA triad (i.e., confidentiality, integrity, and availability)
threats from outside adversaries, which could compro-
mise the cloud data storage servers, and subsequently
modify (e.g., insert, or delete) the users’ data fields.

4 THE SHARED AUTHORITY BASED PRIVACY-
PRESERVING AUTHENTICATION PROTOCOL

4.1 System Initialization

The cloud storage system includes a cloud server S,
and users {Ux} (x = {1, ...,m}, m ∈ N∗). Thereinto, Ua

and Ub are two users, which have independent access

authorities on their own data fields. It means that a user
has an access permission for particular data fields stored
by S, and the user cannot exceed its authority access to
obtain other users’ data fields. Here, we consider S and
{Ua, Ub} to present the protocol phases for data access
control and access authority sharing with enhanced pri-
vacy considerations. The main notations are introduced
in TABLE 1.

Let BG = (q, g, h,G,G′, e,H) be a pairing group, in
which q is a large prime, {G,G′} are of prime order
q, G = ⟨g⟩ = ⟨h⟩, and H is a collision-resistant hash
function. The bilinear map e : G × G → G′ satisfies the
bilinear non-degenerate properties: i.e., for all g, h ∈ G
and a, b ∈ Z∗

q , it turns out that e(ga, hb) = e(g, h)ab, and
e(g, h) ̸= 1. Meanwhile, e(g, h) can be efficiently obtained
for all g, h ∈ G, and it is a generator of G′.

Let S and Ux respectively own the pairwise keys {pkS ,
skS} and {pkUx , skUx}. Besides, S is assigned with all
users’ public keys {pkU1 , ..., pkUm}, and Ux is assigned
with pkS . Here, the public key pkτ = gskτ (mod q) (τ ∈
{S,Ux}) and the corresponding privacy key skτ ∈ Z∗

q are
defined according to the generator g.

Let F(RUy

Ux
(RUx

Uy
)T) = Cont ∈ Zq describe the algebraic

relation of {RUy

Ux
, RUx

Uy
}, which are mutually inverse

access requests challenged by {Ux, Uy}, and Cont is a
constant. Here, F(.) is a collision-resistant function, for
any randomized polynomial time algorithm A, there is
a negligible function p(k) for a sufficiently large value k.

Prob[{(x, x′); (y, y′)} ← A(1k) :

(x ̸= x′, y ̸= y′) ∧ F(RUx

Uy
(R

U ′
y

U ′
x
)T) = Cont] ≤ p(k)

Note that RU∗
U†

is a m-dimensional Boolean vector, in
which only the ∗-th pointed-element and the †-th self-
element are 1, and other elements are 0. It turns out that:

• F(RUy

Ux
(RUx

Uy
)T) = F(2) = Cont means that both Ux

and Uy are interested in each other’s data fields, and
the two access requests are matched;

• F(RUy

Ux
(RUx̃

Uy
)T) = F(RUỹ

Ux
(RUx

Uy
)T) = F(1) means that

only one user (i.e., Ux or Uy) is interested in the
other’s data fields, and the access requests are not
matched. Note that Ux̃/Uỹ represents that the user
is not Ux/Uy;

• F(RUỹ

Ux
(RUx̃

Uy
)T) = F(0) means that neither Ux nor

Uy is interested in each other’s data fields, and the
two access requests are not matched.

Let A be the attribute set, there are n attributes
A = {A1, A2, ..., An} for all users, and Ux has its own
attribute set AUx ⊂ A for data accessing. Let AUx and PUx

be monotone Boolean matrixes to represent Ux’s data
attribute access list and data access policy.

• Assume that Ux has AUx = [aij]n×m, which satisfies
that aij = 1 for Ai ∈ A, and aij = 0 for Ai /∈ A.

• Assume that S owns PUx = [pij]n×m, which is ap-
plied to restrain Ux’s access authority, and satisfies
that pij = 1 for Ai ∈ PUx , and pij = 0 for Ai /∈ PUx . If
aij ≤ pij∀i = {1, ..., n}, j = {1, ...,m} holds, it will be

5

TABLE 1
Notations

Notation Description

S, Ux The cloud server, and a user (i.e., cloud data
owner).

PIDUx Ux’s pseudorandom identifier (pseudonym).
TUx Ux’s identity token that is assigned by S.
sidSx , sidUx The pseudorandom session identifier of S, Ux.
α, σ, β, rUx The randomly generated numbers.
R

Uy

Ux
The access request pointer that represents Ux’s
access desire on Uy ’s data fields.

DUx , ḊUx Ux’s own authorized data fields, and Ux’s temp
authorized data fields.

AUx , LUx , PUx The data attribute access list, re-structure data
access list, and data access policy.

{mpk/msk} The pairwise master public/privacy keys.
{pk/sk} The pairwise public/privacy keys.
kΣx , kUx The aggregated keys, and the re-encryption

keys.
V ℓ The locally computed value V according to the

same algorithm.
CSx , CUx The ciphertexts.
FSx (x, PUx) The defined polynomial owned by S.
FUx (x, LUx) The defined polynomial owned by Ux.

regarded that AUx
is within PUx

’s access authority
limitation.

Note that full-fledged cryptographic algorithms (e.g.,
attribute based access control, proxy re-encryption, and
theirs variants) can be exploited to support the SAPA.

4.2 The Proposed Protocol Descriptions
Fig. 2. shows the interactions among {Ua, Ub, S}, in
which both Ua and Ub have interests on each other’s
authorized data fields for data sharing. Note that the pre-
sented interactions may not be synchronously launched,
and a certain time interval is allowable.

4.2.1 {Ua, Ub}’s Access Challenges and S’s Responses
{Ua, Ub} respectively generate the session identifiers
{sidUa , sidUb

}, extract the identity tokens {TUa , TUb
},

and transmits {sidUa∥TUa , sidUb
∥TUa} to S as an ac-

cess query to initiate a new session. Accordingly, we
take the interactions of Ua and S as an example to
introduce the following authentication phase. Upon re-
ceiving Ua’s challenge, S first generates a session i-
dentifier sidSa , and establishes the master public key
mpk = (gi, h, hi,BG, e(g, h),H) and master privacy key
msk = (α, g). Thereinto, S randomly chooses α ∈ Zq , and
computes gi = gα

i

and hi = hαi−1

(i = {1, ..., n} ∈ Z∗).
S randomly chooses σ ∈ {0, 1}∗, and extracts Ua’s

access authority policy PUa = [pij]n×m (pij ∈ {0, 1}), and
Ua are assigned with the access authority on its own data
fields DUa within PUa ’s permission. S further defines a
polynomial FSa(x, PUa) according to PUa and TUa .

FSa(x, PUa) =

n,m∏
i=1,j=1

(x+ ijH(TUa))
pij (mod q)

S computes a set of values {MSa0, MSa1, {MSa2i},
MSa3, MSa4} to establish the ciphertext CSa =

{MSa1, {MSa2i},MSa3,MSa4}, and transmits sidSa∥CSa

to Ua.
MSa0 = H(PUa∥DUa∥TUa∥σ),
MSa1 = hFSa (α,PUa)MSa0 ,

MSa2i = (gi)
MSa0 , (i = 1, ..., n)

MSa3 = H(e(g, h)MSa0)⊕ σ,

MSa4 = H(sidUa∥σ)⊕DUa .

Similarly, S performs the corresponding operations for
Ub, including that S randomly chooses α′ ∈ Zq and σ′ ∈
{0, 1}∗, establishes {g′i, h′

i}, extracts {PUb
, DUb

}, defines
FSb

(x, PUb
), and computes {MSb0, MSb1, {MSb2i}, MSb3,

MSb4} to establish the ciphertext CSb
for transmission.

4.2.2 {Ua, Ub}’s Data Access Control

Ua first extracts it data attribute access list AUa = [aij]
(aij ∈ {0, 1}, aij ≤ pij) to re-structure an access list LUa =
[lij]n×m for lij = pij − aij . Ua also defines a polynomial
FUa(x, LUa) according to LUa and TUa .

FUa(x, LUa) =

n,m∏
i=1,j=1

(x+ ijH(TUa))
lij (mod q)

It turns out that FUa
(x, LUa

) satisfies the equation.

FUa
(x, LUa

) =

n,m∏
i=1,j=1

(x+ ijH(TUa
))pij−aij

=FSa(x, PUa)/FSa(x,AUa).

Afterwards, Ua randomly chooses β ∈ Zq , and the
decryption key kAUa

for AUa can be obtained.

kAUa
= (g(β+1)/FSa (α,AUa), hβ−1)

Ua further computes a set of values {NUa1, NUa2,
NUa3}. Here, fSai is used to represent xi’s coefficient in
FSa(x, PUa), and fUai is used to represent xi’s coefficient
in FUa(x, LUa).

NUa1 = e(MSa21,
n∏

i=1

(hi)
fUaihfUa0),

NUa2 = e(
n∏

i=1

(MSa2i)
fUai , hβ−1),

NUa3 = e(g(β+1)/FSa (α,AUa),MSa1).

It turns out that e(g, h)MSa0 satisfies the equation.

e(g, h)MSa0 = (NUa3/(NUa1NUa2))
1/fUa0

For the right side of (1), we have,

NUa1 =e(gα
iMSa0 ,

n∏
i=1

(hi)
fUaihfUa0)

=e(g, h)αMSa0

∑n
i=1(α

i−1fUai+fUa0)

=e(g, h)MSa0FUa (α,LUa),

6

sidSa CSa

S

sidUa TUa - Generate: sidSθ, θ={a, b}

- Compute: MSθ0, MSθ1, MSθ2i, MSθ3, MSθ4

 Establish: CSθ=(MSθ1, {MSθ2i}, MSθ3, MSθ4)

Ua

sidUb TUb

Ub

- Generate: sidUb

 Extract: TUb

- Generate: sidUa

 Extract: TUa

- Compute: LUa

- Choose: β Zq

 Compute: NUa1, NUa2, NUa3, σℓ, Mℓ
Sa0

 Derive: DUa

- Generate: rUa

 Compute: MUa0, MUa1, MUa2, MUa3

 Establish:CUa=(MUa0, MUa1, MUa2, MUa3)

sidSb CSb - Compute: LUb

- Choose: β' Zq

 Compute: NUb1, NUb2, NUb3, σ'ℓ, Mℓ
Sb0

 Derive: DUb

- Generate: rUb

 Compute: MUb0, MUb1, MUb2, MUb3

 Establish: CUb=(MUb0, MUb1, MUb2, MUb3)
- Derive: RUb

Ua, RUa
Ub

 Check: (RUb
Ua(RUa

Ub)T)= (2) Cont
- Compute: kS, kΣθ, kUθ

 Extract: DUθ

 Re-encryption: M'Uθ1, M'Uθ2

 Establish: C'Uθ=(M'Uθ1, M'Uθ2, MUθ3)

C'Ub kS C'Ua kS- Compute: kΣa

 Check: e(M'Ub1, h) e(gkS/kΣa, MUb3)

 Derive: DUb

- Compute: kΣb

 Check: e(M'Ua1, h) e(gkS/kΣb, MUa3)

 Derive: DUa

CUa CUb

Ub

α' Zq

g'i, h'i

σ' {0,1}*

 For: Ua

 Choose: α Zq

 Compute: gi, hi

 Choose: σ {0,1}*

˙ ˙

˙

Fig. 3. The shared authority based privacy-preserving authentication protocol (SAPA).

NUa2 =e(

n∏
i=1

gα
iMSa0fUai , hβ−1)

=e(g, h)MSa0(
∑n

i=1 αifUai+fUa0−fUa0)(β−1)

=e(g, h)MSa0βFUa (α,LUa)−MSa0fUa0 ,

NUa3 =e(g(β+1)/FSa (α,AUa), hfSa0MSa0

n∏
i=1

(hi)
fSaiMSa0)

=e(g, h)(β+1)/FSa (α,AUa)FSa (α,PUa)MSa0

=e(g, h)MSa0βFUa (α,LUa)+MSa0FUa (α,LUa),

(NUa1NUa2/NUa3)
−1/fUa0 =(e(g, h)−MSa0fUa0)−1/fUa0

=e(g, h)MSa0 .

Ua locally re-computes {σℓ, M ℓ
Sa0
}, derives its own

authorized data fields DUa , and checks whether the
ciphertext CSa is encrypted by M ℓ

Sa0
. If it holds, Ua will

be a legal user that can properly decrypt the ciphertext
CSa ; otherwise, the protocol will terminate.

σℓ = MSa3 ⊕H(e(g, h)MSa0),

M ℓ
Sa0 = H(PUa∥TUa∥σℓ),

DUa = MSa4 ⊕H(sidUa∥σℓ).

Ua further extracts its pseudonym PIDUa , a session-
sensitive access request RUb

Ua
, and the public key pkUa

.
Here, RUb

Ua
is introduced to let S know its data access

desire. It turns out that RUb

Ua
makes S know the facts: 1)

Ua wants to access Ub’s temp authorized data fields ḊUb
;

2) Ra will also agree to share its temp authorized data
fields ḊUa with Ub in the case that Ub grants its request.

Afterwards, Ua randomly chooses rUa ∈ Z∗
q , computes

a set of values {MUa0, MUa1, MUa2, MUa3} to establish a
ciphertext CUa , and transmits CUa to S for further access
request matching.

MUa0 = H(sidSa
∥PIDUa

)⊕RUb

Ua
,

MUa1 = gpkUarUa ,

MUa2 = e(g, h)rUa ,

MUa3 = hrUa .

Similarly, Ub performs the corresponding operations,
including that Ub extracts AUb

, and determines {LUb
,

FUb
(x, LUb

), fUbi}. Ub further randomly chooses β′ ∈
Zq , and computes the values {NUb1, NUb2, NUb3, σ′ℓ,
M ℓ

Ub
} to derive its own data fields DUb

. Ub also ex-
tracts its pseudonym PIDUb

and an access request
RUa

Ub
to establish a ciphertext CUb

with the elements
{MUb0,MUb1,MUb2,MUb3}.

4.2.3 {Ua, Ub}’s Access Request Matching and Data
Access Authority Sharing
Upon receiving the ciphertexts {CUa , CUb

} within an
allowable time interval, and S extracts {PIDUa , PIDUb

}
to derive the access requests {RUb

Ua
, RUa

Ub
}.

RUb

Ua
= H(sidSa∥PIDUa)⊕MUa0,

RUa

Ub
= H(sidSb

∥PIDUb
)⊕MUb0.

S checks whether {RUb

Ua
, RUa

Ub
} satisfy F(RUb

Ua
(RUa

Ub
)T) =

F(2) = Cont. If it holds, S will learn that both Ua

and Ub have the access desires to access each other’s
authorized data, and to share its authorized data fields
with each other. S extracts the keys {skS , pkUa , pkUb

}
to establish the aggregated keys {kS , kΣθ

} by the Diffie-
Hellman key agreement, and computes the available re-
encryption key kUθ

for Uθ (θ ∈ {a, b}).

kS = (pkUapkUb
)skS = g(skUa+skUb

)skS ,

kΣθ
= (pkUθ

)skS = gskUθ
skS ,

kUθ
= kΣθ

/pkUθ
.

S performs re-encryption to obtain M ′
Uθ1

. Towards
Ua/Ub, S extracts Ub/Ua’s temp authorized data fields
ḊUb

/ḊUa to compute M ′
Ub2

/M ′
Ua2

.

M ′
Uθ1

= (MUθ1)
kUθ = gkΣθ

rUθ ,

M ′
Ua2 = MUa2EkΣb

(ḊUa),

M ′
Ub2

= MUb2EkΣa
(ḊUb

).

Thereafter, S establishes the re-structured ciphertext
C ′

Uθ
= (M ′

Uθ1
,M ′

Uθ2
,MUθ3), and respectively transmit-

s {C ′
Ub
∥kS , C ′

Ua
∥kS} to {Ua, Ub} for access authority

sharing. Upon receiving the messages, Ua computes
kΣa = (pkS)

skUa , and performs verification by comparing
the following equation.

e(M ′
Ub1

, h)
?
= e(gkS/kΣa ,MUb3)

7

For the left side of (2), we have,

e(M ′
Ub1

, h) =e(gg
skUb

skS rUb , h)

For the right side of (2), we have,

e(gkS/kΣa ,MUb3) =e(g(pkS)
skUb , hrUb)

=e(g, h)g
skSskUb rUb

Ua derives Ub’s temp authorized data fields ḊUb
.

ḊUb
= E−1

kΣa
(M ′

Ub2
e(M ′

Ub1
, h)−kΣa/kS)

Similarly, Ub performs the corresponding operations,
including that Ub obtains the keys {kS , kΣb

}, checks Ub’s
validity, and derives the temp authorized data field ḊUa .

In the SAPA, S acts as a semi-trusted proxy to realize
{Ua, Ub}’s access authority sharing. During the proxy
re-encryption, {Ua, Ub} respectively establish ciphertexts
{MUa1, MUb1} by their public keys {pkUa , pkUb

}, and
S generates the corresponding re-encryption keys {kUa ,
kUb
} for {Ua, Ub}. Based on the re-encryption keys, the

ciphertexts {MUa1, MUb1} are re-encrypted into {M ′
Ua1

,
M ′

Ub1
}, and {Ua, Ub} can decrypt the re-structured ci-

phertexts {M ′
Ub1

, M ′
Ua1
} by their own private key {skUa

,
skUb
} without revealing any sensitive information.

Till now, {Ua, Ub} have realized the access authority
sharing in the case that both Ua and Ub have the access
desires on each other’s data fields. Meanwhile, there may
be other typical cases when Ua has an interest in Ub’s
data fields with a challenged access request RUb

Ua
.

1) In the case that Ub has no interest in Ua’s data fields,
it turns out that Ub’s access request RUb

Ub
and RUb

Ua

satisfy that F(RUb

Ua
(RUb

Ub
)T) = F(1). For Ua, S will

extract a dummy data fields Dnull as a response. Ub

will be informed that a certain user is interested in
its data fields, but cannot determine Ua’s detailed
identity for privacy considerations.

2) In the case that Ub has an interest in Uc’s data fields
rather than Ua’s data fields, but Uc has no interest
in Ub’s data fields. It turns out that the challenged
access requests RUb

Ua
, RUc

Ub
, and R

Ub̃

Uc
satisfy that

F(RUb

Ua
(RUc

Ub
)T) = F(RUc

Ub
(R

Ub̃

Uc
)T) = F(1), in which

Ub̃ indicates that the user is not Ub. Dnull will be
transmitted to {Ua, Ub, Uc} without data sharing.

In summary, the SAPA adopts integrative approaches
to address secure authority sharing in cloud applications.

• Authentication: The ciphertext-policy attribute based
access control and bilinear pairings are introduced
for identification between Uθ and S, and only the
legal user can derive the ciphertexts. Additionally,
Uθ checks the re-computed ciphertexts according to
the proxy re-encryption, which realizes flexible data
sharing instead of publishing the interactive users’
secret keys.

• Data Anonymity: The pseudonym PIDUθ
are hidden

by the hash function so that other entities cannot
derives the real values by inverse operations. Mean-
while, Uθ̃’s temp authorized fields ḊUθ̃

is encrypted

by kΣθ
for anonymous data transmission. Hence,

an adversary cannot recognize the data, even if the
adversary intercepts the transmitted data, it will not
decode the full-fledged cryptographic algorithms.

• User Privacy: The access request pointer (e.g., RUx

Uθ
) is

wrapped along with H(sidSθ
∥PIDUθ

) for privately
informing S about Uθ’s access desires. Only if both
users are interested in each other’s data fields, S
will establish the re-encryption key kUθ

to realize
authority sharing between Ua and Ub. Otherwise, S
will temporarily reserve the desired access requests
for a certain period of time, and cannot accurately
determine which user is actively interested in the
other user’s data fields.

• Forward Security: The dual session identifiers {sidSθ
,

sidUθ
} and pseudorandom numbers are introduced

as session variational operators to ensure the com-
munications dynamic. An adversary regards the pri-
or session as random even if {S, Uθ} get corrupted,
or the adversary obtains the PRNG algorithm. The
current security compromises cannot correlate with
the prior interrogations.

5 FORMAL SECURITY ANALYSIS WITH THE U-
NIVERSAL COMPOSABILITY (UC) MODEL

5.1 Preliminaries
The universal composability (UC) model specifies an
approach for security proofs [28], and guarantees that
the proofs will remain valid if the protocol is modularly
composed with other protocols, and/or under arbitrary
concurrent protocol executions. There is a real-world
simulation, an ideal-world simulation, and a simulator
Sim translating the protocol execution from the real-
world to the ideal-world. Additionally, the Byzantine
attack model is adopted for security analysis, and all
the parties are modeled as probabilistic polynomial-time
Turing machines (PPTs), and a PPT captures whatever is
external to the protocol executions. The adversary con-
trols message deliveries in all communication channels,
and may perform malicious attacks (e.g., eavesdropping,
forgery, and replay), and may also initiate new commu-
nications to interact with the legal parties.

In the real-world, let π be a real protocol, Pi (i =
{1, ..., I} ∈ N∗) be real parties, and A be a real-world
adversary. In the ideal-world, let F be an ideal func-
tionality, P̃i be dummy parties, and Ã be an ideal-world
adversary. Z is an interactive environment, and commu-
nicates with all entities except the ideal functionality F .
Ideal functionality acts as an uncorruptable trusted party
to realize specific protocol functions.

Theorem 1. UC Security: The probability, that Z dis-
tinguishes between an interaction of A with Pi and an
interaction of Ã with P̃i, is at most negligible probability.
We have that a real protocol π UC-realizes an ideal
functionality F , i.e., IDEALF,Ã,Z ≈ REALπ,A,Z .

The UC formalization of the SAPA includes the ideal-
world model IDEAL, and the real-world model REAL.

8

TABLE 2
Ideal data accessing functionality: FACCESS.

Initialization:
� Upon input INITIALIZE at P : If P is uncorrupted, and

init(sidPθ
,P) is recorded, remove the existing init(sidPθ

,P),
generate a session identifier sidPθ

, record and output
init(sidPθ

,P) to Ã. Else, output init(sidPθ
,P) to Ã.

Message exchange:
� Upon input SEND from P : If P is uncorrupted, and

init(sidPθ
,P) is recorded, extract a message mPθ

to record
send(sidPθ

,mPθ
,P), and output send(sidPθ

,mPθ
,P) to P .

Else, if P is corrupted and init(sidPθ
,P) is recorded, record

and output send(sidPθ
,P) to Ã. Else, ignore.

� Upon input RECEIVE from Uθ : If Uθ is uncorrupted, and
init(sidUθ

,Uθ) is recorded, record rec(sidSθ
,mUθ

,Uθ), and
output rec(sidUθ

,mUθ
,Uθ) to Uθ . Else, if Uθ is corrupted and

init(sidUθ
,Uθ) is recorded, record and output rec(sidSθ

,Uθ) to
Ã. Else, ignore.

� Upon input RECEIVE from S: If S is uncorrupted, and
init(sidSθ

,S) is recorded, record rec(sidUθ
,mSθ

,S), and out-
put rec(sidSθ

,mSθ
,S) to S. Else, if S is corrupted and

init(sidSθ
,S) is recorded, record and output rec(sidUθ

,S) to
Ã. Else, ignore.

Nonce generation:
� Upon input GENERATE from P : If P is uncorrupted, generate a

random number rPθ
, record gen(rPθ

,P), and output gen(rPθ
)

to P . Else, output gen(rPθ
,P) to Ã.

Access control:
� Upon input ACCESS from Uθ : If Uθ is corrupted, ignore. Else,

if {send(PUθ
,S), rec(PUθ

,Uθ), local(AUθ
,Uθ)} are matched,

output valid(AUθ
, PUθ

) and access(DUθ
) to Uθ . Else, if

{send(PUθ
,S), rec(PUθ

,Uθ), local(AUθ
,Uθ)} are unmatched,

output invalid(AUθ
, PUθ

) to Uθ . Else, record and output
access(DUθ

) to Ã.
Adversary behaviors:
� Upon request FORWARD(P) from Ã: If {send(sidPθ

,mPθ
,P),

rec(sidSθ
,mUθ

,Uθ)/rec(sidUθ
,mSθ

,S)} are recorded, output
forward(sidPθ

,mPθ
,P) to P .

� Upon request ACCEPT(P) from Ã: If init(sidUθ
,Uθ) is recorded

and forward(sidUθ
,mUθ

,Uθ) is recorded, output accept(Uθ) to
S. If init(sidSθ

,S) is recorded and forward(sidSθ
,mSθ

,S) is
recorded, output accept(S) to Uθ . Else, ignore.

� Upon request FORGE(P)/REPLAY(P) from Ã: If access(DUθ
)

is recorded and Uθ is corrupted, output accept(Uθ) to S. Else,
ignore.

• IDEAL: Define two uncorrupted idea functionalities
{FACCESS, FSHARE}, a dummy party P̃ (e.g., Ũθ, S̃,
θ ∈ {a, b}), and an ideal adversary Ã. Here, {P̃ , Ã}
cannot establish direct communications. Ã can arbi-
trarily interact with Z , and can corrupt any dummy
party P̃ , but it cannot modify the exchanged mes-
sages.

• REAL: Define a real protocol πshare (run by a party P
including Uθ and S) with a real adversary A and an
environment Z . Each real parties can communicate
with each other, and A can fully control the inter-
connections of P to obtain/modify the exchanged
messages. During the protocol execution, Z is acti-
vated first, and dual session identifiers shared by all
the involved parties reflects the protocol state.

5.2 Ideal Functionality
Definition 1. Functionality FACCESS: FACCESS is an incor-
ruptible ideal data accessing functionality via available

TABLE 3
Ideal authority sharing functionality: FSHARE.

Activation:
� Upon input ACTIVATE at P : If init(sidPθ

,P) is recorded, re-
move the existing init(sidPθ

,P), and apply FACCESS to initialize
P . Else, directly apply FACCESS to initialize P .

Access request:
� Upon input CHALLENGE(Ub) from Ua: If Ua is corrupted,

ignore. Else, if chall(RUx
Ua

) is recorded, remove the existing
chall(RUx

Ua
), extract RUb

Ua
, record and output chall(RUb

Ua
) to Ua.

Else, record and output chall(RUb
Ua

,Ua) to Ã.
� Upon input CHALLENGE(Ua) from Ub: If Ub is corrupted,

ignore. Else, if chall(RUx
Ub

) is recorded, remove the existing
chall(RUx

Ub
), extract RUa

Ub
, record and output chall(RUa

Ub
) to Ub.

Else, record and output chall(RUa
Ub

,Ub) to Ã.
Authority sharing:
� Upon input SHARE(ḊUb

,Ua) from Ua: If Ua is corrupted,
ignore. Else, if {chall(RUb

Ua
,Ua), chall(RUa

Ub
,Ub)} are recorded

and matched, record and output share(ḊUb
,Ua) to Ua. Else,

if {chall(RUx
Ua

,Ua), chall(RUx
Ub

,Ub)} are not matched, record
and output share(DUa ,Ua) to Ua. Else, record and output
share(Dnull,Ua) to Ã.

� Upon input SHARE(ḊUa ,Ub) from Ub: If Ub is corrupted, ig-
nore. Else, if {chall(RUb

Ua
,Ua), chall(RUa

Ub
,Ub)} are recorded

and matched, record and output share(ḊUa ,Ub) to Ub. Else,
if {chall(RUx

Ua
,Ua), chall(RUx

Ub
,Ub)} are not matched, record

and output share(Dnull,Ub) to Ub. Else, record and output
share(Dnull,Ub) to Ã.

Adversary behaviors:
� Upon request LISTEN(Uθ) from Ã: If chall(RUx

Uθ
,Uθ) is recorded

and Uθ is corrupted, output listen(RUx
Uθ

,Uθ) to Uθ . Else, ignore.
� Upon request FORGE(Uθ) or REPLAY(Uθ) from Ã: If

share(Dnull,Ua) is recorded and Ua is corrupted, output
share(ḊUa ,Ub) to Ub. If share(Dnull,Ub) is recorded and Ub

is corrupted, output share(ḊUb
,Ua) to Ua. Else, ignore.

channels, as shown in TABLE 2.
In FACCESS, a party P (e.g., Uθ, S) is initialized (via

input INITIALIZE), and thereby initiates a new session
along with generating dual session identifiers {sidUθ

,
sidSθ

}. P follows the assigned protocol procedure to
send (via input SEND) and receive (via input RECEIVE)
messages. A random number rPθ

is generated by P
for further computation (via input GENERATE). Data
access control is realized by checking {send(.), rec(.),
local(.)} (via input ACCESS). If P is controlled by an
ideal adversary Ã, four types of behaviors may be
performed: Ã may record the exchanged messages on
listened channels, and may forward the intercepted mes-
sages to P (via request FORWARD); Ã may record the
state of authentication between Uθ and S to interfere
in the normal verification (via request ACCEPT); Ã may
impersonate an legal party to obtain the full state (via
request FORGE), and may replay the formerly intercept-
ed messages to involve the ongoing communication (via
request REPLAY).

Definition 2. Functionality FSHARE: FSHARE is an in-
corruptible ideal authority sharing functionality with
anonymous interactions, as shown in TABLE 3.
FSHARE is activated by P (via input ACTIVATE), and

9

the initialization is performed via INITIALIZE of FACCESS.
The access request pointers {RUb

Ua
, RUa

Ub
} are respectively

published and challenged by {Ua, Ub} to indicate their
desires (via input CHALLENGE). The authority sharing
between {Ua, Ub} is realized, and the desired data fields
{ḊUb

, ḊUa} are accordingly obtained by {Ua, Ub} (via
input SHARE). If P is controlled by an ideal adversary Ã,
Ã may detect the exchanged challenged access request
pointer RUx

Uθ
(via request LISTEN); Ã may record the

path pointer to interfere in the normal authority sharing
between Ua and Ub (via request FORGE/REPLAY).

In the UC model, FACCESS and FSHARE formally define
the basic components of the ideal-world simulation.

• Party: Party P refers to multiple users Uθ (e.g., Ua,
Ub), and a cloud server S involved in a session.
Through a successful session execution, {Uθ, S}
establish authentication and access control, and {Ua,
Ub} obtain each other’s temp authorized data fields
for data authority sharing.

• Session identifier: The session identifiers sidUθ
and

sidSθ
are generated for initialization by the envi-

ronment Z . The ideal adversary Ã may control and
corrupt the interactions between Uθ and S.

• Access request pointer: The access request pointer RUx

Uθ

is applied to indicate Uθ’s access request on Ux’s
temp authorized data fields ḊUx .

5.3 Real Protocol πSHARE

A real protocol πSHARE is performed based on the ideal
functionalities to realize FSHARE in FACCESS-hybrid model.

Upon input ACTIVATE(P) at P (e.g., Uθ, and S),
P is activated via FSHARE to trigger a new session,
in which INITIALIZE of FACCESS is applied for initial-
ization and assignment. {init(sidUθ

,Uθ), init(sidSθ
,S)}

are respectively obtained by {Uθ, S}. Message deliver-
ies are accordingly performed by inputting SEND and
RECEIVE. Upon input SEND from Uθ, Uθ records and
outputs send(sidUθ

,Uθ) via FACCESS. Upon input RECEIVE
from S, S obtains rec(sidUθ

,S) via FACCESS. Upon input
GENERATE(S) from S, S randomly chooses a random
number rSθ

to output gen(rSθ
) and to establish a ci-

phertext for access control. Upon input GENERATE(Uθ)
from Uθ, Uθ generates a random number rUθ

for fur-
ther checking the validity of {AUθ

, PUθ
}. Upon input

ACCESS from Uθ, Uθ checks whether {send(.), rec(.),
local(.)} are matched via FACCESS. If it holds, output
valid(AUθ

, PUθ
) is valid. Else, output invalid(AUθ

, PUθ
)

and terminate the protocol. Upon input CHALLENGE(Ux)
from Uθ, Uθ generates an access request pointer RUx

Uθ
,

and outputs chall(RUx

Uθ
) to Ux. Upon input SEND from

Uθ, Uθ computes a message mUθ
, records and outputs

send(mUθ
,Uθ) via FACCESS, in which RUx

Uθ
is wrapped in

mUθ
. Upon input RECEIVE from S, S obtains rec(mUθ

,S)
for access request matching. Upon input SHARE(ḊUb

,Ua)
and SHARE(ḊUa ,Ub) from {Ua, Ub}, S checks whether
{chall(RUb

Ua
,Ua), chall(RUa

Ub
,Ub)} are matched. If it holds,

output share(ḊUb
,Ua) to Ua and share(ḊUa ,Ub) to Ub to

achieve data sharing. Else, output share(Dnull,Ua) to Ua
and share(Dnull,Ub) to Ub for regular data accessing.

5.4 Security Proof of πSHARE

Theorem 3. The protocol πSHARE UC-realizes the ideal func-
tionality FSHARE in the FACCESS-hybrid model.

Proof: Let A be a real adversary that interacts with
the parties running πSHARE in the FACCESS-hybrid model.
Let Ã be an ideal adversary such that any environment
Z cannot distinguish with a non-negligible probability
whether it is interacting with A and πSHARE in REAL or it
is interacting with Ã and FSHARE in IDEAL. It means that
there is a simulator Sim that translates πSHARE procedures
into REAL such that these cannot be distinguished by Z .

Construction of the ideal adversary Ã: The ideal adver-
sary Ã acts as Sim to run the simulated copies of Z ,
A, and P . Ã correlates runs of πSHARE from REAL into
IDEAL: the interactions of A and P is corresponding to
the interactions of Ã and P̃ . The input of Z is forwarded
to A as A’s input, and the output of A (after running
πSHARE) is copied to Ã as Ã’s output.

Simulating the party P : Uθ and S are activated and
initialized by ACTIVATE and INITIALIZATION, and Ã
simulates as A during interactions.

• Whenever Ã obtains {init(sidPθ
,P), gen(rPθ

,P)}
from FACCESS, Ã transmits the messages to A.

• Whenever Ã obtains {rec(.), send(.)} from FACCESS,
Ã transmits the messages to A, and forwards A’s
response forward(sidPθ

,mPθ
,P) to FACCESS.

• Whenever Ã obtains {init(.), forward(.)} from
FACCESS, S transmits the messages toA, and forward-
s A’s response accept(P) to FACCESS.

• Whenever Ã obtains chall(RUx

Uθ
,Uθ) from FSHARE,

Ã transmits the message to A, and forwards A’s
response listen(RUx

Uθ
,Uθ) to FSHARE.

Simulating the party corruption: Whenever P is corrupt-
ed by A, thereby Ã corrupts the corresponding P̃ . Ã
provides A with the corrupted parties’ internal states.

• Whenever Ã obtains access(DUθ
) from FACCESS, Ã

transmits the message access(DUθ
) to A, and for-

wards A’s response accept(P) to FACCESS.
• Whenever Ã obtains chall(RUx

Uθ
,Uθ) from FSHARE,

Ã transmits the message to A, and forwards A’s
response share(Dnull,Uθ) to FSHARE.

IDEAL and REAL are indistinguishable: Assume that {CS ,
CUθ} respectively indicate the events that corruptions
of {S, U}. Z invokes ACTIVATE and INITIALIZE to
launch an interaction. The commands GENERATE and
ACCESS are invoked to transmit access(DUθ

) to Ã, and
A responds accept(P) to Ã. Thereafter, CHALLENGE and
SHARE are invoked to transmit share(RUx

Uθ
,Uθ), and A re-

sponds share(Dnull,Uθ) to Ã. Note that init(.) indepen-
dently generates dual session identifiers {sidUθ

, sidSθ
},

and the simulations of REAL and IDEAL are consistent
even though Ã may intervene to prevent the data access
control and authority sharing in IDEAL. The pseudoran-
dom number generator (introduced in {init(.), gen(.)}),

10

and the collision-resistant hash function (introduced in
{access(.), share(.)}) are applied to guarantee that the
probability of the environment Z can distinguish the
adversary’s behaviors in IDEAL and REAL is at most
negligible. The simulation is performed based on the
fact that no matter the event CS or CUθ occurs or
not, Therefore, πSHARE UC-realizes the ideal functionality
FSHARE in the FACCESS-hybrid model.

6 CONCLUSION

In this work, we have identified a new privacy challenge
during data accessing in the cloud computing to achieve
privacy-preserving access authority sharing. Authenti-
cation is established to guarantee data confidentiality
and data integrity. Data anonymity is achieved since
the wrapped values are exchanged during transmission.
User privacy is enhanced by anonymous access requests
to privately inform the cloud server about the users’
access desires. Forward security is realized by the session
identifiers to prevent the session correlation. It indicates
that the proposed scheme is possibly applied for en-
hanced privacy preservation in cloud applications.

REFERENCES

[1] P. Mell and T. Grance, “Draft NIST Working Definition of Cloud
Computing,” National Institute of Standards and Technology,
USA, 2009.

[2] A. Mishra, R. Jain, and A. Durresi, “Cloud Computing: Net-
working and Communication Challenges,” IEEE Communications
Magazine, vol. 50, no. 9, pp, 24-25, 2012.

[3] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Key Challenges in Cloud Computing to Enable the Future
Internet of Services,” IEEE Internet Computing, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6203493, 2012.

[4] K. Hwang and D. Li, “Trusted Cloud Computing with Secure
Resources and Data Coloring,” IEEE Internet Computing, vol. 14,
no. 5, pp. 14-22, 2010.

[5] J. Chen, Y. Wang, and X. Wang, “On-Demand Security Architec-
ture for Cloud Computing,” Computer, vol. 45, no. 7, pp. 73-78,
2012.

[6] Y. Zhu, H. Hu, G. Ahn, and M. Yu, “Cooperative Provable Data
Possession for Integrity Verification in Multi-cloud Storage,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no, 12, pp.
2231-2244, 2012.

[7] H. Wang, “Proxy Provable Data Possession in Public Cloud-
s,” IEEE Transactions on Services Computing, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6357181, 2012.

[8] K. Yang and X. Jia, “An Efficient and Secure Dynamic Au-
diting Protocol for Data Storage in Cloud Computing,” IEEE
Transactions on Parallel and Distributed Systems, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6311398, 2012.

[9] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 5, pp. 847-859, 2011.

[10] C. Wang, K. Ren, W. Lou, J, Lou,“Toward Publicly Auditable
Secure Cloud Data Storage Services,” IEEE Network, vol. 24, no.
4, pp. 19-24, 2010.

[11] L. A. Dunning and R. Kresman, “Privacy Preserving Data Sharing
With Anonymous ID Assignment,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 8, no. 2, pp. 402-413, 2013.

[12] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure Multi-
Owner Data Sharing for Dynamic Groups in the Cloud,” IEEE
Transactions on Parallel and Distributed Systems, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6374615, 2012.

[13] S. Grzonkowski and P. M. Corcoran, “Sharing Cloud Services:
User Authentication for Social Enhancement of Home Network-
ing,” IEEE Transactions on Consumer Electronics, vol. 57, no. 3, pp.
1424-1432, 2011.

[14] M. Nabeel, N. Shang and E. Bertino, “Privacy Preserving Pol-
icy Based Content Sharing in Public Clouds,” IEEE Trans-
actions on Knowledge and Data Engineering, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6298891, 2012.

[15] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward Secure
and Dependable Storage Services in Cloud Computing,” IEEE
Transactions on Services Computing, vol. 5, no. 2, pp. 220-232, 2012.

[16] S. Sundareswaran, A. C. Squicciarini, and D. Lin, “Ensuring
Distributed Accountability for Data Sharing in the Cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 4, pp.
556-568, 2012.

[17] Y. Tang, P. C. Lee, J. C. S. Lui, and R. Perlman, “Secure Overlay
Cloud Storage with Access Control and Assured Deletion,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 6, pp.
903-916, 2012.

[18] Y. Zhu, H. Hu, G. Ahn, D. Huang, and S. Wang, “Towards Tempo-
ral Access Control in Cloud Computing,” in Proceedings of the 31st
Annual IEEE International Conference on Computer Communications
(IEEE INFOCOM 2012), pp. 2576-2580, March 25-30, 2012.

[19] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized Access Con-
trol with Anonymous Authentication for Securing Data in Cloud-
s,” IEEE Transactions on Parallel and Distributed Systems, [online]
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6463404,
2013.

[20] R. Sánchez, F. Almenares, P. Arias, D. Dı́az-Sánchez, and A.
Marı́n, “Enhancing Privacy and Dynamic Federation in IdM for
Consumer Cloud Computing,” IEEE Transactions on Consumer
Electronics, vol. 58, no. 1, pp. 95-103, 2012.

[21] H. Zhuo, S. Zhong, and N. Yu, “A Privacy-Preserving Remote
Data Integrity Checking Protocol with Data Dynamics and Public
Verifiability,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no. 9, pp. 1432-1437, 2011.

[22] Y. Xiao, C. Lin, Y. Jiang, X. Chu, and F. Liu, “An Efficient
Privacy-Preserving Publish-Subscribe Service Scheme for Cloud
Computing,” in Proceedings of Global Telecommunications Conference
(GLOBECOM 2010), December 6-10, 2010.

[23] I. T. Lien, Y. H. Lin, J. R. Shieh, and J. L. Wu, “A
Novel Privacy Preserving Location-Based Service Protocol
with Secret Circular Shift for K-nn Search,” IEEE Trans-
actions on Information Forensics and Security, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6476681, 2013.

[24] A. Barsoum and A. Hasan, “Enabling Dynamic Data and Indi-
rect Mutual Trust for Cloud Computing Storage Systems,” IEEE
Transactions on Parallel and Distributed Systems, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6392165, 2013.

[25] H. Y. Lin and W. G. Tzeng, “A Secure Erasure Code-Based Cloud
Storage System with Secure Data Forwarding,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 6, pp. 995-1003,
2012.

[26] J. Yu, P. Lu, G. Xue, and M. Li, “Towards Secure Multi-
Keyword Top-k Retrieval over Encrypted Cloud Data,” IEEE
Transactions on Dependable and Secure Computing, [online] ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6425381, 2013.

[27] K. W. Park, J. Han, J. W. Chung, and K. H. Park, “THEMIS: A
Mutually Verifiable Billing System for the Cloud Computing En-
vironment,” IEEE Transactions on Services Computing, [online] iee-
explore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6133267, 2012.

[28] R. Canetti, “Universally Composable Security: A New Paradigm
for Cryptographic Protocols,” in Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001), pp.
136-145, October 14-17, 2001.

[29] Helion IP Core Products: Data Security Products [Online]. Avail-
able: http://www.heliontech.com/core.htm

11

Hong Liu is currently working toward a Ph.D.
degree at the School of Electronic and Infor-
mation Engineering, Beihang University, China.
She focuses on the security and privacy issues
in radio frequency identification, vehicle-to-grid,
and wireless machine-to-machine networks. Her
research interests include authentication proto-
col design, and security formal modeling and
analysis.

Huansheng Ning received the B.S. degree from
Anhui University in 1996 and Ph.D. degree in
Beihang University in 2001. He is a professor
in the School of Computer and Communication
Engineering, University of Science and Technol-
ogy Beijing, China (since 2013), and is also an
associate professor in the School of Electronic
and Information Engineering, Beihang Univer-
sity, China (since 2006). His current research
focuses on Internet of Things, aviation securi-
ty, electromagnetic sensing and computing. He

has published more than fifty papers in journals, international confer-
ences/workshops.

Qingxu Xiong received the Ph.D. degree in
electrical engineering from Peking University,
Beijing, China, in 1994. From 1994 to 1997, he
worked in the Information Engineering Depart-
ment at Beijing University of Posts and Telecom-
munications as a Postdoctoral Researcher. He is
currently a Professor in the School of Electrical
and Information Engineering at Beijing Univer-
sity of Aeronautics and Astronautics, Beijing,
China. His research interests include scheduling
in optical and wireless networks, performance

modeling of wireless networks, and satellite communication.

Laurence T. Yang received his B.E. degree
in computer science from Tsinghua University,
China, and his Ph.D. degree in computer sci-
ence from the University of Victoria, Canada.
He is a professor in the School of Computer
Science and Technology at Huazhong University
of Science and Technology, China, and in the
Department of Computer Science, St. Francis X-
avier University, Canada. His research interests
include parallel and distributed computing, and
embedded and ubiquitous/pervasive computing.

His research is supported by the National Sciences and Engineering
Research Council and the Canada Foundation for Innovation.

