
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Low-Power Split-Radix FFT Processors Using Radix-2 Butterfly Units
Zhuo Qian and Martin Margala

Abstract— Split-radix fast Fourier transform (SRFFT) is an ideal
candidate for the implementation of a low-power FFT processor, because
it has the lowest number of arithmetic operations among all the
FFT algorithms. In the design of such processors, an efficient addressing
scheme for FFT data as well as twiddle factors is required. The signal
flow graph of SRFFT is the same as radix-2 FFT, and therefore, the con-
ventional address generation schemes of FFT data could also be applied
to SRFFT. However, SRFFT has irregular locations of twiddle factors and
forbids the application of radix-2 address generation methods. This brief
presents a shared-memory low-power SRFFT processor architecture.
We show that SRFFT can be computed by using a modified radix-2
butterfly unit. The butterfly unit exploits the multiplier-gating technique
to save dynamic power at the expense of using more hardware resources.
In addition, two novel address generation algorithms for both the trivial
and nontrivial twiddle factors are developed. Simulation results show that
compared with the conventional radix-2 shared-memory implementations,
the proposed design achieves over 20% lower power consumption when
computing a 1024-point complex-valued transform.

Index Terms— Address generation, low power, radix-2,
split-radix fast Fourier transform (SRFFT), twiddle factors.

I. INTRODUCTION

The fast Fourier transform (FFT) is one of the most important
and fundamental algorithms in the digital signal processing area.
Since the discovery of FFT, many variants of the FFT algorithm
have been developed, such as radix-2 and radix-4 FFT. In 1984,
Duhamel and Hollmann [1] proposed a new variant of FFT algo-
rithm called split-radix FFT (SRFFT). Their algorithm requires the
least number of multiplications and additions among all the known
FFT algorithms. Since arithmetic operations significantly contribute
to overall system power consumption, SRFFT is a good candidate
for the implementation of a low-power FFT processor.

In general, all the FFT processors can be categorized into two main
groups: pipelined processors or shared-memory processors. Examples
of pipelined FFT processors can be found in [2] and [3]. A pipelined
architecture provides high throughputs, but it requires more hardware
resources at the same time. One or multiple pipelines are often
implemented, each consisting of butterfly units and control logic.
In contrast, the shared-memory-based architecture requires the least
amount of hardware resources at the expense of slower throughput.
Examples of such processors can be found in [4] and [5]. In the
radix-2 shared-memory architecture, the FFT data are organized into
two memory banks. At each clock cycle, two FFT data are provided
by memory banks and one butterfly unit is used to process the data.
At the next clock cycle, the calculation results are written back to
the memory banks and replace the old data. The scope of this brief
is limited to the shared-memory architecture.

In the shared-memory architecture, an efficient addressing scheme
for FFT data as well as coefficients (called twiddle factors)
is required. For the fixed-radix FFT, previous works of this topic

Manuscript received August 23, 2015; revised November 28, 2015 and
January 30, 2016; accepted March 4, 2016.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts Lowell, Lowell, MA 01851 USA (e-mail:
zhuo_qian@student.uml.edu; martin_margala@uml.edu).

Digital Object Identifier 10.1109/TVLSI.2016.2544838

can be found in [5] and [6]. For split-radix FFT, it convention-
ally involves an L-shaped butterfly datapath whose irregular shape
has uneven latencies and makes scheduling difficult. In this brief,
we show that the SRFFT can be computed by using a modified
radix-2 butterfly structure. Our contribution consists of mapping the
split-radix FFT algorithm to the shared-memory architecture, leverag-
ing the lower multiplicative complexity of the algorithm to reduce the
dynamic power and developing two novel twiddle factor addressing
schemes for the split-radix FFT.

The rest of this brief is organized as follows. Section II pro-
vides a theoretical comparison of the number of complex multi-
plications between the radix-2 FFT and the SRFFT. Section III
discusses the architecture of the proposed design. Section IV pro-
vides the implementation results and Section V concludes this
brief.

II. COMPARISON OF SRFFT AND RADIX-2 FFT

The N-point discrete Fourier transform is defined by

X (k) =
N−1∑

n=0

x(n)W nk
N (1)

where k = 0, 1, . . . , N − 1 and W nk
N = e− j2πnk/N . If we split X (k)

into even and odd terms, radix-2 FFT can be derived as

X (2k) =
N/2−1∑

n=0

[x(n) + x(n + N/2)]W nk
N/2 (2)

X (2k + 1) =
N/2−1∑

n=0

[x(n) − x(n + N/2)]W n
N W nk

N/2 . (3)

The basic idea behind the SRFFT is the application of a radix-2
index map to the even-index terms and a radix-4 map to the
odd-index terms. For the even-index terms, it can be decomposed
as (2). For the odd-index terms, it can be decomposed as

X (4k + 1) =
N/4−1∑

n=0

[x(n) − x(n + N/2)

− j (x(n + N/4) − x(n + 3N/4))]W n
N W nk

N/4 (4)

X (4k + 3) =
N/4−1∑

n=0

[x(n) − x(n + N/2)

+ j (x(n + N/4) − x(n + 3N/4))]W n
N W nk

N/4 (5)

where k = 0, 1, . . . , N/4. The formulas above result in the L-shaped
split-radix butterfly structure, which can be found in [2] and the
scheduling of the L-shaped butterfly is irregular.

Assume that we have N = 2S point FFT, both SRFFT and
radix-2 FFT require S passes to finish the computation, as shown
in Figs. 1 and 2. For SRFFT, the total number of the L butterflies
NSR is given by [2]

NSR = [(3S − 2)2S−1 + (−1)S]/9. (6)
1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Signal flow graph for radix-2 FFT.

Fig. 2. Signal flow graph for SRFFT.

Each L butterfly contains two nontrivial complex multiplications,
and therefore, the total number of nontrivial complex multiplica-
tions MSR in SRFFT is

MSR = [(3S − 2)2S−1 + (−1)S]2/9. (7)

In the (S − 1)th pass, the number of SR butterfly NS−1 is

NS−1 = [2 + (−1/2)S−2]N/12 . (8)

However, in the (S − 1)th pass, each L butterfly does not
contain any nontrivial twiddle factors and hence, the total number
of nontrivial multiplications M ′

SR in SRFFT is

M ′
SR = MSR − 2NS−1. (9)

For the conventional radix-2 FFT, the total number of complex
multiplications MR2 is

MR2 = 2S−1(S − 1). (10)

III. HARDWARE IMPLEMENTATION

A. Shared-Memory Architecture

The architecture of shared-memory processor is shown in Fig. 3.
The FFT data and the twiddle factors are stored in the RAM and
ROM banks, respectively. We observed that the flow graph of split-
radix algorithm is the same as radix-2 FFT except for the locations
and values of the twiddle factors and therefore, the conventional
radix-2 FFT data address generation schemes could also be applied to
SRFFT (RAM address generator). However, the mixed-radix property

Fig. 3. Shared-memory architecture.

Fig. 4. Modified butterfly structure.

of SRFFT algorithm leads to the irregular locations of twiddle
factors and forbids any conventional address generation algorithm
(ROM address generator).

B. Modified Radix-2 Butterfly Unit

In our previous work [7], we proposed a modified butterfly unit
which is shown in Fig. 4. The structure of this butterfly unit is
determined by the fact that the SRFFT has multiplications of both
the upper and lower legs. To prevent unnecessary switching activity,
we put the clock gating registers in the multiplier path and a few regis-
ters are placed at the address port of memory banks to synchronize the
whole design. The key to use this architecture is the knowing about
which butterflies require no multiplications (the complex multipliers
are then skipped), trivial multiplications (swapping), and nontriv-
ial multiplications (using complex multipliers). In Section III-C,
we present an efficient algorithm to solve this problem.

C. Address Generation of Twiddle Factors

The flow graph for the 16-point SRFFT is shown in Fig. 2.
In Fig. 2, there are two kinds of twiddle factors: j and Wn . For
those multiplications involving j is called trivial multiplications,
because these operations are essentially the swapping of the real
and imaginary part of the multiplier, hence no multiplication is
involved. For those multiplications involving Wn are called nontrivial
multiplications, because complex multipliers are used to complete
these operations. In Fig. 2, each area surrounded by the dashed lines
is called one L block which is formed by L butterflies in each pass [8]
and there are totally five L blocks for a 16-point SRFFT.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

Fig. 5. Pseudocode for tracking trivial and nontrivial twiddle factors.

Given N = 2S point FFT data, we first have the following
definitions.

1) Butterfly Counter B: (S − 1)-bit counter that indicates, in each
pass, which butterfly is currently under operation.

2) Pass Counter P: (�log2 S�)-bit counter that indicates which pass
is currently under operation.

3) L_Flag: A set of variables indicate if the butterfly under
operation is in the L-shaped block. Each variable corresponds
to one butterfly in each pass and the number of such variables
is the same as the number of radix-2 butterflies in each pass.
For example, in Fig. 2, each pass contains eight butterflies so
eight L_Flags are required.

4) J_Flag: A variable indicates if the butterfly under operation
should multiply the trivial twiddle factor j (swapping).

In Fig. 2, we have made two observations. First, in the current pass,
if the i th butterfly is not within the L block (L_Flag = 0), in the next
pass, the same i ′th butterfly will be definitely within the L block.
For example, butterflies 100, 101, 110, and 111 are not within the
L block in pass 1 (because they belong to the L block in pass 0)
and butterflies 100, 101, 110, and 111 are within the L block in
pass 2.

The second observation is that if the butterfly is within the L block
in this pass (L_Flag = 1), in the next pass, whether it will be within
the L block is determined by J_Flag. If, in the current pass, the
i th butterfly needs to multiply j (J_Flag = 1), then in the next pass,
the same butterfly needs to multiply Wn . For example, butterflies
100, 101, 110, and 111 are within the L block in pass 0, and they
need to multiply by j ; in pass 1, the butterflies 100, 101, 110, and
111 need to multiply Wn . On the other hand, if, in the current pass,
the i th butterfly does not need to multiply j (J_Flag = 0), then in
the next pass, the same butterfly still belongs to L block and does not
need to multiply Wn . For example, butterflies 000, 001, 010, and 011
are within the L block in pass 0 and they do not need to multiply by
j (J_Flag = 0), in pass 1, the butterflies 000, 001, 010, and 011 still
belong to the L block and do not need to multiply Wn .

The high level structure of the proposed algorithm is shown
in Fig. 5. All L_Flag are set to one before the program starts,

Fig. 6. L_Flag structure.

TABLE I

ROM CONFIGURATION FOR A 16-POINT SRFFT

TABLE II

ADDRESS GENERATION TABLE OF THE PROPOSED

ALGORITHM 1 FOR A 16-POINT SRFFT

because all the butterflies in pass 0 are contained in the first
L block.

L_Flags could be efficiently implemented as an RAM block,
as shown in Fig. 6. Butterfly counter B is served as the read address
of RAM and at each clock cycle, the corresponding L_Flag value for
the current butterfly is provided. The updated L_Flag value for the
next pass is written to this memory at next clock cycle. The size of
this memory is 2S−1 bits, which equals to the number of butterflies
in each pass. Such a size is trivial on the modern field-programmable
gate array (FPGA). For example, for a 2048-point FFT only 1 kbit
is required.

J_Flag is a combinational signal. The value of this variable depends
on the butterfly counter B. In the Pth pass, J_Flag equals to

bS−2−P . (11)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III

IMPLEMENTATION RESULTS ON SPARTAN-6 FPGA

TABLE IV

COMPARISON OF EACH COMPONENT FOR A 1024-POINT FFT ON SPARTAN-6 FPGA

In the last pass, L_Flag is set to one and J_Flag is set to
zero.

When nontrivial multiplication is required, twiddle factors need to
be retrieved from the ROM banks. Unlike conventional method that
stores all the Wn in one ROM bank, we organize Wn in two ROM
banks: one stores Wn for the upper leg of the butterfly unit and the
other stores those for the lower leg of the butterfly unit. Table I shows
the content of the two ROM banks for a 16-point SRFFT. Started in
pass 1, in the Pth pass the address of each ROM bank is given by

bS−2−PbS−3−P . . . b00 . . . 0 (following (P − 1) ‘0’ s). (12)

It is worth mentioning that in conventional implementations, the
twiddle factors are required for each butterfly so ROM banks are
always enabled, and in our implementation, the L_Flag signal can
be used as the enable signal for the ROM banks, since that if the
butterfly belongs to the L block, no multiplication is required. This
could lead to further power reduction. Table II shows an example of
the proposed algorithm for the 16-point SRFFT.

Both the address generation of FFT data and twiddle factors
depends on certain butterfly processing order in each pass. Other than
Xiao’s [6] method (Fig. 2), there are other methods of ordering the
butterfly sequence, such as [5]. We have also developed the address
generation methods for this kind of butterfly sequence using the
similar ideas stated above. The details are not discussed here and
we only give the conclusions. In each pass except for the last one,
J_Flag equals to

bS−2. (13)

The address for each ROM bank is given by

bS−2bS−3 . . . b1. (14)

IV. IMPLEMENTATION AND RESULTS

The proposed design is compared with the two conventional
shared-memory architectures. Our two proposed address generation
algorithms of the twiddle factors are similar and therefore, we only
implement algorithm 1, which is within the ROM address generator.
The address generation of RAM is based on [6] and datapath
width is 32 b. The three FFTs are synthesized under the constraint

of 100 MHz in Xilinx ISE 14.7 targeting for Spartan-6 XC6SLX4
device. The simulation results are shown in Table III. Power is
measured by Xilinx XPower analyzer using the switching activity
interchange format file recorded in a sufficient long simulation
time. For a 1024-point FFT, the proposed algorithm could achieve
over 20% lower power but almost maintains the static power con-
sumption. In the given architecture, when the FFT size increases,
a larger RAM and ROM size is required, but the butterfly unit
does not change. The limitation of the proposed design is the large
resources used in the butterfly unit. This limitation could possibly
be removed by using different butterfly structures for additions and
multiplications. Table IV shows the power consumption of each
component for a 1024-point FFT. The reduction of dynamic power
consumption is due to the fact that multipliers and ROM banks are
enabled only when necessary.

We have also synthesized the design using OSU gscl45 nm library
in Cadence RTL compiler. All the three FFTs are able to run above
200 MHz. The library does not have a memory intellectual property,
and the memories are constructed using basic cells and flip-flops. The
implementation results of a 1024-point FFT are shown in Table V.
A large number of cells are used to implement the memory banks,
which become the most power hungry component in the design.

Compared with the radix-2 addressing schemes in [5] and [6], our
addressing method requires additional 2S−1-bit memory. However,
the SRFFT algorithm has the irregular signal flow graph and makes
the control of such processors more difficult than the fixed-radix
ones. Although a software solution for the indexing problem has
been given in [9], the indexing scheme is designed for the L butterfly
structure, which is not suitable for the hardware implementation due
to its uneven latencies. Some previous works such as [10] use lookup
tables to solve the indexing problem. It is obvious that the proposed
algorithm requires significantly less memory than the lookup table
approach.

Compared with a pipelined SRFFT architecture such as
split-radix single-path delay feedback (SRSDF) given in [11], the
shared-memory architecture offers significantly reduced hardware
cost and power consumption at the expense of slower throughput. For
an N-point FFT, SRSDF requires log4 N −1 multipliers and 4 log4 N
adders. In contrast, only two multipliers and two adders are used in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

TABLE V

COMPARISON OF EACH COMPONENT FOR A 1024-POINT FFT USING gscl45-nm TECHNOLOGY AT 100 MHz AND 1.1 V

the proposed architecture. In addition, in order to arrange the different
butterfly structures for different operations, SRSDF still needs to track
the trivial and nontrivial multiplications, and the indexing scheme is
much more complicated than the proposed one, since an additional
encoding step (bit-inverse and bit-reverse) is applied to the butterfly
sequences.

V. CONCLUSION

In this brief, a shared-memory-based SRFFT processor is proposed.
The proposed method reduces the dynamic power consumption at the
expense of more hardware resources. We also present two addressing
schemes for both the trivial and nontrivial twiddle factors. Since
SRFFT has the minimum number of multiplications compared with
other types of FFT, the results could be more optimal in the sense
of floating point operations.

REFERENCES

[1] P. Duhamel and H. Hollmann, “‘Split radix’ FFT algorithm,” Electron.
Lett., vol. 20, no. 1, pp. 14–16, Jan. 1984.

[2] M. A. Richards, “On hardware implementation of the split-radix
FFT,” IEEE Trans. Acoust., Speech Signal Process., vol. 36, no. 10,
pp. 1575–1581, Oct. 1988.

[3] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, “Hardware efficient mixed
radix-25/16/9 FFT for LTE systems,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 2, pp. 221–229, Feb. 2015.

[4] L. G. Johnson, “Conflict free memory addressing for dedicated FFT
hardware,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 39, no. 5, pp. 312–316, May 1992.

[5] D. Cohen, “Simplified control of FFT hardware,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 24, no. 6, pp. 577–579, Dec. 1976.

[6] X. Xiao, E. Oruklu, and J. Saniie, “An efficient FFT engine with reduced
addressing logic,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55,
no. 11, pp. 1149–1153, Nov. 2008.

[7] Z. Qian, N. Nasiri, O. Segal, and M. Margala, “FPGA implementation
of low-power split-radix FFT processors,” in Proc. 24th Int. Conf. Field
Program. Logic Appl., Munich, Germany, Sep. 2014, pp. 1–2.

[8] A. N. Skodras and A. G. Constantinides, “Efficient computation of the
split-radix FFT,” IEE Proc. F-Radar Signal Process., vol. 139, no. 1,
pp. 56–60, Feb. 1992.

[9] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, “On computing the
split-radix FFT,” IEEE Trans. Acoust., Speech Signal Process., vol. 34,
no. 1, pp. 152–156, Feb. 1986.

[10] J. Kwong and M. Goel, “A high performance split-radix FFT with
constant geometry architecture,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Dresden, Germany, Mar. 2012, pp. 1537–1542.

[11] W.-C. Yeh and C.-W. Jen, “High-speed and low-power split-radix
FFT,” IEEE Trans. Signal Process., vol. 51, no. 3, pp. 864–874,
Mar. 2003.


